Correctness of Workflows in the Presence of Concurrency *

Ismailcem Budak Arpinar!, Sena (Nural) Arpinar!, Ugur Halici?, and Asuman Dogac!

Software Research and Development Center

'"Dept. of Computer Engineering

*Dept. of Electrical Engineering
Middle East Technical University (METU)
06531 Ankara Turkiye

{budak, nural, asuman}@srdc.metu.edu.tr, haliciQrorqual.cc.metu.edu.tr

Abstract

Workflow processes are long-duration activities and therefore
it s not possible to apply the well accepted correctness
techniques of transactions directly to workflow systems.

In this paper, we first mention the correctness problems
of workflow systems and then ezploit the available seman-
tics in workflow specification in the form of data and serial
control-flow dependencies to define isolation units. We show
that isolation units in a workflow can be identified automat-
ically, i.e. without human intervention, from the workflow
definition. We then propose a technique to provide for the
correctness of concurrently executing workflows on the ba-
sis of wsolation units. The technique is general enough to
handle the correctness of hierarchically structured workflows
consisting of compound tasks.

Keywords: Workflow System, Correctness of Workflow
Systems, Concurrency Control in Workflow Systems, Iso-
lation Units.

1 Introduction

A workflow consists of a set of processing steps (tasks)
together with some specification of the control and
data-flow between these tasks. Although there is
some work on the interactions among concurrently
executing workflows, the issue has not been completely
resolved yet. As long as we deal with loosely coupled
systems where no integrity constraints exist that span
multiple systems, the single tasks of a workflow can be
executed without any further control. In a more tightly

* This work is partially being supported by the Turk-
ish State Planning Organization, Project Number: AFP-03-
12DPT.95K120500, by the Scientific and Technical Research
Council of Turkey, Project Number: EEEAG-Yazilim5, by Mo-
torola (USA) and by Sevgi Holding (Turkey)

coupled system, however, there are dependencies that
must be observed. The conventional techniques used
in concurrency control are not suitable for workflow
environments because workflow execution may take
several days or weeks.

In this paper, we first mention the correctness prob-
lems in workflow systems. Then by using the data and
serial control-flow dependency information in the work-
flow definition, we introduce isolation units, i.e. the
parts of a workflow that must be executed in synchro-
nization to provide correctness. We show that isolation
units can be automatically identified within a workflow
system. We develop a technique based on isolation units
which allows for correct execution of concurrently exe-
cuting hierarchically structured workflows consisting of
compound tasks.

The paper is organized as follows: Section 2 presents
the related work. In Section 3 our basic workflow model
and correctness problems in workflows are explained.
Section 4 introduces isolation units and correctness of
nested tasks of workflows. In Section 5, NT (Nested
Tickets) technique for the correctness of concurrently
executing workflows is presented. We conclude with
Section 6.

2 Related Work

2.1 Invariants of ConTract Model

In the ConTract model [WR 92] in order for tasks
to work correctly, predicates named as invariants are
defined to hold on the database. Invariants do not
solve the problem of improper interleaving of two or
more tasks from different workflows at multiple sites. In
[WR 92], authors state that in many cases it is sufficient
to make sure that a certain tuple is not deleted; that a
certain attribute value stays within a specified range;
that there are no more than a certain number of certain
type of tuples, etc. to ensure correct execution of
workflows and the workflow designer can specify these
constraints as invariants.

For example, consider the two tasks of a ”Business

Trip Reservations Workflow” named as Travel_Data_
Input and Flight_Reservation. Exit invariant of first
task is specified as (budget > cost_limit) and entry
invariant of second task is specified as ((budget >
cost_limit)and(cost_limit > ticket_price)). At the ex-
ecution time, the run-time system checks at the end
of execution of a task if the predicates are valid. If
they are valid, the constraint is satisfied and the trans-
action which protects the step is allowed to commit.
After this task is committed, other tasks of concur-
rent workflows can access and update the variable in
the predicate which resides in a shared Resource Man-
ager (RM). However, when a second task starts its en-
try invariant is evaluated to ensure correct execution.
For example, after Travel_Data_Input task accessed
budget and committed, other tasks of concurrent work-
flows can update budget. In Flight_Reservation task
budget is accessed and its entry invariant ((budget >
cost_limit)and(cost limit > ticket_price)) is evaluated.
If it evaluates to false, the task is not allowed to start.
So ConTracts permits unserializable executions but en-
force application specific correctness.

Alternatives for predicate specification can be a state
based approach, CNF (Conjunctive Normal Form), or
first-order logic expressions (CNF plus quantifiers) or
a more powerfull method. Yet it may be difficult to
determine and/or to enforce the invariants.

2.2 Step Compatibility

In [BDS 93] to ensure data consistency, semantic seri-
alizability of workflows is proposed as the correctness
criterion. A human expert declares a compatibility ma-
trix for tasks of a workflow. Compatibility of two tasks
means that the ordering of two tasks in a schedule is
insignificant from an application point of view. If two
tasks are not defined as compatible they are in con-
flict. A schedule is semantically serializable if an equiv-
alent serial execution exists with the same ordering of
conflicting tasks. For example Risk_Evaluation and
Risk_Update tasks of different Loan Request Process-
ing workflows can be defined as in conflict whereas two
Enter_Decision tasks of different workflows can be de-
fined as compatible although two Enter_Decision tasks
update the same data item. Hence Risk_Evaluation
and Risk_Update tasks of different workflows must be
executed serializable to ensure the consistency of banks
total involvement.

In [BDS 93], the compatibility matrix is restricted to
the tasks of different instances of the same workflow
type, e.g. compatibility matrix for the tasks of two
Loan Request Processing workflows is defined. But in
real applications tasks of different workflow types can
be executed concurrently and a compatibility matrix
should be defined for them, for example, between the

tasks of a Loan Request Processing workflow and tasks
of a Risk Management workflow.

2.3 Transaction Specification and
Management Environment (TSME)

In TSME [GHM 95] using the transaction specification
language, correctness as well as state dependencies can
be specified between tasks of workflows. Different cor-
rectness dependencies such as serializability, temporal,
cooperative dependencies can be specified. For example
for the concurrent execution of two alternative line pro-
visioning tasks of a Provisioning and Billing workflow
for a telecommunication application the correctness cri-
teria can be specified as serializability; or if one of them
is allowed to commit they may use same lines and slots
and the correctness criteria can be specified as cooper-
ative.

To define conflicts, each objects is associated with
a conflict table. Serialization dependencies are speci-
fied as acyclic serialization order dependencies between
tasks. Temporal order dependencies are specified by
giving specific serialization order between tasks. Coop-
eration between tasks is provided by using breakpoints
or augmenting conflict tables of shared objects. Two co-
operating tasks read and write specific objects without
restrictions at breakpoints or some tasks are defined as
non-conflicting on specific objects.

2.4 M-serializability

In [RS 94], M-serializability is defined as a correctness
criterion for concurrent execution of workflows. In this
model, related tasks of a workflow are grouped into
execution atomic units. M-serializability requires that
tasks belonging to the same execution atomic unit of
a workflow have compatible serialization orders at all
sites they access. Yet this approach does not consider
the nesting of tasks.

2.5 Multilevel Atomicity

In [L 83], transactions are grouped into semantic types
and a transaction can belong to more than one semantic
type. Each type has different sets of breakpoints, in-
serted between the steps of a transaction at appropriate
points. Steps of compatible transactions can be inter-
leaved at these breakpoints. This idea can be adopted to
workflows by inserting appropriate breakpoints between
tasks of a workflow, but due to autonomy of local sites
intervention of local transactions can not be restricted
by breakpoints. Commitment of individual tasks are
breakpoints from the viewpoint of local transactions.

2.6 Commercial and Prototype WFMSs
Most commercial WFMSs provide limited capabilities
for concurrency control. XAIT’s InConcert [DS 93] sup-
ports a form of check-in and check-out model which is

.

a primitive way for concurrency control. Lotus Notes
[GHS 95] allows a user to update an object and create
a new version of it. When very large amount of objects
are updated, this method is not feasible because keep-
ing every version of an updated object is very costly.
Staffware [GHS 95] uses a pass-by-reference/pass-by-
value approach for concurrency control. Data items
that can be shared among multiple clients are passed
by reference, i.e. clients access a centrally stored data
item using a pointer, possibly concurrently. Mentor
[WWW 96] supports the distributed execution of work-
flows and uses a TP Monitor, namely Tuxedo to pro-
vide atomicity of distributed transactions. The synchro-
nization is provided by means of update messages be-
tween workflows at synchronization points. The ATM
[DHL 91] approach includes an extended nested trans-
action model and language for describing long running
activities.

2.7 Multilevel Transaction Frameworks

Workflows may contain a hierarchy of tasks. Therefore
we need to deal with the concurrent execution of nested
tasks. In [BBG 89] a concurrency theory is provided
for nested transaction systems. In this theory, com-
mutativity and pruning concepts are used to prove the
correctness of a concurrency control technique. Princi-
ples and realization strategies of multilevel transaction
management is described in [W 91]. In [HAD 97] we
have developed a theory for the serializability of nested
transactions in multidatabases.

3 Workflow Correctness Issues
3.1 Workflow Model

In this section we define the basic workflow model to be
used throughout the paper.

The individual steps that compromise a workflow are
termed as tasks. Tasks may involve humans as well as
programs. FEach task has a set of input and output
parameters. A task includes Data Manipulation (DM)
operations or subtasks. Hence, a workflow is a tree of
tasks, the subtrees of which are either nested or flat
tasks.

A Workflow Management System (WFMS) involves
distributed objects managed by either a number of pre-
existing and autonomous Local DBMSs (LDBMSs) (e.g.
Sybase!, Adabas D?), or non- transactional Resource
Managers (RMs) (e.g. file systems) as well as human
participants. These LDBMSs, non-transactional RMs,
and human participants may exist on a distributed
heterogeneous platform.

lSybase is a trademark of Sybase Corp.
2Adabas D is a trademark of Software AG Corp.

In a WFMS environment there exists at least three
types of tasks and transactions:

¢ Local Transactions, those transactions that access
data managed by a single DBMS and they are
executed by the LDBMS, outside the control of
WFMS,

e Transactional Tasks, those tasks that are exe-
cuted under WFMS control and they access data
controlled by RMs with transactional properties (i.e.
ACID). Transactional RMs offer at least two trans-
actional operations: commit and abort,

e Non-Transactional Tasks are also executed un-
der WFMS control, but they access data controlled
by RMs without transactional properties such as
file systems. Yet it is possible to introduce trans-
actional properties to these systems, for exam-
ple by wrapping non-transactional RMs to provide
transaction and concurrency control services accord-
ing to OMG’s Object Transaction Service (OTS)
[OMG 94] and Concurrency Control Service (CCS)
specifications. Hence these RMs can behave similar
to transactional RMs.

From this point on task and transaction will be used
interchangeably throughout the paper. Both of the
terms refer to an atomic unit of work in general.

A task or a local transaction #; is a sequence of read
(r;) and write (w;) operations terminated by either
a commit (c¢;) or an abort (a;) operation from the
concurrency control perspective. A single task may
contain Data Manipulation (DM) operations at more
than one site. Note that DM operations are invisible to
the workflow system.

There are two types of flow dependencies between
tasks of a workflow:

¢ Data Flow Dependencies map an output param-
eter of a task to input parameter of one or more
tasks.

e Control Flow Dependencies specify the execu-
tion dependency between the tasks.

3.2 Correctness Problems in Workflow
Systems

The two correctness problems arising from the concur-
rent execution of tasks in workflow systems are dis-
cussed in the following through examples. In these ex-
amples we choose to explicitly show the DM operations
although they are not visible at the workflow level, just
to provide clarification to the problems presented.

Example 1. Consider two concurrently executing
Airline Reservation workflows as shown in Figure 1. A

Air_Reserv 1

N

Tri Ret Tri
p121 et p122

rll(mSl) rll(wat52) r2 1(s;eatsl)

Check_Cond 1 Flight_Res 1 Report 13 Check_Cond n Flight_Res ” Report 2

W2 2(%&31)

Air_Reserv 2

PN

WofSeats) - w(seats)

Fig. 1. Concurrency Control Problem of Workflows At A Single Site

customer wants to make a round trip flight from Istan-
bul to Paris. Therefore, an Airline Reservation work-
flow (Air_Reservy) is created. Check Condition task
(Check_Condy1) of Air_Reservy workflow checks the
available seats for both Istanbul to Paris and Paris to Is-
tanbul flights from the Flight Reservation Database. If
there are available seats in these flights, Flight Reserva-
tion task (Flight_Resis) is started. Flight_Resis task
is broken into two subtasks, Trip (Tripi21) which re-
serves the flight from Istanbul to Paris, and Return
Trip (Ret_ T'ripi22) which reserves the flight from Paris
to Istanbul. Report task (Report;s) writes flight infor-
mation of the customer to her ticket. Air_Reservs is
another instance of the same workflow and also updates
available seats for Istanbul to Paris flight (seatsl).

In Example 1 the problem arises because after read-
ing seatsl and seats2, Check_Cond;; commits and
Flight_Resyy task of Air_Reservy, updates seatsl.
However, the previously read value of seatsl by C'heck_
Condy; is used later in processing of Air_Reserv; work-
flow to control the flow of task Flight_Res;2. Note that
this value of data is no longer valid. O

This example considers correctness problem of data
residing on a single site. 'We would like to point out
that passing references instead of data itself, does not
solve the inconsistent data flow problem since a task
may perform a certain computation to create the data
to be used by another task. In this case, even if the
data is stored to be accessed through a pointer, it may
no longer be correct because the underlying data used
in computing this data may have changed.

Next example demonstrates that data consistency can
be violated by the concurrently executing workflows at
multiple sites.

Example 2. Consider the two workflows in Figure 2.
Trans fer; workflow transfers money from one account
to another. These accounts are in different subsidiaries
of a bank (i.e. different sites). Transfer; workflow
includes two tasks, namely Withdraw,; and Depositis.
Withdraw;; task withdraws the given amount of money
from accl at the first site by means of read and write
operations on the underlying records as shown in Figure
2. Deposit12 adds the given amount of money to acc2
at the other site. Audit, workflow checks the balance of
the bank by summing up all the accounts in the bank’s
subsidiaries in TotalBals; task. TotalBals; has two
Check subtasks for Site; and Sites. Balances accessed
by Checks11 and Checksyo are summed in Sumesis. Also
assume each workflow executed in the system updates a
log record for bank’s security and statistical purposes.
Report;3 and Reportss tasks update this log record
which is located at Sites.

The schedule in Figure 2 is not correct because
Audits sees an inconsistent result, since it misses the
money being transferred from accl to acc2. In order to
prevent this inconsistency, the tasks of Transfer; and
Audity workflows must be executed so that they have
compatible serialization orders at each site. O

4 Concurrency Control for
Workflows

Data consistency can be violated by improper inter-
leaving of concurrently executing workflows as shown
in Examples 1 and 2. Also, such inconsistencies can
occur due to improper interleaving of concurrently ex-
ecuting workflows and local transactions. Such inter-
leavings must be prevented to ensure data consistency

Transfer

I

W|thDraw Deposit |, Report

r, (accl) w,, (accl) [
| | |

(accl) I, (8cc2)

TotalBal Report »

CIN

Check Check
211

r, (acc2) w, (acc2)

w,, (log) w,_(log)
J J

Sitg

Site, S’te3

Fig. 2. Concurrency Control Problem of Workflows At Multiple Sites

in WEMSs. In this section we introduce the ”isolation
unit” concept and a related technique to provide for
the correctness of concurrently executing workflows. In
achieving this goal we aim at increasing concurrency.
Our starting point is to exploit the available semantics
in workflow specification. How this semantic knowledge
is extracted by using data and serial control-flow depen-
dencies between tasks is discussed in Section 4.1. Usage
of this knowledge to preserve data consistency is pro-
vided in Section 4.2.

4.1 Isolation Units

We define an isolation unit to be the set of (sub)tasks
that have data-flow and also serial control-flow depen-
dencies among them. We claim that the workflow
correctness can be provided by identifying the isola-
tion units in a workflow system automatically from the
data and serial control-flow dependency information ob-
tained from the workflow specification. Before providing
a formal definition of an isolation unit we will provide
some motivating examples.

Consider Example 1. Check_Condy; accesses data
items seats] and seats2 and these data items are passed
to Flight_Res15 and Flight_Res;» uses these data items
in its internal processing. Yet, because these tasks com-
mit independently they are not executed within the
scope of an isolation unit, i.e. a transaction, which pro-
vides isolation from other concurrently executing tasks.
Other tasks of concurrently executing workflows can in-
validate the data (e.g. seatsl, seats2) being transferred
between these tasks. Data-flow dependent tasks of a
workflow such as Check_-Cond;, and Flight_Resi» can
be grouped into a single isolation unit.

In Example 2, a similar condition occurs at multiple
sites. Because there is a serial control-flow and data-
flow dependency between Withdrawi; and Depositis
they must be executed in isolation and their serialization
order must be compatible at every site that they
have executed, that is, Site; and Sites. So, either
Withdraw;; must be serialized after Checks11 at Sitey
or Depositis must be serialized before Checksio at
Sites. Note that Report tasks can be serialized in any
order, since they do not affect the correct execution
of other tasks. So, for example Report;s should not
necessarily have a consistent serialization order with
Wihdraw,, and Depositys for the correctness.

To express these ideas precisely, a formal presentation
of isolation units is given.

Definition 1. A task is a quadruple ¢ = (in, out,n,<)
where in denotes the input parameters of task t; out
denotes the output parameters of t; 7 is the name of ¢,
and ¢ is the computation of the ¢. Actually computa-
tion ¢ is a tree on Oy, U O where Oy, are the nodes
representing the DM operations and O; are the nodes
corresponding to the abstract operations representing
subtasks. O

Definition 2. There is a data-flow dependency between
tasks ¢; and ¢; if out; Nin; # 0. The data-flow depen-

dency is denoted as t; |=t;. O

In other words, at least one of the output parameters
of ¢; is mapped to an input parameter of ¢;.

Definition 3. There is a serial control-flow dependency

.

Transfer .

accl, acc2, money
seria

Deposit ,, (in acc2, in money)
Report ., ()
end serial
end

Audit2
seria
TotalBal ,,

Report », ()
end serid

end

Withdraw ,(in accl, out money)

TotalBal 2
ball, bal2
serial

paralel
Check,,, (out bal1)
Check,,, (out bal2)
end parallel
Sum2_13 (inball, in ba2)
end serial
end

Fig. 3. Determining Isolation Units Using Data and Serial Control-Flow Dependencies

between tasks ¢; and ¢; if ¢t;BCDt;. BCD [CR 91]
denotes begin on commit dependency which means ¢;
can begin only after the commitment of ¢;. The serial
control-flow dependency is denoted as ¢; =;. O

Definition 4. Two tasks ¢; and ¢; belong to same iso-
lation unit I if ¢; |=¢; and ¢; = ¢;. O

The isolation units can be constructed automati-
cally (i.e. without human intervention) by apply-
ing the Definition 4 repeatedly. Figure 3 repre-
sents an example to clarify Definition 4. In Fig-
ure 3, definitions of Transfer; and Audits work-
flows of Example 2 are presented. Transfer; work-
flow contains three tasks to be executed in serial and
Audity contains two tasks namely TotalBals; and
Reportas to be executed in serial. Yet TotalBals; is
a compound task that also includes two subtasks ex-
ecuting in parallel, namely Checksy; and Checksya.
Starting with Withdrawy,, II} of Transfer; con-
tains Withdraw;;. Because Withdrawy, = Deposit;s
and Withdrawy, = Depositis, II} is augmented to
{Withdraw,, Depositys}. Finally, I} = {Withdraw:,
Deposity,} and 12 = { Report;3} since there is no data-
flow dependency between Report;s and other two. Sim-
ilarly, since Checksi1 |: Sum213, Checks11 = SUMng
and Checkaia ': SUMng, Checks1s = Sum213, H% =
{Checkgn, Checkglg, Sum213} and H2 = {Reportzg}.

In the following section, isolation of nested tasks will
be discussed.

4.2 Isolation of Nested Tasks

In our model, workflows may contain a hierarchy of
tasks. In other words a compound task can contain
any number of tasks and compound tasks. Therefore
we need to deal with the isolation of hierarchically
organized tasks. Nested tasks differ from flat tasks
in that when two (sub)tasks are ordered this imposes
an order between their parents. Thus isolation of tree
of tasks must be defined. The theory provided in
[HAD 97] for nested transactions in multidatabases is
general enough to be applicable to workflow systems.

In the following, we will demonstrate how the order-
ing imposed by the leaf nodes are delegated to the up-
per nodes in the hierarchy. Note that, by assuming an
imaginary root for all submitted workflows it is possible
to model an ezecution history of workflows. Ezxecution
history of workflows is a tree on (sub)tasks and — is a
nonreflexive and antisymmetric relation on the nodes of
the tree. Actually, — is the ordering requirements on
the leaf nodes due to execution order of conflicting DM
operations. — satisfies the following axioms for any two
(sub)tasks t; and t;:

i. transitivity: if ¢; — ¢; and ¢t; — ¢ then ¢; — &3
ii. delegation: if ¢; — ¢; and

WithDraw Va1

—=: Ordering due to conflicting DM operations

— — —= : Ordering due to delegation axiom

77777777 : Isolation unit

/]\ : Parent-child relationship L -7

r, (accl) wy, (acgl) I 4 (accl) \FZIZ(aCCZ) I, (@cc2) w, (acc2)
| oL o~ 7 |
Site, Site,

Fig. 4. Ilustration of Delegation Axiom

a. if parent(t;) ¢ ancestors(t;) then t; —
parent(t;)

b. if parent(t;) € ancestors(t;) then parent(t;) —
t;.0

Theorem 1. An execution history of workflows is seri-
alizable iff — is a partial order 3. O

The proof of Theorem 1 is given in [HAD 97].

Consider the example in Figure 4. Isolation units are
depicted within dotted rectangles in the figure. Since
Withdrawy; and Checksy; have issued conflicting DM
operations on accl they are ordered as Withdrawi;; —
Checks11 at Site; (The DM operations are not available
at the workflow level; we obtain the related information
from the data-flow by using the input, output parame-
ters and from the serial control-flow dependencies). Also
Depositis and Checksyo are ordered as Checksis —
Depositis. Since, Withdraw;; and Checksy; are or-
dered as Withdraw,; — Checks11, Withdraw,; and
Total Balyy (which is parent(Checks11)) are ordered as
Withdrawy, — Total Bals; (from Axiom i.a above). By
applying the delegation definition repeatedly, the follow-
ing order is obtained between Transfer; and Audits:
{Transfer; — Audits, Audity — Transfer1}. — is
not partial order here because its antisymmetry prop-
erty is violated and the execution history for the isola-
tion units in Figure 4 is not serializable. Some of the
delegated orderings are not shown in Figure 4 for the
sake of simplicity.

3Note that our partial order relation is irreflexive, antisymmet-
ric and transitive

Now consider the case where tasks of II} and II3
have consistent serialization orders at Site; and Sitey
as shown in Figure 5, i.e. Withdraw;; — Checkaq,
Depositio — Checks12. Hence, Transfer; — Audits.
Since Report;3 belongs to a different isolation unit(I13),
its serialization order is independent from the tasks of
I} for correctness. Hence, the order due to Report;s
must be delegated to a different parent other than the
parent of elements of I}, i.e. Transfer;. In this
way, Reportis3’s inconsistent serialization order with
Withdraw,, and Depositio does not effect Withdraw;,
and Depositys. Hence, parents of II} and II? are
differentiated and a virtual parent for I1? is created and
it is denoted as Transfer]. For the same reasons,
Audity is created for II3. The point we want to
make over here is the following: The correctness of an
isolation unit can be checked and enforced by keeping its
(sub)tasks under the same parent whereas the unrelated
parts of the workflow can be executed freely by making
them children of independent parents. So although the
total execution of the workflow history in Figure 5 is
not serializable, we make it semantically serializable by
separating the parents of isolation units and delagating
ordering relations due to different isolation units to
different parents. Now, the order in Figure 5 is
{Transfer1 — Audits, Audit), — Transfer]} which
is serializable and correct from the application point of
view.

As can be seen from the discussion presented above,
the isolation units in a workflow can be identified and
we claim that correctness measures can be applied
on the basis of isolation units. This will allow for

7 - %
7
1 Transfer Transfer’ |
T |
| T 1
WlthDraW11 Deposit ,, Report 13
,,,,,, Se N

Fig. 5. Separating Parents of Different Isolation Units

the concurrent execution of rest of the workflow while
preserving the correctness of isolation units.

In the following we will present a technique to provide
for the correctness of concurrently executing nested
tasks of workflow systems, based on isolation units.

5 Nested Tickets for Workflows

In this section, a technique for concurrency control
of nested tasks of workflows, called Nested Tickets
(NT) is presented. As described in [GRS 94], tickets
determine the serialization orders of tasks. The main
idea of NT technique is to give tickets to (sub)tasks at
all levels, that is, both parent and child tasks obtain
tickets. Then each (sub)task is forced into conflict with
its siblings through its parent’s ticket at all related
sites. Note that since the parents of isolation units
and unrelated parts of the workflow are separated only
siblings within the same isolation unit are forced into
conflict. The recursive nature of algorithm makes it
possible to handle correctness of different task levels
smoothly. The algorithm is fully distributed, in other
words there is no central scheduler. This is due to each
(sub)task knows its predetermined serialization order
and behaves according to this order information.

To be able to provide a neat recursive algorithm, we
imagine all the workflows to be children of a virtual
task called OMNI. When OMNI task starts executing,
it creates a siteTicket(OMNI) at each site whose default
value is 0.

GlobalBegin(t;) assigns a globally unique and mono-
tonically increasing ticket number denoted as TN (t;) to
all tasks denoted by t; when they are initiated, that is,
both the parent and the child tasks at all levels obtain a
ticket. A Ticket Server provides tickets and guarantees
that any new (sub)task obtains a ticket whose value is

greater than any of the previously assigned ticket num-
bers. Since any child is submitted after its parent, this
automatically provides that any child has a ticket num-
ber greater than its parent’s ticket. When a (sub)task
t; starts at a local site, before it executes any of its
operations, LocalCheckTicket(t;, k) is executed at this
site. Each child task reads the local ticket created by
its parent at this site (this ticket is created for the chil-
dren of parenit(t;), i.e. siblings(t;)), and checks if its
own ticket value is greater than the stored ticket value
in the ticket for siblings(t;) at this site. If it is not, the
task t; is aborted at all related sites and resubmitted.
Otherwise, t; sets the local ticket created by its par-
ent to its own ticket value (T'N(t;)) and creates a site
ticket, siteTicket(t;) with default value O for its chil-
dren. As a result, all siblings of a (sub)task accessing to
some Sitey, are forced into conflict through a ticket item
created by the parent of these siblings at Siter. This
mechanism makes the execution order of all (sub)tasks
of an isolation unit to be consistent at all related sites.
In other words, the consistency of serialization order of
the siblings of an isolation unit is provided by guaran-
teeing them to be serialized in the order of their ticket
numbers. If a task is validated then its read and write
operations on any item z are submitted to related RM.

The NT Algorithm:

GlobalBegin(t;):
Get global ticket for t; so that
TN(t;):=lastTicketNo+1;
lastTicketNo:=TN(t;); O

LocalCheckTicket(t;, k):
If t; is not OMNI then

WithDraw
11

r,, (accl) w,, (accl) r,,, (@ccl)
L | |

r,,(acc2)

r, (ac2) W, (acc2)

s (00w 000)

Site,

Site, Site,

Fig. 6. Example of NT Technique

If siteTicket(parent(t;)) > TN(t;) then
Abort(t;);
else
siteTicket(parent(t;)):=TN(t;);
Create(siteTicket(t;)) at site k
with default value 0; O

In the following, an example is provided to clarify how
NT technique is used to solve concurrency problems of
workflow systems.

Example 3. Let us consider the example in Figure 6
and assume the tickets obtained from the Ticket Server
to be as follows:

TN TN

OMNI 0 Depositis 7
Transfery 1 Sumaiz 8
Withdraw;, | 2 Audit!, 9
Audits 3 Reportays 10
Total Bals; 4 Transfer] | 11
Checks11 5 Report3 12
Checkglg 6

Execution at Site;:

Transfery is accepted since siteT'icket(parent
(Transfery)) = siteTicket(OMNI) = 0 < TN
(Transfery) = 1 and siteTicket (OMNI) is set to

1 and siteTicket (T'ransfer;) is created with default
value 0. Since siteTicket (parent(Withdrawi1)) =
0 < TN (Withdrawy1) = 2, siteTicket (parent
(Withdrawsy)) is set to 2 and 711 (accl) and wqq (accl)
are executed. Similarly siteT'icket (parent(Auditz)) =
siteTicket(OMNI) = 1 < TN(Audity) = 3, Audit,
is accepted and siteTicket(OMNI) becomes 3 and
siteTicket(Audity) is created with default value O.
Next TotalBals; is accepted since siteT'icket (parent
(TotalBaly1)) = 0 < TN (TotalBaly;) = 4 and
siteTicket (TotalBals) is created with default value
0. Checksyy is also accepted and 7911 (accl) is ex-
ecuted because siteTicket (TotalBalo;) = 0 < TN
(Checkizn) =35.

Execution at Sites:

Audit, is accepted since siteT'icket (parent(Audits)) =
siteTicket(OMNI) = 0 < TN (Audity) = 3 and
siteTicket (OMNI) is set to 3. siteTicket (Audits)
is created with 0 value. TotalBalo; and Checkais
are accepted similarly and r912(acc2) is executed. Yet
Transfer; at Sitey is rejected and resubmitted to
the system since siteT'icket (parent (T'ransferi)) =
siteTicket (OMNI) = 3 which is not less than 1.

Execution at Sites:

Audit!, and Reportys are accepted and waa(log) is exe-
cuted. Now suppose that, Transfer; and Audit; are se-
rialized consistently according to their ticket values at
Site; and Sites and so Transfer; is accepted at Site;.
If parents of different isolation units are not differen-

tiated as in the original schedule, although tasks are
executed correctly at all the sites, T'ransfer; would
be rejected by the system. This due to siteTicket
(parent (Transfery)) = siteTicket (OMNI) is set 3 by
Audity, hence it is not less than TN (Transfer;) =1
at Sitesz. Since we differentiated parents of Reportis
and Reportys the execution is as follows: Audit!, is ac-
cepted and siteT'icket (OMNI) is set to 9. Reportas
is accepted and siteTicket (Audit}) is set to 10. Then
waa(log) is executed. Similarly, Transfer] is accepted
since siteTicket (parent (T'ransfer])) = siteTicket
(OMNI) = 9 < TN (Transfer;) = 11. Finally,
Reportys is accepted and wi3(log) is executed.

It can easily be shown that improper interleavings
of the local transactions with the workflow tasks are
also prevented with the NT technique. In fact, in
[HAD 97] it is shown that NT Technique prevents
improper interleaving of local transactions with global
transactions.

6 Conclusions

To provide correctness in concurrently executing work-
flow systems, we have defined isolation units and pro-
vided a technique based on isolation units, for correct-
ness of hierarchically structured workflows.

Formally, our model defines a task as a quadruple.
Two (sub)tasks belong to same isolation unit (II) if
there is a data-flow and serial control-flow dependency
between them. A (sub)task is said to execute correctly
if it is ordered consistently with other (sub)tasks of
its isolation unit at all related sites. To guarantee
correct execution, each (sub)task at all levels is assigned
a global ticket and it is expected that (sub)tasks are
ordered according to their ticket values; otherwise they
are aborted and resubmitted to the system.

Currently we are in the process of implementing this
technique as a concurrency control service [A 97] for
our Workflow Management System prototype, namely
MetuFlow.

References

[A 97] B. Arpinar. Concurrency Control and Transaction
Management in Workflow Management Systems. Ph.
D. Thesis, in preparation, Dept. of Computer Engi-
neering, Middle East Technical University, 1997.
[BBG 89] C. Beeri, P. A. Bernstein, and N. Goodman. A Model
for Concurrency in Nested Transaction Systems. Jour-
nal of the ACM, 36(2), 1989.
[BDS 93] Y. Breitbart, A. Deacon, H. J. Schek, A. Sheth, and
G. Weikum. Merging Application-centric and Data-
centric Approaches to Support Transaction-oriented
Multi-system Workflows. ACM SIGMOD Record,
22(3), Sept. 1993.
[CR 91] P. K. Chrysanthis, and K. Ramamritham. A Formal-
ism for Extended Transaction Models. In Proc. of the
17th Int. Conf. on VLDB, Barcelona, 1991.

[DHL 91]

[DS 93]

[GHM 95]

[GHS 95]

[GRS 94]

[HAD 97]

(L 83]

[OMG 94]

[RS 94]

[WR 92]

[W 91]

[WWW 96]

U. Dayal, M. Hsu, and R. Ladin. A Transaction Model
for Long-Running Activities. In Proceedings of the
17th International Conference on Very Large Data
Bases, Barcelona, September 1991.

D. R. McCarthy, and S. K. Sarin. Workflow and
Transactions in InConcert. Special Issue on Workflow
and Extended Transaction Systems, Bulletin of the
Technical Committee on Data Engineering, Vol. 16,
No. 2, June 1993.

D. Georgakopoulos, M. Hornick, and F. Manola.
Customizing Transaction Models and Mechanisms in
a Programmable Environment Supporting Reliable
Workflow Automation. IEEE Trans. on Knowledge
and Data Eng., 1995.

D. Georgakopoulos, M. Hornick, and A. P. Sheth. An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3, pp. 119-153,
1995.

D. Georgakopoulos, M. Rusinkiewicz, and A. P.
Sheth. Using Tickets to Enforce the Serializability
of Multidatabase Transactions. IEEE Transactions on
Knowledge and Data Engineering, 6(1), 1994.

U. Halici, B. Arpinar, and A. Dogac. Serializability of
Nested Transactions in Multidatabases. Intl. Conf. on
Database Theory (ICDT ’97), Greece, January 1997.

N. A. Lynch. Multilevel Atomicity: A New Correct-
ness for Database Concurrency Control. ACM Trans.
on Database Systems, Vol. 8, No. 4, pp. 484-502, Dec.
1983.

Object Transaction Service. OMG Document, 1994.

M. Rusinkiewicz, and A. P. Sheth. Transactional
Workflow Management Systems. In Proceedings of
Advances in Database and Information Systems, AD-
BIS’94, Moscow, May 1994.

H. Waechter, and A. Reuter. The ConTract Model. In
Ahmed K. Elmagarmid, editor, Database Transaction
Models for Advanced Applications, chapter 7, pp. 219-
263, Morgan Kaufmann Publishers, San Mateo, 1992.

G. Weikum. Principles and Realization Strategies of
Multilevel Transaction Management. ACM TODS,
16(1), 1991.

D. Wodtke, J. Weissenfels, G. Weikum, and A. K. Dit-
trich. The Mentor Project: Steps Towards Enterprise-
Wide Workflow Management. In Proc. Twelfth Intl.
Conf. on Data Eng., New Orleans, Louisiana, 1996.

