Testing the Interoperability and Conformance of UBL/NES based Applications

Tuncay NAMLI1, Asuman DOGAC2, Ali Anil SINACI1, Gunes ALUC2
1Software Research, Development and Consultancy Ltd., METU-KOSGEB Tekmer, Ankara, 06531, Turkey

Tel: +90 312 2102076, Fax: + 90 312 2105572, {tuncay,anil,gunes}@srdc.com.tr

2 Dept. of Computer Engineering, Middle East Technical University, İnönü Bulvari, Ankara, 06531, Turkey

Tel: +90 312 2405598, Fax: + 90 312 2101259, asuman@srdc.metu.edu.tr

Abstract: In this paper, we describe the interoperability and conformance testing requirements of UBL/NES based applications and show how these can be handled in a generic B2B conformance and interoperability testing environment. Currently, NES addresses eight UBL procurement documents and sets further restrictions on the selected business documents through schema refinement. The derived documents are called NES Generic Documents and are conformant with the UBL 2.0 specifications. The generic NES documents are further restricted for use in particular business process contexts called NES Profiles. NES Profiles define the actors, the business processes and the rules on the exchanged business documents through activity diagrams. We analyze these profiles to gather the conformance and interoperability requirements and then describe how NES Profiles can be tested in a general purpose test framework, namely, TestBATN. This work is a part of a larger initiative by CEN/ISSS “Global eBusiness Interoperability Test Bed (GTIB) Project which aims to support eBusiness standards assessment and testing activities from early stages of eBusiness standards implementation to proof-of-concept demonstrations to conformance and interoperability testing.
1. Introduction

Several communities are adapting Universal Business Language (UBL) [1] worldwide. In Denmark, for example, UBL Invoice is legally required for all public-sector businesses [2]. Sweden’s National Financial Management Authority has recommended UBL Invoice customized to Sweden, namely, Svefaktura for all government use [3]. Following the success of Danish and Swedish examples, representatives from Denmark, Norway, Sweden, UK, Finland and Iceland have created a Northern European Subset (NES) for UBL to ensure interoperability among these countries [4]. Further development of NES has been moved over to CEN/BII workshop and will be an important tool in the PEPPOL (Pan European Public Procurement) project [5]. Turkey has produced the eInvoice documents conforming to UBL 2.0 [6, 7] and is working on the NES Profile 4 conformant eInvoice Profile. Denmark and Island are working on Utility Statement document based on UBL using NES Profile 4.
Although all these efforts are very promising to achieve interoperability, the correct information exchange among applications can only be guaranteed and products can be certified through interoperability and conformance testing. Interoperability testing involves checking whether the applications conform to the standards so that they can interoperate with other conformant systems. In this paper, we describe the interoperability and conformance testing requirements of UBL/NES based applications, and show how these can be handled in a generic B2B conformance and interoperability testing environment, namely, the TestBATN framework [8].

2. Objectives

The main objective of this work is to determine the conformance and interoperability requirements of UBL/NES profiles and then describe how these requirements can be handled in a testing platform.
Currently, NES addresses eight of the UBL procurement documents and sets further restrictions on the selected business documents through schema refinement. The derived documents are called NES Generic Documents (e.g. NES Generic Invoice) and are conformant with the UBL 2.0 specifications. The generic NES documents are further restricted for use in particular business process contexts. These business process contexts are called NES Profiles which define the actors, the business processes and the rules on the exchanged business documents through activity diagrams and the business rules that both parties should comply with. We analyze these profiles to gather the conformance and interoperability requirements and then describe how NES Profiles can be tested in a general purpose test framework, namely, TestBATN.
3. Brief Introduction to the TestBATN Framework

The TestBATN (Testing Business Process, Application, Transport and Network Layers) framework with its computer interpretable XML-based test description language provides the necessary functionalities for the set-up and automated execution of test cases. As shown in Figure 1, the framework provides a remote Web-based and human-driven execution environment. In this testing setup, vendors can test their applications’ conformance and interoperability over the Web by using the TestBATN “Control & Monitoring” interface while operating their application according to the test scenario defined with the TestBATN test description language.
[image: image1.png]TestBATN Framework

TestBATN Test Cas

Test Reports -
Control&Monitoring GUI TestBATN Engine
System Under Test] _57;_ 1 Playing the Roles
- e
SuT —*. AUT w
R
Test Driver Actor Under Test

(SUT Controller) Playing the Role|

Figure 1 Conformance Testing Setup
4. A Use Case for NES Conformance Testing
In this section, we describe the conformance testing requirements of the “NES Simple Procurement Profile” through an example use case scenario. The profile describes the business document exchanges starting with the order of a set of items from a supplier, the response to this order and if accepted the transmission of the invoice.
[image: image2.emf]
Figure 2 Order Accepted, Invoice Overcharge Scenario

The second part continues with the application response to the invoice and the exchange of further business documents. There are different branching options in the profile depending on the acceptance or rejection of “Order” and “Invoice”. In our use case, we design a test case for the “Accepted Order Invoice Overcharge” scenario of the profile. The activity diagram of this scenario is given in Figure 2. In the scenario, the supplier accepts the “Order” but the customer then rejects the “Invoice” because its value exceeds that of the “Order”. Note that for a complete conformance test program, more test cases should be developed to cover all of the scenarios of the profile. In our conformance test scenario, the System under Test (SUT) is the application at the Customer side.
Before starting the test case execution, the user of the SUT needs to know the flow of the scenario so that he can operate the system correctly. Hence the scenario flow, the order of business document transitions, the branching points (e.g. Accept/Reject Order) in the scenario should be described clearly to the SUT user. Furthermore, the user should be able to monitor the execution of the flow during the test case execution.

The TestBATN framework defines a presentation model to show a test case definition to the Human Test Drivers (HUT). This model facilitates clear presentation of the test scenario in different formats like a sequentially listed test steps, or a graphical presentation with actors involved or a sequence diagram. Furthermore, the binding between the test scenario presentation model and the test execution enables run-time monitoring of the test execution. HUTs can monitor the reports and verdicts for executed test steps and the step that the engine is executing at a given time.

When the “Order” document is sent, the conformance of the document to the UBL 2.0 schema and NES business rules for the “Simple Procurement Profile” should be checked. In order to perform these conformance checks, the test designer should setup several validation test steps. The first validation should be against the XML schema provided by UBL 2.0 for the “Order” document.

The TestBATN framework enables test designers to setup syntactic and semantic validation steps. In order to support different validation methodologies and the reuse of the existing materials regarding testing, it defines validation interfaces and enables pluggable adaptors to perform the validation. In this case, an “XML Schema Validation Adaptor”, one of the default adaptors of the framework, is used for validation. The Test Designer only needs to provide the XML schema and the content to be validated as inputs.
Validation against the XML schema is not enough. As in all electronic business messaging standards, code lists like the currency codes or the country codes play an important role in UBL. UBL 2.0 recommends a two step validation model since the specification of the default values directly in the schemas makes it difficult to modify the code lists to meet the customization requirements. In the first phase of the two-phase validation, an incoming invoice document is validated against UBL 2.0 XSD schemas. If the instance passes the first phase, in the second phase it is checked against the rules, which specify NES business constraints on the values of the elements in the instance. These rules are specified through the Schematron language [9]. If the instance passes both of the phases successfully, it is delivered to the processing business application.

NES provides its own code lists to be used in the NES Profiles. UBL recommends creating a XSLT [10] file from the code list configuration files to be used in the validation. The so called, “UBL Code List Value Validation Methodology” is defined for this process.

Similar to XML schema validation, the XSLT Validation Adaptor (another default adaptor for validation in the TestBATN Framework) can be used to check all coded elements in the business document. However, if the XSLT files for code lists do not exist, the Test Designer can develop a special adaptor implementing the TestBATN Validation interface, deploy it to the framework and use it in the test case definition. For example, an adaptor which uses code list configuration files can be developed.
As already mentioned NES refines the UBL schemas in its profiles and requires conformance to these refined schemas. Instead of providing a refined XML schema, NES defines the refinements through business rules. The business rules are provided with Schematron files. Therefore, the test designer should setup a validation test step to validate the “Order” document according to the corresponding Schematron.

Due to its modular architecture, the TestBATN framework enables test designers to use already available testing material. In the NES case, since the schema refinements are published in the Schematron format, using the Schematron validation is the natural and easy way of testing. By using another default adaptor, Schematron Validator, the Test Designer can easily setup a validation step to check the business documents against NES Schema refinements.

The test scenario presented does not specify any details except from the message flow. For example, the items the customer has ordered, the amount of items, the party information for supplier or the tax details are not specified. Therefore, the SUT is expected to generate an “Order” document with some arbitrary content. However, this type of test cases is not recommended as they do not completely test the conformance and interoperability of applications. Similar to the applications we have in real life, we need to test the applications’ ability to create a conformant business document when the information about the document is given. The NES Order document has many optional parts but for the required elements, the test designer must specify some information as the scenario requirement. For optional elements, further test cases may be designed.

The TestBATN framework enables scenario based testing where SUTs are given a test scenario and a set of scenario requirements and are requested to operate their systems accordingly. The scenario requirements are presented to the Human Test Drivers in a structured format in the preliminary phase just before the execution of the real test steps.
The test designer needs to setup test steps to check the application’s conformance to these requirements. XPATH expressions or Schematrons can be used for these test steps. To facilitate the maintenance of these expressions and the test case, the requirements should be represented as variables in the expressions. In this way, test designers can easily change the requirements without modifying the expressions.

In the TestBATN framework, since the scenario requirements are presented in a structured format and the information entities in these requirements are bound to the variables (data storage constructs in test case definitions), it is possible to devise test steps to check if the SUTs conform to these requirements. By using the XPath Adaptor, the Test Designer can write XPath expressions that will compare the requirements and the content of the received document.

In the next phase, after testing the “Order” document syntactically and validating it against the scenario requirements, the test designer needs to setup a test step which will create and send an “Order Response Simple” document to the customer. The test designer needs to provide the content of this document at test design time. However, many parts of the document need to be determined at run time (test case execution time). For example, OrderReference element includes an ID element that should be equal to the ID of the “Order” document. Another example is the content of the BuyerCustomerParty element in the Order document. It provides general information about customer firm (company name, address, contact, etc) and should directly be copied to “Order Response Simple” document. Moreover, although the test designer may determine certain scenario requirements, he can defer certain other decisions or content generation to run time. For example, the test designer may not specify the number of items that will be ordered in the scenario. In that case, the data elements like LegalMonetaryTotal (the total value of the invoice), TaxTotal, InvoicedQuantity in the “Invoice” directly depend on the number of items specified in the “Order” document. In summary, the test designer should be able to setup test steps to change the content at run-time.

The TestBATN framework enables the Test Designers to provide the message content with a set of files called “Content Files”. It also provides a feature called placeholders. The placeholders simply act as variable references placed inside the Content Files so that the run-time values of the variables are replaced with that of the placeholder when the files are loaded at execution time.

Dynamic content construction from an XML document template requires certain abilities such as setting the value of an element or attribute and adding an XML fragment to a specified location in the document. The test framework should also allow test steps to do calculations (in order to calculate total monetary value or tax amounts) or other simple operations on strings.

The TestBATN framework provides an XPath based expression language to facilitate the manipulation and processing of data stored in the variables. Function calls can also be used in the TestBATN expressions and the framework provides a modular architecture for pluggable function libraries. With the XML manipulation function library, the Test Designers gain extensive data processing capabilities.
Before the test steps regarding the “Invoice”, there is one business step that should be performed. In real life, it is the delivery of ordered items from supplier to customer. In a test scenario, this is an imaginary delivery action by informing the SUT that delivery is assumed to be completed.

Both NES and UBL, being business documents standards, do not specify the communication or the transport layers normatively. Therefore, if the objective is designing generic test cases which test only the conformance to NES Generic Documents and Profiles, the transportation of business documents can be accomplished via a graphic interface with document upload and download capabilities.

The TestBATN framework has a specific instruction to interact with the Human Test Drivers in any step; either requesting or presenting some information about the test scenario. This interaction is handled by “TestBATN Control&Monitoring GUI” and requested information can be textual or a file that will be uploaded by the user interface.

 However, any real life application is in need of some communication and transport protocols. For example, in the PEPPOL Project, the transport layer is based on the Web service technology. When a specific communication protocol is selected for the transport layer, it should be possible to easily update the test cases to support the selected protocol.

The TestBATN framework provides the “Transport and Packaging” interfaces to handle communication and message packaging. Through the pluggable adaptors conforming to these interfaces, it is possible to support different communication and transport protocols like TCP, HTTP or SMTP and packaging protocols like ebMS or SOAP in the messaging steps within the framework.

For the remaining business transactions, similar test steps can be designed.
5. A Use Case for NES Interoperability Testing

In order to test the interoperability of applications we analyze the following two profiles: the Catalogue Only and the Simple Procurement Profiles. In this scenario, through the Catalogue Only profile, a Supplier sends a Catalogue containing information about items it supplies. The Customer uses this catalog to order items. Then the scenario continues with the Simple Procurement Profile as described in Section 4.

In order to design an interoperability test case for this overall scenario to test the interoperability of two application claiming to be conformant to both Catalogue Only and Simple Procurement Profiles, the first step is the configuration management to assure that both parties successfully configure their systems to send or receive business documents from each other.

The TestBATN framework provides a holistic approach and involves configuration management into the automated testing process in contrast to the other test frameworks where the configuration step is handled manually. In the test case definition, the Test Designer list all the interactions among parties. According to these interaction definitions, in the configuration management phase, the Human Test Drivers are prompted with a page where they can provide the configuration parameters of their systems. In this way, all configuration parameters are shared among SUTs and the test engine.
Then the design of the main test steps continues. The supplier sends the Catologue to the customer as the first step. In order to test this business document, we should be able to capture it. For this test case, we can assume that a specific transport protocol is agreed among parties.

In the interoperability test scenarios, the TestBATN provides a mechanism which at execution time runs as a proxy between SUTs to listen the message among them.
Assume that for this scenario, we also want to check if the system is interoperable with the “Invoice Overcharge” scenario. Therefore, after the test step that listens to the “Order Response Simple” document exchange, we need to inform the SUT users about the imagined delivery and provide the appropriate information so that the case is either an overcharge or an undercharge. This requires some calculations and the extraction of certain values from the exchanged business documents (e.g. the amount of items ordered given in the “Order” document). After that, as shown in Figure 2, the scenario continues with the “Application Response” and the “Credit Note” exchanges. However, the next step is conditional and depends on whether the fields in the “Invoice” and the “Credit Note” sent by the supplier matches with the field in the Order. As the test designer, we cannot interfere with the decision since the supplier could have made an erroneous calculation for the “Credit Note” and this is not about NES or UBL conformance. Therefore, the test steps should cover all branches in the scenario. The test designer should setup the test steps that will check the fields of the “Credit Note” and the “Invoice” to decide whether they match to the fields in the Order. Then the test case flow branches according to this decision. If a match occurs, the scenario will end otherwise scenario will continue with the “Application Response” and the other documents depending on the case of an overcharge or an undercharge.

From the scenario, it is clear that overcharge and undercharge cases can happen more than once until the total value of the “Invoices” and the “Credit Notes” sent match with the “Order”. In order to handle such cases, test designer needs a loop mechanism.

The TestBATN framework provides necessary instructions and execution model to support complex test scenarios that require concurrent execution flows, alternative test scenario paths and the repetitive steps.
6. Conclusions
The correct information exchange among applications can only be guaranteed and products can be certified through interoperability and conformance testing. Interoperability testing involves checking whether the applications conform to the standards so that they can interoperate with other conformant systems. In this paper, we describe the interoperability and conformance testing requirements of UBL/NES based applications and show how these can be handled in a generic B2B conformance and interoperability testing environment, namely, the TestBATN framework [8]. The TestBATN framework implementing the scenarios described in this paper is available for use at [8] and the user manual is available from [11].

This work is achieved within the scope of the CEN/ISSS “Global eBusiness Interoperability Test Bed (GTIB) Project” [12] which aims to provide a consensus view and an implementation of a global eBusiness testing roadmap by combining the collective knowledge and the existing tools and frameworks in the field. The roadmap to be produced will include the definition of key components of a global eBusiness interoperability test bed framework and the outline of a testing methodology as well as the worldwide requirements and the global collaboration model.
References

[1] Universal Business Language, http://docs.oasis-open.org/ubl/cs-UBL-2.0/UBL-2.0.html
[2] OIOUBL. O_entlig Information Online UBL. http://www.oio.dk/dataudveksling/ehandel/hoeringer/ oioubl
[3] Swedish Invoice. http://www.svefaktura.se
[4] Northern European Subset, http://www.nesubl.eu/
[5] Pan European Public Procurement Project, http://www.peppol.eu/workpackages/about-peppol
[6] Revenue Administration, Turkey, UBL 2.0 conformant eInvoice, http://www.efatura.gov.tr/
[7] UBL Turkish Localization SC, http://www.oasis-open.org/committees/sc_home.php?wg_abbrev=ubl-trlsc
[8] TestBATN Framework, http://www.srdc.com.tr/index.php?option=com_content&task=view&id=182& Itemid=192
[9] Schematron Language, http://www.schematron.com/
[10] XSL Transformation, http://www.w3.org/TR/xslt
[11] TestBATN User Manual for NES, http://www.srdc.com.tr/testBATN/documents/
[12] CEN/ISSS eBIF Global eBusiness Interoperability Test Bed Methodologies (GITB) Project, http://www.ebusiness-testbed.eu/home/
