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Abstract

The Cascades Query Optimizer Framework is a tool to help the database implementor (DBI) in constructing a
query optimizer for a DBMS. It is data model independent and allows to code a query optimizer by providing the
implementations of the subclasses of predefined interface classes. When the implementations of the required classes
are provided properly, the generated optimizer produces the optimum execution plans for the queries. Although
providing the complete set of rules and thus finding the optimum execution plans are beneficial for most of the
queries, the query optimization time increases unacceptably for certain types of queries, e.g., for star queries.
Hence it is important to be able to limit the number of alternative plans considered by the optimizer for specific
types of queries by using the proper heuristics for each type. This leads to the concept of region based query
optimization, where different types of queries are optimized by using different search strategies in each region.

This paper describes our experiences in developing a region based query optimizer through Cascades. Cascades’
guidance structures provide the facilities required for the design and implementation of a region based optimizer.
The performance comparisons between a region based query optimizer and an exhaustive (which uses the complete
rule set without heuristic guidance) query optimizer, both generated through Cascades, indicate that the region
based optimizer has a superior performance. In the performance analysis, both the sum of optimization and
execution times, namely the response time, and the quality of the plans generated are investigated.

1 Introduction

The Cascades Query Optimizer Framework [Gra 94], which is being used in Microsoft’s forthcoming SQL Server
and Access query optimizers as well as Tandem’s NonStop SQL product, is a tool to help the database imple-
mentor (DBI) in constructing a query optimizer for a DBMS. Tt is data model independent and allows to code
a query optimizer by providing the implementations of the subclasses of the predefined interface classes. The
interface classes include classes like Operator, Property and Rule. When the implementations of the required
classes are provided properly, the optimizer generated through Cascades produces the optimum execution plan.
It is an extensible system, that is, adding or deleting rules or operators can easily be accomplished. Furthermore,
Cascades provides facilities for incorporating heuristic guidance to the optimizer. These features of Cascades
make it a very attractive tool for developing query optimizers.

One of the earliest efforts in developing a tool for query optimization with minimal assumption on the data
model is given in [Frey 87] where a rule-based description of generating equivalent query execution plans from
an initial query specification is proposed. The EXODUS project of [GD 87] focuses on how to include rules
into an architecture of an optimizer generator. The concepts used in EXODUS optimizer generator are, data
model description as input file, rules to specify alternatives, compilation of rules into source code and separation
of logical and physical operators. The drawback of the EXODUS query optimizer is the inefficiency and the
ineffectiveness of its search strategy [Gra 94]. Another effort in this respect is the Volcano Query Optimizer
Generator [McK 93, GM 93]. Volcano provides an efficient search engine based on dynamic programming and
memoization. However, the Volcano technique generates all equivalent logical expressions in the first phase.



Even if the actual optimization phase uses a greedy search algorithm, this first phase in Volcano must still be
exhaustive. In Cascades, this represents the worst case that happens when there is no heuristic guidance.

The work presented in this paper has evolved through our experiences in developing a query optimizer for
METU Object-Oriented DBMS (MOOD) [DAOD 95, Dog 95]. MOOD query optimizer [Dur 94] is developed
through Volcano by using the full set of rules. Experiments with MOOD optimizer revealed the fact that the
optimizer took unacceptably long for certain queries. We have identified basicly two types of queries with
unacceptable response times; first type is the star queries and the second type of queries involves many (more
than 5) selection predicates in the where clause. The poor performance of the optimizer for star queries is
obvious; the number of alternative plans that the optimizer considers is exponential in the number of relations
or classes involved. The poor performance of the queries with many selection predicates stems from the fact that
there are many rules for ordering the select predicates. We have concluded that for these types of queries, instead
of searching the space of alternative plans exhaustively, heuristics must be introduced. Using different sets of
rules in conjunction with different heuristics for different types of queries led us to the region based optimization.
We have identified three types of queries to be optimized with three different strategies and implemented each
strategy in a region without any interaction among the regions. Note that this is an initial step towards the
region based optimization described in [Mit 93]. We then developed such a region based optimizer through
Volcano [Kok 95]. However, since it is not possible to add new control strategies to the Volcano search engine,
we had to introduce outside control over the Volcano, which in turn reduced the effectiveness of the approach.

In this paper, we describe our experiences in developing the region based query optimizer through Cascades.
The rule set used [BMG 93] is provided in the Appendix. These rules are sufficient to optimize both relational
and object-oriented queries. The performance comparisons between a region based query optimizer and an
exhaustive query optimizer, both generated through Cascades, indicate that the region based optimizer has a
superior performance.

The paper is organized as follows: Section 2 contains a brief summary of the previous literature that is
directly related to our work. A short summary of Cascades Query Optimizer Framework is given in Section 3. In
Section 4, generating a region based optimizer through Cascades is described. Section b presents the performance
comparisons between a region based query optimizer and an exhaustive query optimizer, both generated through
Cascades. Finally, Section 6 contains the conclusions.

2 Related Work

We begin by noting that some instances of the query optimization problem are NP-complete [IK 84]. In [OL
90], it is shown that the complexity of optimizing the order of join operations is dependent upon the shape of
the query. The shape of the query indicates how tables are connected with predicates. In linear queries, tables
are connected by binary predicates in a straight line; whereas in star queries, a table at the center is connected
by binary predicates to each of the other surrounding tables.

The computational complexity (i.e. the number of joins that must be considered when using dynamic pro-
gramming for optimization) of linear queries with composite inners (bushy trees) is (N®-N)/6. If the composite
inners are not considered the complexity reduces to (N-1)?. On the other hand, using dynamic programming
to optimize a star query with N quantifiers requires evaluating (N-1)2"~2 feasible joins [OL 90]. This study
indicates that 1t 1s not feasible to consider all possible alternative plans for star queries. Yet, certain other types
of queries might benefit a lot from considering all possible plans. The space of alternative plans must therefore
be adjustable for each type of query. This leads to the concept of region based query optimization.

In [Mit 93, MZD 92, MDZ 93, MDZ 94] an architecture for region based extensible processing and optimization
of queries is proposed. An Epoq optimizer is a collection of concurrently available region modules, each of which
embodies one strategy for the optimization of query expressions. Different regions often accomplish different
query transformation tasks, but regions may also represent different strategies for accomplishing the same task
in different ways. The Epoq architecture integrates the regions through a common interface for the region
modules, and a global control that combines the actions of subordinate regions to process a given query. The
region modules are organized hierarchically, with a parent region controlling its subordinate regions as though
they were a collection of transformations. The regions define, through their interface, the characteristics of queries
they can process, goals for the transformation of queries, and the characteristics of result queries. A higher level
control uses this information to plan a sequence of region executions to process a given query expression.
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Figure 1: Cascades task structure

In [Loh 88, HFLP 89], in the framework of the extensible query processing in Starburst, productions of a
grammar are used to define query execution plan alternatives. The terminals of this grammar are base-level
database operations on tables and the nonterminals are defined declaratively by production rules which combine
those operations into execution plans. Each of these productions produce a set of alternative plans, each having
a vector of properties, including the estimated cost. In addition, productions can require certain properties of
their inputs, such as sortedness.

3 Cascades Query Optimizer Framework

In Cascades [Gra 94], the optimization algorithm is broken into several parts, which are called tasks. A task is
realized as an object and a task object exists for each task that has yet to be done. All the tasks are collected
in a task structure, a last-in-first-out stack. In Figure 1, tasks that make up the optimizer’s search engine are
shown. The ”optimize” procedure first copies the original query into an internal structure, namely the ”memo”
structure, which holds all the equivalent logical and physical expressions. Then ”optimize” triggers the entire
optimization process with a task, namely ”opt_group”, to optimize the class corresponding to the root of the
original query tree, which in turn triggers optimization of smaller subtrees.

A task to optimize a group, which is a collection of equivalent expressions, or a single expression combines a
group or an expression with a cost limit and with required and excluded physical properties. Performing such a
task results in either finding the best plan, or failure.

Exploring a group or an expression is a new concept that has no equivalent in Volcano. In Volcano search
strategy, all rules are applied in the first phase to create all possible logical expressions of a query and its subtrees.
In the second phase, implementation rules are applied to these logical expressions to obtain plans and the best
plan is chosen using branch and bound pruning. In Cascades, this separation into two phases is abolished, since it
1s not useful to derive all logically equivalent expressions. A group is explored by applying rules only on demand.

While the EXODUS and Volcano optimizer generators had the concept of support functions, Cascades is
completely based on C++ subclasses. Using the object-oriented paradigm, Cascades provides a clear interface
between the optimizer and the DBI supplied functions. Each of the classes that make up the interface between
the optimizer and DBI is designed to be the root of a subclass hierarchy. The DBI creates a new optimizer by
providing the implementations of these subclasses.

In Cascades, an operator can be both logical and physical. For each operator, one method indicates whether
an operator is a logical operator, while a second method determines if an operator is a physical operator. The
definition of operators includes their arguments, thus, no separate mechanism is provided for ”argument transfer”.
All operators must provide a method which determines how many of the given set of rules will be applied.

Methods for matching, finding and improving logical properties must be provided by the DBI for operators
that are declared to be logical. Similarly, for physical operators, methods for finding an operator’s output
properties and for computing and inspecting an operator’s cost must be supplied by the DBI. Another method
that maps an expression’s cost limit to a cost limit for one of its inputs 1s also required.
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Figure 2: Example star query

Another important class of objects in Cascades Optimizer Framework is the class RULE. Cascades does not
distinguish between (logical) transformation and (physical) implementation rules. All rules have a name, an
antecedent (the pattern) and a consequent (the substitute) both of which can be arbitrarily complex. Two types
of condition functions are supported which consider the rule and the current optimization goal, i.e., the cost
limit and the required and excluded properties. In addition to cost limits, required and excluded properties,
rule application can also be controlled by heuristics. For this purpose, before optimization starts, ”promise”
functions inform the optimizer how useful the rule might be. When there is no guidance, all promise functions
should return 1 to indicate that the rule will be pursued. A value 0 or less will prevent the application of the
rule. All promise and condition functions must be supplied by the DBI. Guidance information is passed to the
functions by the help of the guidance class. The guidance class captures knowledge about the search process and
the heuristics for future search activities and it is handled by the DBI.

4 A Region Based Query Optimizer Generated Through Cascades

As described in Section 1, we have identified three query optimization regions. In order to classify the queries
into these regions, the following criterion is used: A query that has two or more join operators which have the
same bind variable as one of their operands is classified as a star query. If a query is not in this region and has
five or more select operators then it is classified as a select query. Otherwise, it 1s classified as a default query
and optimized with the complete rule set. It should be noted that, currently a query falls only in one region and
optimized in that region without any interaction with the other regions.

In the following, the heuristics introduced for star and select regions along with their implementation in
Cascades are presented.

4.1 Star Region

It has been observed that with exhaustive search strategy Cascades Optimizer Framework spends too much time
to optimize star queries, and most of this time is spent in ordering the join classes that cause the query to be star
shaped. The ordering of join classes is provided by commutativity and associativity rules of join classes (Rules
8,9). If these two rules are disabled, optimization time can be saved. However, the plans generated by disabling
these rules result in large deviations from the optimum plan therefore heuristics must be used. The heuristic
that we have introduced is as follows: we assume the linear subpart of a star query as a unit of processing and
we process a star query by executing the linear subqueries in the order from the least costly to the most costly.
The intuition behind this heuristic is the following: executing a linear subquery will reduce the size of a partial
result and this will be achieved in the least expensive way by executing the least expensive subqueries first. Yet,
not only the size of a partial result of a join, but join selectivity also affects the order of joins. We have developed
another heuristic to consider join selectivity and join cost together which is not described in this paper due to
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Figure 3: Subqueries of example star query
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Figure 4: Subqueries after the first pass

space limitations, [ODE 95].

In star region, each linear subquery of a given query, (shown with dotted lines in Figure 2) is thought as
a unit of processing and optimization of this linear part with associativity and commutativity of join rules
enabled (Rules 8,9), takes polynomial time. We need to optimize these linear subqueries (Figure 3) one at a
time according to our heuristic. However, calling the ”optimize” routine once for each of these subqueries is
not efficient since a new "memo” structure is created for each subquery, making it impossible to share common
subqueries and to use previously generated physical plans. Therefore, the search engine of Cascades is extended
to allow the subqueries to be optimized one at a time without losing the previously generated physical plans.
In order to achieve this, the task structure of Cascades is exploited. In Cascades, the task "opt_group” takes a
group to optimize, combines the group with a cost limit, required and excluded physical properties and returns
either a plan or failure. In its original form, optimization begins by triggering an ”opt_group” task for the class
corresponding to the root of the input query. We have modified this concept and for star queries we triggered
an ”opt_group” task for each subquery. After the optimization of subqueries is completed, the subquery with
the minimum estimated cost is chosen and joined with the other subqueries, as shown in Figure 4. Then in the
next pass, these newly created subqueries are optimized. While optimizing a group corresponding to one of these
newly created subqueries, previously generated physical plans are used, thus, no rule application take place in
these parts, since Cascades explores a group only on demand, i.e. when there i1s no plan satisfying the current
optimization goal. This process continues until no subquery 1s left. Thus, there are as many passes as the initial
number of subqueries.



The modified form of the "optimize” routine of Cascades is given in Algorithm 1.

Algorithm 1: Modified ”optimize” routine of Cascades

optimize(qry, guidance }{
if guidance.region is star_region{
create_subqueries(qry) //creates subqueries in the "memo” structure
set pass_count to number of subqueries
}
for i= 1 to pass_count do{
if guidance.region is star_region{
for j=1 to current number of subqueries
push “opt_group” task for jth subquery to task_list
}

else //not star region

push “opt_group” task for the root of the query
while task_list 1s not empty

perform task
if guidance.region is star_region{

find the subquery with the mintmum cost

modify-memo() //update "memo” structure such that the subquery

with the minimum cost is joined with other subgqueries

}

1

return plan

4.2 Select Region

In the complete rule set of the optimizer given in the Appendix [BMG 93], there are many rules for select classes
(Rules 1,2,3,4,5,6,7,10,15,16). Tt has been observed that these transformations increase the optimization time a
lot for queries with many select predicates. We have further noted that some of these rules can be disabled by
using effective heuristics instead.

In the following, we will describe these heuristics through examples. In order to be able to apply these
heuristics, certain modifications are required in the input query tree. The first modification to the query tree is
placing the select operators at the top of the tree. This eliminates the need for the rules (Rules 4,10) that move
the selections up in the tree. Second modification requires the decomposition of select predicates beforehand
so that there is no need for the rule (Rule 1) that decomposes them. Another rule that can be disabled is
the rule (Rule 3) for the commutativity of select operators. Yet, when all these rules are disabled, there will
be large deviations from the optimal plan. As an example consider the query tree of Figure b.a and assume
the corresponding optimum execution tree to be as given in Figure 5.b. When all these rules are disabled, the
optimizer can not generate the tree of Figure 5.b because SELECT_1 can not be moved beneath SELECT_2. This
problem can be eliminated by introducing the following heuristics: First sort the select operators for the same
range variable according to their number of path expression elements. The intuition behind is, the path with
fewer path expression elements can be moved beneath in the query tree more deeply during the optimization.
Next, the select operators are sorted according to their selectivities by preserving the relative order imposed by
the first sorting. The intuition behind this heuristic is to let more selective predicate go down the query tree.
With these sortings, it is possible for Cascades to generate the optimum execution plan for the example given in
Figure 5 even when the rules mentioned above are disabled.

After the required modifications are performed on the query tree (i.e. moving the select predicates and de-
composing), the query is optimized in the select region. For the select region, two pass optimization is performed
by calling the ”optimize” routine twice. In the first pass, all select rules (Rules 1,2,3,4,5,6,7,10) are disabled and
the join and materialize operators are ordered. At the end of this pass, the "optimize” routine of the Cascades
returns a physical plan. This physical plan is converted to a logical query which the ”optimize” routine takes
as input, and optimized again in the second pass. Although it is possible to make two pass optimization inside
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the ”optimize” routine, it is not very efficient since in the first pass, Cascades creates a lot of equivalent logical
and physical expressions, which are not required in the next pass, and if these are not deleted, a large number of
rules will match to these large number of expressions. Therefore, the ”optimize” routine 1s called twice making it
possible to use a new “memo” structure in the second pass in which the select operators are ordered by disabling
join and mat rules (Rules 8,9,11,12). The overall approach is presented in Algorithm 2.

Algorithm 2: Region based optimizer

Region_based_optimizer ( QUERY gry, PLAN plan){
create_operator_table(qry,op_table) //creates a table to count select and join classes
decide_qry_type(op_table) // decides the query type
of query is star_query
set guidance.region to star_region
else if query is select_query
set guidance.region to select_region
else
set guidance.region to default_region
if guidance.region is seleci_region{
order_query(qry) //reorders the query such that select operators are at the top of the query
sel guidance.count to 0 //to order joins, all select rules are disabled
order_selects (qry) // sort selects
plan = optimize (qry,guidance) // a plan is found
convert_qry (plan,qry) //converts the coming physical plan into an equivalent logical query
sel guidance.count to 1 //enables select rules while disabling join and mat rules

1

plan = optimize (qry,guidance)

5 Performance Evaluation

This section presents the performance comparison of the region based optimizer and an exhaustive optimizer,
both generated through Cascades. Their optimization and response times and the quality of the plans generated
are compared.

In the experiments, a workstation running Microsoft NT with 64 MB main memory and 250 MB swap space
is used. The queries are generated by a random query generator, and both optimizers are run with the same
set of queries. The optimization time of these queries are obtained from the system and the execution times are
estimated using the same cost functions for both optimizers. The results are presented in the following sections.
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5.1 Star Region

For the experiments in the star region, 80 star queries are generated randomly. Number of join operators in this
query set, range from 3 to 10, and for each query type 10 queries are generated, and the average of these 10
values are used.

Figure 6, Figure 7 and Figure 8 depict the results of the experiments. As shown in Figure 6, optimization time
difference between two optimizers increases dramatically as the number of join operators increases. Although the
plans generated using the region based optimizer are slightly worse than the optimal (Figure 7), the total response
time is better in the region based optimizer (Figure 8). Since the aim of query optimization is to minimize the
response time, these results justify the heuristic used in the star region of the region based optimizer.

5.2 Select Region

For the experiments on queries with many select operators, 50 select queries are generated randomly with the
number of select predicates ranging from 5 to 9 and with 2 join and 3 materialize operators. Comparison of the
optimization time, quality of the plans generated, and response times are shown in Figure 9, Figure 10 and Figure
11 respectively. The region based optimizer spends less time to optimize queries than the exhaustive optimizer
(Figure 9). The quality of the plans generated using the region based query optimizer is slightly worse than that
of the optimal ones as shown in Figure 10. This is an expected result, since when some rules are disabled, the
generated plans deviate from the optimal. However, the total response times of queries are better for the region
based optimizer (Figure 11). These results also indicate that the heuristic suggested is an effective one.

6 Conclusions

A region based optimizer that contains three optimization regions each of which optimizes different queries with
different optimization strategies is generated through Cascades Query Optimizer Framework. Heuristic guidance
feature of Cascades proved to be very useful in this implementation.

The performance of the region based optimizer is compared with an optimizer that uses the complete rule
set, both generated through Cascades. The results of the experiments show that although with the region
based optimizer the quality of the plans are not as good as the plans generated by the exhaustive optimizer,
optimization time gain 1s uncomparably larger. For this reason, region based optimizer’s total time for queries,
that is, the query response times are better.

Appendix: The Complete Rule Set

Select (op,pred) —> Select (Select (op,predl) , pred2)

Select (Select(op,predl),pred2) —> Select (op,pred)

Select (Select(op,predl),pred2) —> Select (Select (op,pred2),predl)

Mat (Select (op,pred)) —> Select (Mat (op),pred)

Select (Mat (op), pred2) —> Mat (Select (op,pred))

Select (Join (opl,op2,predl),pred2) —> Join (Select (opl,pred2),op2,predl)
Select (Join (opl,op2,predl),pred2) —> Join (opl,Select(op2,pred2),predl)
Join (opl,op2,pred) —> Join (op2,opl,pred)

Join (Join (opl,op2,predl),op3,pred2) —> Join (opl,Join (op2,0p3,pred3),pred4)
10. Join (Select (opl,predl) ,op2,pred2) —> Select (Join (opl,op2,pred2),predl)
11. Matl (Mat2 (op)) —> Mat2 (Matl (op))

12. Mat (op) —> Join (Get_set,opl,pred)

13. Get_set —> File_scan

14. Mat (op) —> Traverse (op)

15. Select (op,pred) —> Filter (op,pred)

16. Select (op,pred) —> B_tree_select (op,pred)

17. Join (opl,op2,pred) —> Merge_join (opl,op2,pred)

18. Join (opl,op2,pred) —> Hash_join (opl,op2,pred)

19. Join (opl,op2,pred) —> Nested_loop_join (opl,op2,pred)

ORISR N



20. Join (op,Get_set,pred) —> Ptr_hh_join (opl,predl)
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