
A Heuristic Approach for Optimization of Path

Expressions

Cetin Ozkan� Asuman Dogac and Cem Evrendilek

Software Research and Development Center of TUBITAK
Middle East Technical University

������ Ankara Turkiye
e�mail� asuman	srdc
metu
edu
tr

Abstract� The object�oriented database management systems store ref�
erences to objects �implicit joins� precomputed joins�� and use path ex�
pressions in query languages
 One way of executing path expressions is
pointer chasing of precomputed joins
 However it has been previously
shown that converting implicit joins to explicit joins during the opti�
mization phase may yield better execution plans
 A path expression is
a linear query� therefore� considering all possible join sequences within
a path expression is polynomial in the number of classes involved
 Yet�
when the implicit joins are converted to explicit joins in a query involv�
ing multiple path expressions bound to the same bind variable� the query
becomes a star query and thus considering all possible joins is exponen�
tial in the number of paths involved
 This implies that there is a need for
improvement by using heuristic in optimizing queries involving multiple
path expressions

A heuristic based approach for optimizing queries involving multiple path
expressions is described in this paper
 First� given the cost and the se�
lectivities of path expressions by considering a path expression as a unit
of processing� we provide an algorithm that gives the optimum execu�
tion order of multiple path expressions bound to the same bind variable

For this purpose� we derive the formulas for the selectivities of path ex�
pressions
 Then by using this ordering as a basis we provide a general
heuristic approach for optimizing queries involving multiple path expres�
sions

Two optimizers are developed to compare the performance of the heuris�
tic based approach suggested in this paper with the performance of an
optimizer based on an exhaustive search strategy
 The exhaustive op�
timizer is generated through Volcano Optimizer Generator �VOG�
 The
results of the experiments indicate that the heuristic based optimizer has
a superior performance with the increasing number of path expressions

� Introduction

The object�oriented database management systems store references to objects
�implicit joins� precomputed joins�� and use path expressions in query languages�
One way of executing path expressions is pointer chasing of precomputed joins�
However it has been shown in �Bla ��	 that converting implicit joins to explicit

joins during the optimization phase� makes it possible to consider a wider range
of join sequences and thus yields better execution plans in most of the cases�

A path expression corresponds to a linear query in relational systems where
tables are connected by binary predicates in a straight line� In �Ono �
	� it has
been shown that the computational complexity �i�e the number of joins that
must be considered when using dynamic programming for optimization� of linear
queries with composite inners �bushy trees� is �N��N���� If the composite inners
are not considered the complexity reduces to �N���� Therefore considering all
possible join sequences within a path expression is polynomial in the number
of classes involved� Yet when the implicit joins are converted to explicit joins�
because of multiple �more than one� path expressions bound to the same bind
variable� the query corresponds to a star query �in fact a hybrid query� i�e�� star
of linear queries� in relational systems where a table at the center is connected
by binary predicates to each of the other surrounding tables� In �Ono �
	� it has
also been shown that using dynamic programming to optimize a star query with
N quanti�ers requires evaluating �N���N�� feasible joins� Thus considering all
possible joins is exponential in the number of classes involved�

Many existing relational optimizers use heuristics within dynamic program�
ming to limit the join sequences evaluated� One heuristic employed by System
R �Sel ��	 and R� �Loh ��	 constructs only joins in which a single table is joined
at each step with the results of previous joins� in a pipelined way� Thus they
produce left deep join trees�

We have developed a heuristic based approach for optimizing queries involv�
ing multiple path expressions� First� given the cost and the selectivities of path
expressions by considering a path expression as a unit of processing� we provide
an algorithm that gives the optimum execution order of path expressions bound
to the same bind variable� For this purpose we derive the formulas for the selec�
tivities of path expressions� Then� by using the results obtained as hint a general
heuristic approach is developed�

In order to test the e�ectiveness of the heuristic proposed� two query opti�
mizers are developed� The �rst optimizer is based on the heuristic suggested in
this paper� The second optimizer is based on an exhaustive search strategy and
is generated through Volcano Query Optimizer Generator� Since path optimiza�
tion mainly involves join enumeration� a subset of the transformation rules given
in �Bla ��	 are used� The results of the experiments indicate that the heuristic
based optimizer has a superior performance with the increasing number of path
expressions�

It should be noted that in optimizing multiple paths� detecting common
subexpressions is an important factor and both of the optimizers developed
take care of this situation� However since our focus of attention is not common
subexpressions� our sample queries did not contain common subexpressions�

In section �� the cost model is presented and the formulas for the selectivity of
path expressions are derived� In Section �� an algorithm that gives the optimum
execution order of path expressions bound to the same bind variable is provided
by considering a path expression as a unit of processing� Section � presents the

principles of the heuristic based optimizer� In Section �� the performance results
are given� Finally� Section � contains the conclusions�

� Cost Model

In the object model �Atk ��	 used in this paper� complex objects are built from
simpler ones by applying constructors to them� The simplest objects are integers�
characters� byte strings of any length� Booleans� and �oats� The complex object
constructors are Tuple� Set� List and Reference� Any constructor can be applied
to any object� Each object has a unique Object Identi�er �OID�� Objects are
grouped in the abstraction level of a class� in other words� classes have extensions�
Each object is as a member of only one class�

��� Cost Model Parameters

In Table the cost model parameters are presented� In this table� Ci is a class�
A is either an attribute or a parameterless method of class Ci with an atomic
return type which is treated in the same way as an atomic attribute� and Ci��

is the class referenced by attribute A of class Ci�

Parameter Short Hand De�nition
Notation

jCij � Total number of instances of Ci

nbpages �C� � Total number of pages Ci occupies
size�Ci� � Size of an instance of class Ci

notnull �A� Ci� � The proportion of instances of class Ci where
atribute A is not null

fan�A�Ci�Ci��� fani The average number of instances of class Ci��

that are referenced by an instance of Ci

through attribute A
totref�A�Ci�Ci��� totrefi The total number of objects in class Ci�� that

are referenced by at least one object in class Ci

through attribute A
dist�A� Ci� dist The number of distinct values of the atomic

attribute A of class Ci

max�A� Ci� max The maximum value of the atomic attribute
A of class Ci

min�A� Ci� min The mimimum value of the atomic attribute
A of class Ci

Table � Cost Model Parameters

The parameters calculated by using the above listed cost model parameters
are provided in the following� The number of the total references from class Ci

to class Ci�� through attribute A is denoted by totlinks�A�Ci�Ci��� and given
by the following equation �

totlinks�A�Ci� Ci��� � fan�A�Ci� Ci��� � jCij

The probability that an instance of class Ci�� is referenced by the instances
of class Ci through attribute A is given by the following formula�

hitprb�A�Ci� Ci��� � totref�A�Ci� Ci����jCi��j

The shorthand notation for these parameters are as follows�
hitprbi � hitprb�A�Ci� Ci��� and totlinksi � totlinks�Ai� Ci� Ci����

��� Selectivity

A simple predicate in the system is a triplet of the form � P�� �� oprnd ��
where P� is a path expression� � is a comparison operator ��� ������� �����
and oprnd is either a constant or another path expression�

Selectivity for Atomic Attributes The well�known selectivity calculations
assuming the uniform distribution of the atomic values described in �Ozk �
	 are
used� The selectivity of the expression �s�A � constant�� denoted as � � where
s is a bind variable binding to a class C� and A is an atomic attribute� is given
by the following formula where dist is distinct values of A in C�

��s�A� � �dist�A�C�

Selectivity of Path ExpressionsAssume that there is a path expression
involving m classes referenced through attributes� A� through Am� where A�

through Am�� is constructed using the set or the reference constructors� Am is
an atomic attribute and Ai is an attribute of class Ci� We need to calculate the
selectivity� �path�p�A��A����Am� ��� for a single path expression �p�A��A����Am

� c�� where � is a comparison operator and c is a constant�
The calculation of the selectivity of �Am � c�� �Am�� is clear from the previ�

ous section� Therefore the expected number of instances of Cm� denoted by km�
that satis�es this condition is�

km � jCmj � ��Am�

It is clear that when there is no selection on the Am attribute km � jCmj� In
forward traversal� assuming that we start with k objects of class C� and traverse
the path p�A��A����Ai in forward direction� the expected number of objects of
class Ci�� � denoted by fref� is given by the following formula�

fref�p�A��A����Ai� k� �

��
�
k � i �

c�totlinksi� totrefi� fref�p�A��A����Ai��� k�

� fani� � i �

where� c�n�m�r� is an approximation to the following statistical problem�
Given n objects uniformly distributed over m colors� how many di�erent colors
c are selected if we take just r objects� This statistical problem has been solved
by using di�erent mathematical approximations� An approximation assumed in
�Cer ��	 is as follows�

c�n�m� r� �

��
�
r �r � m��
�r �m��� �m��� r� �m
m �r � �m

Starting with one instance of class C�� the number of objects of class Cm

obtained at the end of forward path traversal is given by fref�p�A����Am�����
On the other hand� km objects have been selected through the predicate Am �
c� Then the selectivity of a path expression� p�A��A����Am � c � which is de�ned
to be the probability of at least one object being in common in two sets with car�
dinalities fref�p�A��A����Am���� and km� hitprb�Am���Cm���Cm� respectively�
is given by

�path� p�A��A����Am� �� � o�totrefm�� � fref�p�A��A����Am�� ��� km �
hitprb�Am��� Cm��� Cm��

where o�t�x�y� is the probability that there exists at least one object in common
in two sets selected with replacement out of t distinct objects and is de�ned as
follows�

o�t� x� y� � � C�t� x� y��C�t� y�

where C stands for combination� and x and y are the cardinalities of the two
sets respectively�

� On the Execution Order of Path Expressions

Consider m path expressions which are bound to the same bind variable� say p�
in an AND�term�

p�a���a�����a�n� �� c�
p�a���a�����a�n� �� c�
���
p�am��am����amnm �m cm

Assume Fi denotes the cost of executing the path expression i� p�ai��ai����aini
�i ci� and let the selectivity of this path expression be si� �path�p�ai��ai����aini
�i ci��

Given the cost and the selectivity of each of the path expressions� the problem
of �nding the least costly execution order of these path expressions can be stated
as the following minimization problem�

Find a permutation of the integers through m stored in i�	 through i�m	
which minimizes

f � Fi��� � si��� � Fi��� � si��� � si��� � Fi��� � ���� si��� � si��� � ���si�m��� � Fi�m�

where Fj and sj � j � i�	 through i�m	� are the cost of traversing and the
selectivity of the jth path expression respectively� In other words� we are trying
to minimize the objective function f� denoting the total cost of executing m path
expressions in the order induced by the array i�

Theorem � � Assume � denotes a permutation of the integers through m
such that path expression indices are sorted in ascending order of Fi�� � si�
values� such that �i�m� This � minimizes the objective function f�

Sketch of Proof � By induction on the number of path expressions� It is
true for � path expressions� In this case f�F� � s� F� or f� F� � s� F� �
If F� � s� F� � F� � s� F� then by simple manipulation�
F� � � � s� � � F� � � � s� � is obtained� Assuming that it is true for m path
expressions and we will try to show that it is also true for m� path expressions�
Let us assume that Fi���si� � Fi�����si��� for �i�m�� and assume also that
Fj���sj� � Fm�����sm��� � Fj�����sj��� for some j where � j � m�

We claim that f� � F� � s�F� � ��� � s�s���� sj��Fj � s�s���� sj��sjFm�� �
s�s����sj��sjsm��Fj�� � ��� � s�s����sj��sjsm��sj�����sm��Fm is minimum� As�
sume on the contrary that�
f� � F� � s�F� � ��� � s�s����sk��Fk � s�s����sk��skFm�� � s�s����sk��sksm��Fk��

� ��� � s�s����sk��sksm��sk�����sm��Fm is minimum with the assumption that
k � j without loss of generality�

First observe that by the induction hypothesis� it can be shown that with the
addition of the m�st path expression� the relative order of the previous path
expression indices do not change�

Therefore� if we parenthesize f� by s�s����sk��sk starting from the k�st term�
we observe that the induction hypothesis stating that aforementioned sort order
minimizes the objective function for m��k�m path expressions� is violated� �

The strong assumption underlying this approach is that a path expression
is an indivisible unit of processing� However as shown in �Bla ��	 by converting
implicit joins to explicit joins� wider range of join sequences can be obtained
and thus better �i�e� less costly� execution plans can be produced� It is clear
that when the implicit joins are converted to explicit joins� because of the path
expressions bound to the same bind variable� the query becomes a hybrid query�
i�e�� star of linear queries� Thus when we allow implicit joins to be converted to
explicit joins� by using an exhaustive search strategy it is possible to obtain the
optimum execution plan� However the number of join sequences to be consid�
ered is exponential in the number of classes involved� This observation indicates
that heuristic is necessary to improve the performance of object�oriented queries
involving path expressions�

� A Heuristic based Approach for Object�Oriented

Queries Involving Path Expressions

In this section we propose a heuristic based method for optimizing object�
oriented queries involving path expressions� In this method� we �rst order the
path expressions by using Theorem � Procedure �� which implements Theo�
rem decides on the execution order of the path expressions� In Procedure ��
the cost of executing the path expression is taken as its forward traversal cost
since we are using this cost as a hint to order the path expressions� Then for the
chosen path� heuristic is used again as given in Procedure ���� to decide on the
execution order of the joins within this path expression�

The heuristic we propose in Procedure ��� is to favor the less costly and
more selective join at each iteration� Notice that the cost and the selectivity of a
join operation directly e�ects the join order but their e�ect on the order varies
depending upon their values� Therefore� we have tried a number of evaluation
functions that all favor less cost and more selectivity but the e�ect of cost and
selectivity on the evaluation function is di�erent in each of them�

Before proceeding further we will provide some de�nitions to be used in the
Procedures �� and ��� �

De�nition ��� Size Selectivity� The size selectivity of a join operation�
C�A	
B where A and B are two classes� is denoted by �size�A�B�� and de�ned
as

�size�A�B� � nbpages�C���nbpages�A� � nbpages�B��

where nbpages� C � is the estimated number of pages of the class produced
as a result� �

De�nition ��� Per�Unit Cost� The per�unit cost of a join operation� C
� A	
B where A and B are two classes and Jcost is the minimum of the cost of
performing this join operation with di�erent join implementation techniques� is
denoted by Pcost�A�B�� and de�ned as

Pcost�A�B� � Jcost�A�B���jAj� jBj���

De�nition ���� Evaluation Function� In de�ning the evaluation func�
tion� we make the following observation� the cost and the selectivity of each
join operation in a join sequence directly e�ect the join order� As an example
consider A	
B	
C with costs Jcost�A�B�� Jcost�B�C� and selectivities �size�A�B��
�size�B�C� and assume Jcost�A�B� � Jcost�B�C� and �size�A�B� � �size�B�C��
Here if we only consider cost we will execute B	
C �rst� but since �size�A�B� �
�size�B�C�� executing A	
�The resulting relation� may be more costly depending
upon the cost and selectivity values� Therefore� less costly and more selective
join must be favored at the same time� Again depending upon the cost and se�
lectivity values it may be bene�cial to increase the e�ect of cost or selectivity on
the join order� With these observations and with some experimentation we have
de�ned four evaluation functions� In each of these functions low cost and high
selectivity are favored however from ���A�B� to ���A�B�� the e�ect of cost in

the evaluation function is reduced while the e�ect of the selectivity is ampli�ed�

���A�B� � Jcost�A�B���� �size�A�B��
���A�B�� Jcost�A�B���size�A�B�
���A�B�� Pcost�A�B���size�A�B�
���A�B�� ln Jcost�A�B��e�size�A�B	

�

In the following we present the algorithms implementing our heuristics�

Procedure ��� The Evaluation Order of Path Expressions

double orderPathExp� List ListofPathExpressions � f
double totalCost �
�
int k�jCpj�
PathExpression p�p��
while� ListofPathExpressions is not empty � f

for each p in ListofPathExpressions f
Calculate the forward traversal cost Fp for each path expression�
Calculate the selectivity of the each path expression � �p

path �

Mp�Fp � � � �ppath �� g
p�� min�Mp� where p � ListofPathExpressions�
totalCost�totalCost�OrderImplicitJoins�p�� schemaInfo��
k�Cardinality from the schemaInfo�
remove p� from ListofPathExpressions � g

return totalCost� g

Procedure ��� Implicit Join Ordering

Let us assume that there is a path expression p�a��a����an where p is bound
to C
 and ai references to the instances of the class Ci � � i � n��� Jcost�Ci�
Cj� and �size�Ci� Cj��denote the individual cost and selectivity of the temporary
collection obtained by joining class Ci and class Cj �

double OrderImplicitJoins �List PathExpression� structure schemaInfo� f
�� the list PathExpression contains the classes C
� C������� Cn��

List tempPE�
double totalCost�
for t� to �� �� � t denotes the Evaluation function in use f

tempPE�PathExpression�
totalCostt�
�
for each �Ci� Ci��� in tempPE do f

calculate Jcost�Ci� Ci��� � �size �Ci� Ci���� and � t�Ci� Ci��� �
�� In evaluating � t�Ci� Ci���� Jcost�Ci� Ci��� is the minimum of

the costs of applicable
�� join techniques given in the Appendix� g

while� tempPE is not empty� do f
select Ck� �Ci� Ci��� which gives the minimum value

for � t�Ci� Ci����
Generate schemaInfo for Ck�

totalCostt � totalCostt � � t�Ci� Ci����
Delete ith and i�st items from tempPE�
Compute Jcost�Ci��� Ck�� �size�Ci��� Ck�� Jcost�Ck� Ci����

�size�Ck� Ci���� �
t�Ci��� Ck��

and � t�Ck� Ci����
Insert Ck after Ci�� to the list tempPE� g g

totalCost�mint �totalCostt� �
schemaInfo�schemaInfo for Ck

return totalCost� g

It should be noted that when a temporary collection Cij is obtained by joining
class Ci and class Cj� the references from class Ci�� can not be used to reach
the objects in Cij� For such cases� only explicit join techniques can be used�

The time complexity of this algorithm is O�n���

� Performance Evaluation

Two optimizers are developed for optimizing the queries involving path expres�
sions� The �rst optimizer uses the heuristics described in Section �� The second
optimizer is generated through Volcano Query Optimizer Generator �McK ��	�
�Gra ��	� The Volcano generated optimizers produce the optimumexecution plan
when the transformation rules and support functions are provided properly be�
cause of its exhaustive search strategy� In this implementation the transforma�
tion and implementation rules given in �Bla ��	 are used� However� since we are
considering only the join and path expression optimizations� in other words� join
enumeration� some of the transformation rules given in �Bla ��	 are not necessary
and therefore they are disabled� The transformation rules used are�

� The rule implementing the join commutativity�
�� The rule implementing join associativity� Join associativity together with

the join commutativity� provides for all possible join sequences�
�� The rule that converts a materialize node into joins� Notice that materialize

operator indicates a path expression of length one� By converting a materialize
operator into join it becomes possible to apply the transformation rules on join
associativity and on join commutativity�

�� The rule that interchanges two successive materialize nodes� The applica�
tion of this transformation rule may result in other transformations�

With these rules the VOG generated optimizer �nds the optimum join or�
dering for the queries involving path expressions�

	�� Testbed

Both of the optimizers are run on a Sun Sparc � station which has Sun ���

CPU� � MB of memory and �� MB swap space� Each of the optimizers were
the only active process during the experiments�

A random query generator is used to generate the queries with m path ex�
pressions of length n where both m and n ranges between and �� With our
hardware� � MB memory� the optimizer generated through Volcano can not run
queries when m exceeds �� or when m�n exceeded �� Note that� McKenna� was
able to go up to � joins for star queries with �� MB of main memory �McK ��	�
The reason for this behavior is that the Volcano Optimizer Generator�s search
engine is highly recursive� and therefore as the number of equivalence classes in
the query increases� optimizer rapidly exhausts the memory� The next version
of VOG will heuristically reclaim memory to overcome this problem �McK ��	�

For each n� m pair� �
 random queries are generated and the average values
for optimization time and execution costs are obtained� The size of the classes
involved ranged between

 and

�

 objects where object sizes ranges from

 to �

 bytes� Exactly the same queries are run on both of the optimizers�

In the cost calculations� the available bu�er space for executing the queries
is assumed to be �MB� Furthermore� we have assumed that the results of the
join operations are written back to disk� The queries generated do not contain
select operator�

The results of the some of the test runs are tabulated in Table ���

Exhaustive Exhaustive Heuristics Heuristics
Path Length No of Paths Optimization Execution Optimization Execution

� n� �m� time�secs�� time�secs� time�secs�� time�secs��

���� �������
�
�� �������
 � ��
� ����
�
��� �

��
�
 � ��� ������
���� �����
 � ������ �������
���� �������
�
�� �����
�
�� ������
� � ����� �
��
�
���� ������
� � ������� ������
���� �����
� ����� ��
����
��� �����
� � ������ �����
���� ���
��
� ���� �������
��� �������
� �� �������
��� ����
�
� ��
�� ��
���
���� ������

Table �� Results of some of the test runs

	�� Query Optimization Time

The Figures �� and ��� depict the query optimization times of the optimizers
for linear and star queries respectively� From these �gures� it is clear that the
heuristic based optimizer greatly reduces the optimization time� The explanation
for this behavior is two fold�

� The number of joins enumerated by the heuristic based optimizer for a
path expression of length N is ���N��� In procedure ��� we �rst generate N�

joins� choose one and for the remaining N� joins� generate � more joins� How�
ever� exhaustive optimizer generates �N��N��� joins for linear queries� Heuristic
based optimizer order the path expressions by using Procedure �� and for m
path expressions� forward traversal cost is calculated m� times� Yet exhaustive
optimizer� by converting implicit joins into explicit joins� creates star queries
and generates �N���N�� feasible joins�

�� In the heuristic based optimizer� the data structures and the algorithm
itself are very simple� Therefore it spends less time in optimization� This fact is
clear from the comparison of the optimization times of the two approach for
join as depicted in Table ���

Figure ��� Query opt� time of linear queries Figure ��� Query opt� time of star queries

Figure ��� Total time for linear queries Figure ��� Total time for star queries

Figure ��� Time error for linear queries Figure �� Time error for star queries

	�� Execution Time and Total Time

The costs are estimated by using the cost model presented in Section � after
obtaining the query execution plans from both of the optimizers� When we con�
sider the total time� that is� the query optimization time plus the query execution
time� heuristic based optimizer outperforms the exhaustive optimizer when num�
ber of paths exceed � as shown in Figure ���� For linear queries� heuristic based
optimizer is slightly better than the exhaustive optimizer as shown in Figure ����
These results indicate that the heuristic used is an e�ective one�

In Figure ��� and Figure ��� we have plotted the execution time error and
total time error for linear and star queries respectively� which are de�ned as
follows�

execution time error � execution time of heuristic based optimizer� execution
time of exhaustive optimizer� execution time of exhaustive optimizer

total time error � total time of heuristic based optimizer� total time of ex�
haustive optimizer� total time of exhaustive optimizer

From Figure ���� it is clear that for linear queries� the plans produced by the
heuristic based optimizer deviates from the optimal plans by percent for path
length �� but when the total time is considered for the same path length� the
heuristic based optimizer performs �� better� When star queries are considered�
the performance gain in total time is a drastic �
� as shown in Figure ����
although slightly worse plans are produced by the heuristic based optimizer�

� Conclusions and Future Work

Because of the exponential nature of the query optimization for star queries�
many existing relational optimizers use heuristics within dynamic programming

to limit the join sequences evaluated� A path expression in an object�oriented
query language is a linear query but because of the path expressions bound to
the same bind variable� the query becomes a hybrid query when the implicit
joins are converted to explicit joins�

Two optimizers are developed to compare the performance of the heuristic
based approach suggested in this paper with the performance of an optimizer
based on exhaustive optimization� The exhaustive optimizer is generated through
Volcano Optimizer Generator� The results of the experiments indicate that the
heuristic optimizer greatly reduces the optimization time� The estimated query
execution time of the exhaustive optimizer is slightly better� When it comes to
total time� the heuristic optimizer has a superior performance with the increas�
ing number of paths� This result is expected because the time spend in query
optimization phase by the exhaustive optimizer is uncomparably larger then
the execution time� The heuristic optimizer also performs well for linear queries
implying that the heuristic suggested is an e�ective one�

As a future work we plan to generalize the heuristic suggested in this paper
to relational systems to involve explicit joins and di�erent bind variables and
also to compare its performance with � Phase�Optimization technique given in
�Ioa �
	�

References

Atk ��� Atkinson� M
� Bancilhon� F
� DeWitt� D
� Dittrich� D
� Maier� D
� Zdonik� S
�
�The Object�Oriented Database System Manifesto�� in Building an Object�
Oriented Database System� Morgan�Kaufmann� ����

Bla ��� Blakeley� J
 A
� McKenna� W
 J
� Graefe� G
� �Experiences Building the Open
OODB Query Optimizer�� Proc
 of the ACM SIGMOD Conf
� ����

Cer ��� Ceri� S
� Pelagatti� G
� Distributed Database systems� McGraw Hill� ����
Gra ��� Greafe� G
� McKenna� J
W
� �The Volcano Optimizer Generator�Extensibility

and E�cient Search� � Proc
 IEEE Conf
 on Data Eng
� Vienna Austria�����

Ioa ��� Ioannidis� Y
� Kang� Y
� �Randomized Algorithms for Optimizing Large Join

Queries�� Proc
 of the ACM SIGMOD Conf
� ����

Loh ��� Lohman� G
M
 et
 al
� �Query Processing in R��� Query Processing in

Database Systems� Kim� Batory� Reiner� eds
 Springer�Verlag� ����

McK ��� McKenna� W
J
� �E�cient Search in Extensible Database Query Optimiza�

tion� The Volcano Optimizer Generator�� Ph
 D
 Thesis� Univ
 of Colorado�
����

McK ��� McKenna� W
J
� Personal communication� ����

Ono ��� Ono� K
� Lohman� G
 M
� �Measuring the Complexity of Join Enumeration

in Query Optimization�� Proc
 of Intl
 Conf
 on Very Large Databases� ����

Ozk ��� Ozkarahan E
� �Database Management Concepts� Design and Practice��

Prentice�Hall� ����

Sel ��� Sellinger� P
G
��Access Path Selection in a Relational Database Management

System�� Proc
 of the ACM SIGMOD Conf
� ����

This article was processed using the LaTEX macro package with LLNCS style

