
A Region Based Query Optimizer Through Cascades Query Optimizer

Framework

Fatma Ozcan Sena Nural Pinar Koksal Mehmet Altinel Asuman Dogac

Software Research and Development Center of TUBITAK
Dept� of Computer Engineering
Middle East Technical University

������ Ankara Turkiye
email� asuman	srdc�metu�edu�tr

Abstract

The Cascades Query Optimizer Framework is a tool to help the database implementor �DBI� in constructing a
query optimizer for a DBMS� It is data model independent and allows to code a query optimizer by providing the
implementations of the subclasses of prede�ned interface classes� When the implementations of the required classes
are provided properly� the generated optimizer produces the optimum execution plans for the queries� Although
providing the complete set of rules and thus �nding the optimum execution plans are bene�cial for most of the
queries� the query optimization time increases unacceptably for certain types of queries� e�g�� for star queries�
Hence it is important to be able to limit the number of alternative plans considered by the optimizer for speci�c
types of queries by using the proper heuristics for each type� This leads to the concept of region based query
optimization� where di�erent types of queries are optimized by using di�erent search strategies in each region�

This paper describes our experiences in developing a region based query optimizer through Cascades� Cascades�

guidance structures provide the facilities required for the design and implementation of a region based optimizer�

The performance comparisons between a region based query optimizer and an exhaustive �which uses the complete

rule set without heuristic guidance� query optimizer� both generated through Cascades� indicate that the region

based optimizer has a superior performance� In the performance analysis� both the sum of optimization and

execution times� namely the response time� and the quality of the plans generated are investigated�

� Introduction

The Cascades Query Optimizer Framework
Gra ��
� which is being used in Microsoft�s forthcoming SQL Server
and Access query optimizers as well as Tandem�s NonStop SQL product� is a tool to help the database imple�
mentor �DBI� in constructing a query optimizer for a DBMS� It is data model independent and allows to code
a query optimizer by providing the implementations of the subclasses of the prede�ned interface classes� The
interface classes include classes like Operator� Property and Rule� When the implementations of the required
classes are provided properly� the optimizer generated through Cascades produces the optimum execution plan�
It is an extensible system� that is� adding or deleting rules or operators can easily be accomplished� Furthermore�
Cascades provides facilities for incorporating heuristic guidance to the optimizer� These features of Cascades
make it a very attractive tool for developing query optimizers�

One of the earliest e�orts in developing a tool for query optimization with minimal assumption on the data
model is given in
Frey ��
 where a rule�based description of generating equivalent query execution plans from
an initial query speci�cation is proposed� The EXODUS project of
GD ��
 focuses on how to include rules
into an architecture of an optimizer generator� The concepts used in EXODUS optimizer generator are� data
model description as input �le� rules to specify alternatives� compilation of rules into source code and separation
of logical and physical operators� The drawback of the EXODUS query optimizer is the ine�ciency and the
ine�ectiveness of its search strategy
Gra ��
� Another e�ort in this respect is the Volcano Query Optimizer
Generator
McK ��� GM ��
� Volcano provides an e�cient search engine based on dynamic programming and
memoization� However� the Volcano technique generates all equivalent logical expressions in the �rst phase�

�

Even if the actual optimization phase uses a greedy search algorithm� this �rst phase in Volcano must still be
exhaustive� In Cascades� this represents the worst case that happens when there is no heuristic guidance�

The work presented in this paper has evolved through our experiences in developing a query optimizer for
METU Object�Oriented DBMS �MOOD�
DAOD ��� Dog ��
� MOOD query optimizer
Dur ��
 is developed
through Volcano by using the full set of rules� Experiments with MOOD optimizer revealed the fact that the
optimizer took unacceptably long for certain queries� We have identi�ed basicly two types of queries with
unacceptable response times� �rst type is the star queries and the second type of queries involves many �more
than �� selection predicates in the where clause� The poor performance of the optimizer for star queries is
obvious� the number of alternative plans that the optimizer considers is exponential in the number of relations
or classes involved� The poor performance of the queries with many selection predicates stems from the fact that
there are many rules for ordering the select predicates� We have concluded that for these types of queries� instead
of searching the space of alternative plans exhaustively� heuristics must be introduced� Using di�erent sets of
rules in conjunction with di�erent heuristics for di�erent types of queries led us to the region based optimization�
We have identi�ed three types of queries to be optimized with three di�erent strategies and implemented each
strategy in a region without any interaction among the regions� Note that this is an initial step towards the
region based optimization described in
Mit ��
� We then developed such a region based optimizer through
Volcano
Kok ��
� However� since it is not possible to add new control strategies to the Volcano search engine�
we had to introduce outside control over the Volcano� which in turn reduced the e�ectiveness of the approach�

In this paper� we describe our experiences in developing the region based query optimizer through Cascades�
The rule set used
BMG ��
 is provided in the Appendix� These rules are su�cient to optimize both relational
and object�oriented queries� The performance comparisons between a region based query optimizer and an
exhaustive query optimizer� both generated through Cascades� indicate that the region based optimizer has a
superior performance�

The paper is organized as follows� Section � contains a brief summary of the previous literature that is
directly related to our work� A short summary of Cascades Query Optimizer Framework is given in Section �� In
Section �� generating a region based optimizer through Cascades is described� Section � presents the performance
comparisons between a region based query optimizer and an exhaustive query optimizer� both generated through
Cascades� Finally� Section � contains the conclusions�

� Related Work

We begin by noting that some instances of the query optimization problem are NP�complete
IK ��
� In
OL
��
� it is shown that the complexity of optimizing the order of join operations is dependent upon the shape of
the query� The shape of the query indicates how tables are connected with predicates� In linear queries� tables
are connected by binary predicates in a straight line� whereas in star queries� a table at the center is connected
by binary predicates to each of the other surrounding tables�

The computational complexity �i�e� the number of joins that must be considered when using dynamic pro�
gramming for optimization� of linear queries with composite inners �bushy trees� is �N��N���� If the composite
inners are not considered the complexity reduces to �N����� On the other hand� using dynamic programming
to optimize a star query with N quanti�ers requires evaluating �N����N�� feasible joins
OL ��
� This study
indicates that it is not feasible to consider all possible alternative plans for star queries� Yet� certain other types
of queries might bene�t a lot from considering all possible plans� The space of alternative plans must therefore
be adjustable for each type of query� This leads to the concept of region based query optimization�

In
Mit ��� MZD ��� MDZ ��� MDZ ��
 an architecture for region based extensible processing and optimization
of queries is proposed� An Epoq optimizer is a collection of concurrently available region modules� each of which
embodies one strategy for the optimization of query expressions� Di�erent regions often accomplish di�erent
query transformation tasks� but regions may also represent di�erent strategies for accomplishing the same task
in di�erent ways� The Epoq architecture integrates the regions through a common interface for the region
modules� and a global control that combines the actions of subordinate regions to process a given query� The
region modules are organized hierarchically� with a parent region controlling its subordinate regions as though
they were a collection of transformations� The regions de�ne� through their interface� the characteristics of queries
they can process� goals for the transformation of queries� and the characteristics of result queries� A higher level
control uses this information to plan a sequence of region executions to process a given query expression�

�

optimize()

optimize

group

optimize
expression

explore
group

explore
expression

apply
rule

optimize
inputs

Figure �� Cascades task structure

In
Loh ��� HFLP ��
� in the framework of the extensible query processing in Starburst� productions of a
grammar are used to de�ne query execution plan alternatives� The terminals of this grammar are base�level
database operations on tables and the nonterminals are de�ned declaratively by production rules which combine
those operations into execution plans� Each of these productions produce a set of alternative plans� each having
a vector of properties� including the estimated cost� In addition� productions can require certain properties of
their inputs� such as sortedness�

� Cascades Query Optimizer Framework

In Cascades
Gra ��
� the optimization algorithm is broken into several parts� which are called tasks� A task is
realized as an object and a task object exists for each task that has yet to be done� All the tasks are collected
in a task structure� a last�in��rst�out stack� In Figure �� tasks that make up the optimizer�s search engine are
shown� The �optimize� procedure �rst copies the original query into an internal structure� namely the �memo�
structure� which holds all the equivalent logical and physical expressions� Then �optimize� triggers the entire
optimization process with a task� namely �opt group�� to optimize the class corresponding to the root of the
original query tree� which in turn triggers optimization of smaller subtrees�

A task to optimize a group� which is a collection of equivalent expressions� or a single expression combines a
group or an expression with a cost limit and with required and excluded physical properties� Performing such a
task results in either �nding the best plan� or failure�

Exploring a group or an expression is a new concept that has no equivalent in Volcano� In Volcano search
strategy� all rules are applied in the �rst phase to create all possible logical expressions of a query and its subtrees�
In the second phase� implementation rules are applied to these logical expressions to obtain plans and the best
plan is chosen using branch and bound pruning� In Cascades� this separation into two phases is abolished� since it
is not useful to derive all logically equivalent expressions� A group is explored by applying rules only on demand�

While the EXODUS and Volcano optimizer generators had the concept of support functions� Cascades is
completely based on C�� subclasses� Using the object�oriented paradigm� Cascades provides a clear interface
between the optimizer and the DBI supplied functions� Each of the classes that make up the interface between
the optimizer and DBI is designed to be the root of a subclass hierarchy� The DBI creates a new optimizer by
providing the implementations of these subclasses�

In Cascades� an operator can be both logical and physical� For each operator� one method indicates whether
an operator is a logical operator� while a second method determines if an operator is a physical operator� The
de�nition of operators includes their arguments� thus� no separate mechanism is provided for �argument transfer��
All operators must provide a method which determines how many of the given set of rules will be applied�

Methods for matching� �nding and improving logical properties must be provided by the DBI for operators
that are declared to be logical� Similarly� for physical operators� methods for �nding an operator�s output
properties and for computing and inspecting an operator�s cost must be supplied by the DBI� Another method
that maps an expression�s cost limit to a cost limit for one of its inputs is also required�

�

JOIN
a.a1 = b.c.c1

JOIN
a.a2 = d.d1

JOIN

GET_SET

a.a3 = e.f.f1

a

A

MAT
e.f

 e

 E

D
GET_SET F

GET_SET
d

SELECT
d.d2 > const1

MAT

b.c

GET_SET C
b

B

Figure �� Example star query

Another important class of objects in Cascades Optimizer Framework is the class RULE� Cascades does not
distinguish between �logical� transformation and �physical� implementation rules� All rules have a name� an
antecedent �the pattern� and a consequent �the substitute� both of which can be arbitrarily complex� Two types
of condition functions are supported which consider the rule and the current optimization goal� i�e�� the cost
limit and the required and excluded properties� In addition to cost limits� required and excluded properties�
rule application can also be controlled by heuristics� For this purpose� before optimization starts� �promise�
functions inform the optimizer how useful the rule might be� When there is no guidance� all promise functions
should return � to indicate that the rule will be pursued� A value � or less will prevent the application of the
rule� All promise and condition functions must be supplied by the DBI� Guidance information is passed to the
functions by the help of the guidance class� The guidance class captures knowledge about the search process and
the heuristics for future search activities and it is handled by the DBI�

� A Region Based Query Optimizer Generated Through Cascades

As described in Section �� we have identi�ed three query optimization regions� In order to classify the queries
into these regions� the following criterion is used� A query that has two or more join operators which have the
same bind variable as one of their operands is classi�ed as a star query� If a query is not in this region and has
�ve or more select operators then it is classi�ed as a select query� Otherwise� it is classi�ed as a default query
and optimized with the complete rule set� It should be noted that� currently a query falls only in one region and
optimized in that region without any interaction with the other regions�

In the following� the heuristics introduced for star and select regions along with their implementation in
Cascades are presented�

��� Star Region

It has been observed that with exhaustive search strategy Cascades Optimizer Framework spends too much time
to optimize star queries� and most of this time is spent in ordering the join classes that cause the query to be star
shaped� The ordering of join classes is provided by commutativity and associativity rules of join classes �Rules
����� If these two rules are disabled� optimization time can be saved� However� the plans generated by disabling
these rules result in large deviations from the optimum plan therefore heuristics must be used� The heuristic
that we have introduced is as follows� we assume the linear subpart of a star query as a unit of processing and
we process a star query by executing the linear subqueries in the order from the least costly to the most costly�
The intuition behind this heuristic is the following� executing a linear subquery will reduce the size of a partial
result and this will be achieved in the least expensive way by executing the least expensive subqueries �rst� Yet�
not only the size of a partial result of a join� but join selectivity also a�ects the order of joins� We have developed
another heuristic to consider join selectivity and join cost together which is not described in this paper due to

�

MAT
b.c

 b

GET_SET

C
GET_SET

JOIN

a

B

A

a.a1=b.c.c1 JOIN
a.a2=d.d1

GET_SET
a

A

SELECT
d.d2>const1

GET_SET
d

D

JOINa.a3=e.f.f1

GET_SET
a

A

MAT
e.f

GET_SET
e

F

E

Figure �� Subqueries of example star query

JOINa.a3=e.f.f1

MAT
b.c

 b

CGET_SET

JOIN

B

a.a1=b.c.c1

a.a2=d.d1

a

A

d.d2>const1

d

D

a.a2=d.d1

a

A

d.d2>const1

d

D

MAT
e.f

GET_SET
e

F

E

HASH_JOIN

FILE_SCAN

FILE_SCAN

FILTER

HASH_JOIN

FILE_SCAN

FILE_SCAN

FILTER

Figure �� Subqueries after the �rst pass

space limitations�
ODE ��
�
In star region� each linear subquery of a given query� �shown with dotted lines in Figure �� is thought as

a unit of processing and optimization of this linear part with associativity and commutativity of join rules
enabled �Rules ����� takes polynomial time� We need to optimize these linear subqueries �Figure �� one at a
time according to our heuristic� However� calling the �optimize� routine once for each of these subqueries is
not e�cient since a new �memo� structure is created for each subquery� making it impossible to share common
subqueries and to use previously generated physical plans� Therefore� the search engine of Cascades is extended
to allow the subqueries to be optimized one at a time without losing the previously generated physical plans�
In order to achieve this� the task structure of Cascades is exploited� In Cascades� the task �opt group� takes a
group to optimize� combines the group with a cost limit� required and excluded physical properties and returns
either a plan or failure� In its original form� optimization begins by triggering an �opt group� task for the class
corresponding to the root of the input query� We have modi�ed this concept and for star queries we triggered
an �opt group� task for each subquery� After the optimization of subqueries is completed� the subquery with
the minimum estimated cost is chosen and joined with the other subqueries� as shown in Figure �� Then in the
next pass� these newly created subqueries are optimized� While optimizing a group corresponding to one of these
newly created subqueries� previously generated physical plans are used� thus� no rule application take place in
these parts� since Cascades explores a group only on demand� i�e� when there is no plan satisfying the current
optimization goal� This process continues until no subquery is left� Thus� there are as many passes as the initial
number of subqueries�

�

The modi�ed form of the �optimize� routine of Cascades is given in Algorithm ��

Algorithm �� Modi�ed �optimize� routine of Cascades

optimize�qry�guidance�f
if guidance�region is star regionf
create subqueries�qry� ��creates subqueries in the �memo� structure
set pass count to number of subqueries

g
for i� � to pass count dof
if guidance�region is star regionf
for j�� to current number of subqueries

push �opt group� task for jth subquery to task list
g
else ��not star region
push �opt group� task for the root of the query

while task list is not empty
perform task

if guidance�region is star regionf
	nd the subquery with the minimum cost
modify memo�� ��update �memo� structure such that the subquery

with the minimum cost is joined with other subqueries
g

g
return plan

g

��� Select Region

In the complete rule set of the optimizer given in the Appendix
BMG ��
� there are many rules for select classes
�Rules ������������������������ It has been observed that these transformations increase the optimization time a
lot for queries with many select predicates� We have further noted that some of these rules can be disabled by
using e�ective heuristics instead�

In the following� we will describe these heuristics through examples� In order to be able to apply these
heuristics� certain modi�cations are required in the input query tree� The �rst modi�cation to the query tree is
placing the select operators at the top of the tree� This eliminates the need for the rules �Rules ����� that move
the selections up in the tree� Second modi�cation requires the decomposition of select predicates beforehand
so that there is no need for the rule �Rule �� that decomposes them� Another rule that can be disabled is
the rule �Rule �� for the commutativity of select operators� Yet� when all these rules are disabled� there will
be large deviations from the optimal plan� As an example consider the query tree of Figure ��a and assume
the corresponding optimum execution tree to be as given in Figure ��b� When all these rules are disabled� the
optimizer can not generate the tree of Figure ��b because SELECT � can not be moved beneath SELECT �� This
problem can be eliminated by introducing the following heuristics� First sort the select operators for the same
range variable according to their number of path expression elements� The intuition behind is� the path with
fewer path expression elements can be moved beneath in the query tree more deeply during the optimization�
Next� the select operators are sorted according to their selectivities by preserving the relative order imposed by
the �rst sorting� The intuition behind this heuristic is to let more selective predicate go down the query tree�
With these sortings� it is possible for Cascades to generate the optimum execution plan for the example given in
Figure � even when the rules mentioned above are disabled�

After the required modi�cations are performed on the query tree �i�e� moving the select predicates and de�
composing�� the query is optimized in the select region� For the select region� two pass optimization is performed
by calling the �optimize� routine twice� In the �rst pass� all select rules �Rules ����������������� are disabled and
the join and materialize operators are ordered� At the end of this pass� the �optimize� routine of the Cascades
returns a physical plan� This physical plan is converted to a logical query which the �optimize� routine takes
as input� and optimized again in the second pass� Although it is possible to make two pass optimization inside

�

SELECT_2

SELECT_1

 JOIN

 A B

SELECT_2

 JOIN

SELECT_1 B

 A

(a) (b)

Figure �� Select commutativity example

the �optimize� routine� it is not very e�cient since in the �rst pass� Cascades creates a lot of equivalent logical
and physical expressions� which are not required in the next pass� and if these are not deleted� a large number of
rules will match to these large number of expressions� Therefore� the �optimize� routine is called twice making it
possible to use a new �memo� structure in the second pass in which the select operators are ordered by disabling
join and mat rules �Rules ����������� The overall approach is presented in Algorithm ��

Algorithm �� Region based optimizer

Region based optimizer � QUERY qry� PLAN plan�f
create operator table�qry�op table� ��creates a table to count select and join classes
decide qry type�op table� �� decides the query type
if query is star query
set guidance�region to star region

else if query is select query
set guidance�region to select region

else
set guidance�region to default region

if guidance�region is select regionf
order query�qry� ��reorders the query such that select operators are at the top of the query
set guidance�count to
 ��to order joins� all select rules are disabled
order selects �qry� �� sort selects
plan � optimize �qry�guidance� �� a plan is found
convert qry �plan�qry� ��converts the coming physical plan into an equivalent logical query
set guidance�count to � ��enables select rules while disabling join and mat rules

g
plan � optimize �qry�guidance�

g

� Performance Evaluation

This section presents the performance comparison of the region based optimizer and an exhaustive optimizer�
both generated through Cascades� Their optimization and response times and the quality of the plans generated
are compared�

In the experiments� a workstation running Microsoft NT with �� MB main memory and ��� MB swap space
is used� The queries are generated by a random query generator� and both optimizers are run with the same
set of queries� The optimization time of these queries are obtained from the system and the execution times are
estimated using the same cost functions for both optimizers� The results are presented in the following sections�

�

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

3 4 5 6 7 8 9 10

Number of Joins

T
im

e
 (

m
s
)

Heuristic
Exhaustive

0

100000

200000

300000

400000

500000

600000

3 4 5 6 7 8 9 10

Number of Joins

T
im

e
 (

m
s
)

Heuristic
Exhaustive

Figure 6: Optimization times for the star region Figure 7: Estimated execution times for the star region

0

500000

1000000

1500000

2000000

2500000

3 4 5 6 7 8 9 10

Number of Joins

T
im

e
 (

m
s
)

Heuristic
Exhaustive

0

100000

200000

300000

400000

500000

600000

700000

5 6 7 8 9

Number of Selects

T
im

e
 (

m
s
)

Heuristic
Exhaustive

Figure 8: Response times for the star region Figure 9: Optimization times for the select region

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

5 6 7 8 9

Number of Selects

T
im

e
 (

m
s
)

Heuristic
Exhaustive

0

100000

200000

300000

400000

500000

600000

700000

800000

5 6 7 8 9

Number of Selects

T
im

e
 (

m
s
)

Heuristic
Exhaustive

Figure 10:Estimated execution times for the select region Figure 11: Response times for the select region

�

��� Star Region

For the experiments in the star region� �� star queries are generated randomly� Number of join operators in this
query set� range from � to ��� and for each query type �� queries are generated� and the average of these ��
values are used�

Figure �� Figure � and Figure � depict the results of the experiments� As shown in Figure �� optimization time
di�erence between two optimizers increases dramatically as the number of join operators increases� Although the
plans generated using the region based optimizer are slightly worse than the optimal �Figure ��� the total response
time is better in the region based optimizer �Figure ��� Since the aim of query optimization is to minimize the
response time� these results justify the heuristic used in the star region of the region based optimizer�

��� Select Region

For the experiments on queries with many select operators� �� select queries are generated randomly with the
number of select predicates ranging from � to � and with � join and � materialize operators� Comparison of the
optimization time� quality of the plans generated� and response times are shown in Figure �� Figure �� and Figure
�� respectively� The region based optimizer spends less time to optimize queries than the exhaustive optimizer
�Figure ��� The quality of the plans generated using the region based query optimizer is slightly worse than that
of the optimal ones as shown in Figure ��� This is an expected result� since when some rules are disabled� the
generated plans deviate from the optimal� However� the total response times of queries are better for the region
based optimizer �Figure ���� These results also indicate that the heuristic suggested is an e�ective one�

� Conclusions

A region based optimizer that contains three optimization regions each of which optimizes di�erent queries with
di�erent optimization strategies is generated through Cascades Query Optimizer Framework� Heuristic guidance
feature of Cascades proved to be very useful in this implementation�

The performance of the region based optimizer is compared with an optimizer that uses the complete rule
set� both generated through Cascades� The results of the experiments show that although with the region
based optimizer the quality of the plans are not as good as the plans generated by the exhaustive optimizer�
optimization time gain is uncomparably larger� For this reason� region based optimizer�s total time for queries�
that is� the query response times are better�

Appendix� The Complete Rule Set

�� Select �op�pred� �� Select �Select �op�pred�� � pred��
�� Select �Select�op�pred���pred�� �� Select �op�pred�
�� Select �Select�op�pred���pred�� �� Select �Select �op�pred���pred��
�� Mat �Select �op�pred�� �� Select �Mat �op��pred�
	� Select �Mat �op�� pred�� �� Mat �Select �op�pred��

� Select �Join �op��op��pred���pred�� �� Join �Select �op��pred���op��pred��
�� Select �Join �op��op��pred���pred�� �� Join �op��Select�op��pred���pred��
�� Join �op��op��pred� �� Join �op��op��pred�

� Join �Join �op��op��pred���op��pred�� �� Join �op��Join �op��op��pred���pred��
��� Join �Select �op��pred�� �op��pred�� �� Select �Join �op��op��pred���pred��
��� Mat� �Mat� �op�� �� Mat� �Mat� �op��
��� Mat �op� �� Join �Get set�op��pred�
��� Get set �� File scan
��� Mat �op� �� Traverse �op�
�	� Select �op�pred� �� Filter �op�pred�
�
� Select �op�pred� �� B tree select �op�pred�
��� Join �op��op��pred� �� Merge join �op��op��pred�
��� Join �op��op��pred� �� Hash join �op��op��pred�
�
� Join �op��op��pred� �� Nested loop join �op��op��pred�

�

��� Join �op�Get set�pred� �� Ptr hh join �op��pred��

References

BMG ��
 Blakeley� J� A�� McKenna� W� J�� Graefe� G�� �Experiences Building the Open OODB Query Opti�
mizer�� Proc� of the ACM SIGMOD Conf�� �����

DAOD ��
 Dogac� A�� Altinel� M�� Ozkan� C�� Durusoy� I�� �Implementation Aspects of an Object�Oriented
DBMS�� in ACM SIGMOD Record� Vol���� No��� March �����

Dog ��
 Dogac� A�� Altinel� M�� Ozkan� C�� Durusoy� I�� Altintas� I�� �METU Object�Oriented DBMS Kernel��
�th International Conference on Database and Expert Systems Applications� London� September ����
�Lecture Notes in Computer Science� Springer Verlag ������

Dur ��
 Durusoy� I�� �MOODQuery Optimizer�� M�Sc� Thesis� Dept� of Computer Eng�� Middle East Technical
University� Ankara� Turkey� �����

Frey ��
 Freytag� J�C�� �A Rule�based View of Query Optimization�� in Pr oc� of ACM SIGMOD Conf�� �����

GD ��
 Greafe� G�� DeWitt� D� J�� �The EXODUS Optimizer Generator�� in Proc� of ACM SIGMOD Conf��
�����

GM ��
 Greafe� G�� McKenna� J� W�� �The Volcano Optimizer Generator�Extensibility and E�cient Search��
Proc� IEEE Conf� on Data Eng�� Vienna Austria������

Gra ��
 Graefe� G���Query Optimization in the Cascades Project�� unpublished manuscript� �����

HFLP ��
 Haas� L�M��Freytag� J�C��Lohman� G�M��Pinaresh� H�� �Extensible Query Processing in Starburst��
in proceedings of ACM SIGMOD Conf�� ����

IK ��
 Iberaki� T�� and Kameda� T�� �On the Optimal Nesting Order for Computing N�Relational Joins��
ACM Transitions on Database Systems� Vol� �� No� �� �����

Kok ��
 Koksal� P�� �Design and Implementation of a Region Based Query Optimizer for Object�Oriented
DBMSs�� M�Sc� Thesis� Dept� of Computer Eng�� Middle East Technical University� Ankara� Turkey�
�����

Loh ��
 Lohman� G�M�� �Grammar�like Functional Rules for Representing Query Optimization Alternatives��
in proceedings of ACM SIGMOD Conf�� ����

McK ��
 McKenna� W�J�� �E�cient Search in Extensible Database Query Optimization� The Volcano Opti�
mizer Generator�� Ph� D� Thesis� Univ� of Colorado� �����

MDZ ��
 Mitchell� G�� Dayal� U�� and Zdonik� B�S�� �Control of an Extensible Query Optimizer� A Planning�
Based Approach�� Proc� of Intl� Conf� on Very Large Databases� �����

MDZ ��
 Mitchell� G�� Dayal� U�� and Zdonik� B�S�� �Optimization of Object�Oriented Queries� Problems and
Approaches�� in Advances in Object�Oriented Database Systems� Springer Verlag� �����

Mit ��
 Mitchell� G�� �Extensible Query Processing in an Object�Oriented Database� PhD thesis� Brown
University� �����

MZD ��
 Mitchell� G�� Zdonik� S�� and Dayal� U�� �An Architecture for Query Processing in Persistent Object
Stores�� Proc� of the Hawaii Intl� Conf� on System Sciences� �����

ODE ��
 Ozkan� C�� Dogac� A�� Evrendilek� C�� �A Heuristic Approach for Optimization of Path Expressions in
Object�Oriented Query Languages�� �th International Conference on Database and Expert Systems
Applications� London� September ���� �Lecture Notes in Computer Science� Springer Verlag ������

OL ��
 Ono� K�� Lohman� G� M�� �Measuring the Complexity of Join Enumeration in Query Optimization��
Proc� of Intl� Conf� on Very Large Databases� �����

��

