Experiences in Using CORBA for a Multidatabase
Implementation

Ebru Kilic, Gokhan Ozhan, Cevdet Dengi, Nihan Kesim? Pinar Koksal

and Asuman Dogac

Software Research and Development Center
Scientific and Technical Research Council of Turkiye
Middle East Technical University
06531, Ankara Turkiye

e-mail: asuman@srdc.metu.edu.tr

Abstract

One way of achieving interoperability among heteroge-
neous, federated DBMSs is through a multidatabase sys-
tem which supports a single common data model and a
single global query language on top of different types of
existing systems. In this paper we describe the use of a
CORBA implementation in developing a multidatabase
system. We present our design choices and experiences
in making various databases CORBA compliant. We
have so far registered Oracle7, Sybase and MOOD to
CORBA and the current implementation makes it pos-
sible to access these databases simultaneously through a
generic interface using a global query language based on

SQL.

1 Introduction

In today’s enterprises information is typically dis-
tributed among multiple database management systems.
Therefore there is a need to access and share data across
these systems. Heterogeneity in underlying systems
makes this integration very difficult if not impossible.
The heterogeneity exists at three basic levels. The first
is the platform level. Database systems reside on differ-
ent hardware, use different operating systems and com-
municate with other systems using different communica-
tions protocols. The second level of heterogeneity is the
database management system level. Data is managed by
a variety of database management systems based on dif-
ferent data models and languages (e.g. file systems, re-
lational database systems, object-oriented database sys-
tems etc.). Finally the third level of heterogeneity is
that of semantics. Since different databases have been

*Bilkent University, 06533, Ankara Turkiye

designed independently semantic conflicts are likely to
be present. This includes schema conflicts and data con-
flicts.

Commercially available technology offers inade-
quate support both for integrated access to multiple
databases and for integrating multiple applications into
a comprehensive framework. Some products offer dedi-
cated gateways to other DBMSs with limited capabili-
ties. Thus, they require a complete change of the orga-
nizational structure of existing databases to cope with
heterogeneity.

Another way of achieving interoperability among
heterogeneous databases is through a multidatabase sys-
tem. A multidatabase system (MDB) is a database sys-
tem that drives other database and file systems and
allows the users to simultaneously access independent
databases and files using a single data definition and ma-
nipulation language. The primary objective of a MDB
is to significantly enhance productivity in developing
and executing applications that require simultaneous ac-
cess against multiple independent databases. A multi-
database system provides a single global schema that
represents an integration of the relevant portions of the
underlying local databases. This in turn requires the
support of a single common data model and a single
data definition and manipulation language. The users
may formulate queries and updates against the global
schema.

Several approaches have been proposed to address
the issues of integrating hete rogeneous database sys-
tems. The TRO-DB [HFBK 94] project proposes a
client-server system architecture based on three layers
to achieve interoperability among local databases: a Lo-
cal layer, a Communication layer and an Interoperability
layer. The local layer on top of each local database maps

the individual data models into a common data model
which serves as the canonical exchange data model. The
Communication layer provides means to access these
databases through a network and transfers queries and
the results to and from a client cite to a local server.
The interoperability layer contains all the components
necessary to allow for integrated application access to
local databases.

The local layer and communication layer give means
to realize loosely coupled federations. We have imple-
mented the infrastructure of the multidatabase system
through CORBA(The Common Object Request Broker
Architecture) which is developed by the Object Manage-
ment Group (OMG) [OMG 91]. CORBA is a specifica-
tion and an architecture that provides implementation
independent access to objects on heterogeneous systems.
CORBA handles the heterogeneity at the platform level.
In CORBA clients ask for work to be done and servers do
that work, all in terms of tasks called operations that are
performed on entities called objects. Applications inter-
act with each other without knowing where the other
applications are on the network or how they accomplish
their tasks. By using CORBA’s model, it is possible to
encapsulate applications as sets of distributed objects
and their associated operations so that one can plug
and unplug those client and server capabilities as they
need to be added or replaced in a distributed system.
These properties provide the means to handle hetero-
geneity at the database level. Thus CORBA provides
for an infrastructure for implementing a multidatabase
system. Semantic interoperability remains to be solved
at the application programming level.

Our ultimate aim is to build a multidatabase sys-
tem, MIND (METU INteroperable Database System),
complete with its global query manager, global trans-
action manager and schema integrator. In this pa-
per we discuss our experiences in registering differ-
ent database management systems to CORBA. We
are currently using the CORBA implementation of
Digital Equipment Corporation, namely ObjectBroker
[DEC 94a, DEC 94b]. ObjectBroker runs on several
platforms such as Windows, SunOS, AIX, Open VMS.
We have so far defined an interface of a generic Database
Object accessible through CORBA and developed multi-
ple implementations of this interface for Oracle7, Sybase
and MOOD (METU Object-Oriented Database Sys-
tem) [DEOO 94, Dog 94a, DAOD 95]. The current im-
plementation makes it possible to access any of these
databases through CORBA using a global query lan-
guage based on SQL. When a client application issues
a global SQL query to access multiple databases, this
global query is decomposed into local subqueries and

these subqueries are sent to the ORB (CORBA’s Ob-

ject Request Broker) which transfers them to the rel-
evant database servers on the network. On a server
site, the local subquery is executed by using the cor-
responding call level interface routines and the result is
returned back to the client again by the ORB. The re-
sults returned to the client from the related servers are
processed by the client if necessary. A general overview
of the system is presented in Figure 1.

The rest of the paper is organized as follows. In
Section 2 we describe the CORBA system in more de-
tail. Section 3 discusses how CORBA fits into the area
of distributed computing. In section 4 we present the
design decisions and experiences in developing generic
Database Object implementations for various DBMSs.
Section 5 concludes the paper by a summary and
presents the future work related with the MIND project.

2 What is CORBA?

CORBA is the core communication mechanism which
enables distributed objects to operate on each other.
There is another complementary standard developed by
the OMG, called Common Object Services Specifica-
tion (COSS), for integrating distributed objects. COSS
[OMG 94] provides a set of standard functions to create
objects, control access to objects keep track of objects
and object references.

CORBA (the Common Object Request Broker Ar-
chitecture) [OMG 91] is both an architecture and a
specification for distributed object-oriented comput-
ing that has implementations currently available from
several major software vendors (e.g. ObjectBroker-
DEC, DistributedObjectsEverywhere-SunSoft, System
Object Model-IBM, Distributed Smalltalk-HP, Orbix-
Tona Technologies). It is the first of the next generation
of software that gives its users plug-and-play software
reusability by bringing object-oriented computing and
distributed computing together. It should be noted that
some CORBA implementations also contain COSS fea-
tures such as Object Life Cycle Services, Name Services
and Event Services [OMG 94].

CORBA uses an object-oriented model and defines
the Object Request Broker (ORB) as an intermediary
between clients and servers. In this model, clients send
requests to the ORB asking for certain services to be
performed by whatever servers can fulfill those needs.
Only the ORB needs to know the locations of CORBA
clients and servers on the network, that is, it is com-
pletely transparent to the client where the server is on
the network and similarly, the location of the client is
transparent to the server. A library of functions, which
is called Basic Object Adapter, is used by the server
program to locate and initialize the server implementa-

MIND

1

Application

MIND

Application

MIND
Application 3

- = —[~ _ Server-1 W

- \Server 2\

Oracle Impl. Sybase Impl.

VAN

/
Oracle SyBase

Server

Server

~

Oracle MOOD Other DBMS
-\mpl. Impl. Impl.
Oracle MOOD Other
DBMS
Server Server Server

Figure 1: A general overview of the system

tion and to invoke the appropriate method to satisfy the
client request.

In CORBA there is a formal separation between the
client and the server. That is, a client using CORBA’s
object-oriented interface does not need to know how the
server accomplishes its task - it only needs to know how
to call the server that does the work. CORBA achieves
this separation by restricting communication between
the client and the server to a type of message called
a request. Each request is sent from the client to the
server and 1t contains an operation to be performed and
a specific object on which the operation is to be per-
formed. The objects and operations that a client can
request and to which a server can respond are defined
by the interface that both the client and the server sup-
port. In object-oriented terminology an interface is very
similar to a class definition which defines the character-
istics and behavior of a kind of object [DEC 94a].

In CORBA, interfaces are defined using the Inter-
face Definition Language (IDL). The following example
shows a portion of an interface defined using the IDL.

interface Employee
{

void promote (in char NewJobClass);
void dismiss (in DismissCode reason,
in string description);

In this example two operations, promote and dis-
miss, are defined as a part of the employee interface.
This means that a client which has this interface de-
fined can request that a server promote or dismiss an
occurrence of an employee object. For each such re-
quest there is a CORBA implementation which actually
accomplishes the client’s request. An implementation
exists in a server and contains one or more methods
for each request. When a client requests a promote op-
eration on a specific employee, the ORB receives this
request and finds an implementation of the employee
object in a server application that can do the requested
work. The implementation uses its methods to actually
do the job of promoting that employee.

When an IDL code is compiled by the CORBA com-
piler, it generates client stubs and server skeletons. The
server skeleton makes it possible for the ORB and an
object adapter to translate the client request to a spe-
cific method on the server. A client stub maps IDL
operation definitions for an object type into procedural
routines that is called to invoke a request.

CORBA’s object-oriented model provides several
benefits that make it easier to integrate applications into
a distributed system. First of all it allows the designers
to take the advantage of many object-oriented design

techniques, such as encapsulation, information-hiding

and inheritance.Object-oriented design techniques en-
courage the designer to define each object in the sys-
tem as a black box that is capable of performing certain
tasks, without the system knowing how that black box
accomplishes those tasks.

Second, it provides more clearly defined interfaces
between the parts of the system, which can be changed
without affecting the entire system. This enhances soft-
ware modularity so that software components can be
worked on more independently. When a new capability
is added to the system, it is simply defined as a set of
new operations on one or more changed objects.

Third, the technique of inheritance promotes the
reuse of software by allowing the properties and behav-
iors of one object to be subsumed by another. And
finally, CORBA is not a pure object-oriented system
with its own language, but a hybrid object-oriented sys-
tem that allows one to create an object-oriented system

using more familiar programming languages, such as C
and C*T+.

3 CORBA
Computing

and Distributed

In simple terms, distributed computing is two or more
pieces of software sharing information with each other.
These two pieces of software could be running on the
same machine or they could be running on different ma-
chines connected to the same network. Most of the
current distributed computing systems are based on a
client/server model. In this model there are two types
of software. The software that requests the information
or service is referred to as the client and the software
that provides the information or service is referred to as
the server.

CORBA extends the use of this traditional dis-
tributed computing in many different ways. The en-
hancements that CORBA brings can be summarized as
follows:

In traditional client/server thinking, the server and
the client are each thought of as a single process. This
is not necessarily so in CORBA. In CORBA, although
clients are typically a single process, servers may or may
not be single processes. A CORBA server could be a
single process, a server that itself calls on other servers
to actually perform the tasks the client has requested
or a shareable piece of code that is called by applica-
tion processes. In addition, CORBA does not assume
a one-to-one relationship between clients and servers.
Multiple servers can work with a single client or a single
server can work with multiple clients. As stated pre-
viously, servers and clients find each other through the

ORB rather than knowing directly about each other.
CORBA allows both synchronous and asynchronous
communication styles. Synchronous communication is
when one piece of software sends a message to another
piece of software and then waits for a reply. Asyn-
chronous communication is when a piece of software
sends a message to another piece of software and then
continues working, expecting the reply to come at some
later time. Which style is a better choice is something
that depends on the application needs. Rather than
support one or the other, CORBA provides both com-
munication styles, which makes it more flexible.
Another flexibility that CORBA brings as a byprod-
uct of its object-oriented approach is that it blurs the
distinction between a client and a server. In traditional
client/server terminology, a client and a server have a
master/slave relationship. That is, the client is always
the one to request a task (master), and the server is al-
ways the one to perform the requested task (slave). This
relationship has been made more flexible by the object-
oriented distribution model of CORBA. This model is
centered on the use of objects and thus a piece of soft-
ware can act as a client for one request and to act as
a server for the next request. In this way, CORBA lets
the user to think in terms of consumer and producer
applications rather than client and server applications.

4 The Implementation Deci-

sions and Experiences in Reg-
istering DBMSs to CORBA

The advantages of CORBA discussed in the previous
sections proves it to be an effective tool for providing
interoperability in heterogeneous environments. There-
fore we have decided to use CORBA in the implemen-
tation of our multidatabase system.

As an initial step in implementing the MIND sys-
tem, we encapsulated Oracle7, Sybase, MOOD DBMSs
in multiple implementations of a generic Database Ob-
ject. The Database Object conveys requests from client
to the underlying DBMSs by using the Call Level In-
terfaces of these DBMSs. The call interfaces of these
systems [ORACLE 92, SYBASE 90, Dog 94b] support
SQL data definition, data manipulation, query, and
transaction control facilities. We have used Ct*t call
level interface to access these database servers. Results
of the requests returned from the call level interfaces of
underlying DBMSs are conveyed to the client through
CORBA.

Our basic implementation decisions in registering
different databases to CORBA are as follows:

1) Object granularity: In CORBA, objects can
be defined in different granularities. In registering a
DBMS to CORBA an object can be a row in a rela-
tion or it can be a database itself. When registering fine
granularity objects to CORBA, there is a need for a
powerful object repository to store and efficiently access
the objects. However ObjectBroker does not support
transaction management and query processing facilities
for its object repository. When coarse objects are regis-
tered, the problem of maintaining a large object repos-
itory is avoided.

We have defined each database as an object and
have left the type conversion, global query process-
ing and global transaction management to the related
components of our multidatabase system, that is, the
schema integrator, global query processor and global
transaction manager respectively.

Figure 2 illustrates invoking an operation to a
database object instance.

2) Imvocation style: CORBA allows both dy-
namic and stub-style invocation of the interfaces by the
client.

In stub-style interface invocation, the client uses
generated code templates (stubs) that cannot be
changed. Stubs provide code for invoking methods so
that the method invocation is similar to a standard pro-
cedure call, thereby reducing the complexity of method
invocation.

In dynamic interface, the client defines and builds
requests as it runs. The dynamic interface, provides
clients with more flexibility, allowing the use of deferred
synchronous operations and new interfaces. It is best
used when application needs to discover new types of
objects at run time. We have chosen to use stub-style
interface because in our current implementation all the
objects are known and the interface that the clients use
is not likely to change over time; there is no need for
dynamic invocation. Furthermore the dynamic interface
requires writing complex codes whereas it is possible to
write simple codes for stub interfaces. Also with the
stub-style invocation it is easier to limit the control a
user has over any database server and implementation
selection.

3) Mapping client requests to servers: In asso-
ciating a client request with a server method, CORBA
provides the following alternatives:

i. One interface to one implementation

ii. One interface to one of many implementations

iii. One interface to multiple implementations

When mapping one interface to one implementa-
tion, there is a direct one-to-one relationship between
the operations in the interface and the methods in the
implementation. Although the simplicity of this ap-

proach is an advantage, it has the disadvantage of be-
ing fairly inflexible because each operation must be sup-
ported by a method in the implementation, and the op-
erations and methods must match each other exactly.
If a method is added to the impleme ntation, the cor-
responding interface definition that the implementation
supports, must also be modified. Similarly, adding a
new operation to the interface used by the client would
require adding a new matching method to the imple-
mentation. This inflexibility would force us to write
different interface definitions for each database manage-
ment system.

In the second alternative, for any one interface, it is
possible to have several different implementations. Here
again, there is a direct one-to-one relationship between
the interface operations and the methods in the imple-
mentations, however, one can have several implemen-
tations which might be on different servers. Allowing
multiple implementations gives the flexibility to have
different, but similar, implementations for the same in
terface.

The third alternative makes it possible to have mul-
tiple implementations associated with the same inter-
face, with each implementation providing only a portion
of the interface.

Since every database management system registered
to CORBA provides methods for all of the operations
that the interface definition specifies, the second alter-
native is sufficient for our purposes.

4) Object Life Cycle: A client application needs
an object reference to make a request. In CORBA,
clients cannot create objects, only the servers have that
capability. Therefore client applications generally get
object references by invoking a request to the ORB;
however, since each request requires an object reference
as an argument in the first place, there is going to be
a problem for the first object reference that the client
needs.

The initial object reference can be obtained in one
of the following three ways:

i. The application developer can build the object
reference into the client. This requires the client appli-
cation to be compiled together with the server applica-
tion. During compilation a built-in object reference is
generated in both codes. Thus the first request is sta-
tistically bound to this built-in object reference.

ii. The client can get the object reference from an
external source. This external source could be a file or
a database containing initial object references in string
form.

iii. ObjectBroker allows servers to store initial ob-
ject references in the Advertisement Partition of Reg-
istry. Then clients can access the Advertisement Parti-

(" Database Client)

object ref.
toaDB obj.

ins. ioperatiom

((DatabaseServer)

Object
Adapter

N -

(ORB)

-

Figure 2: Invoking an operation to a Database Object instance through ORB

tion to obtain object references using the Naming Ser-

vice of COSS.

The first approach makes the system inflexible since
it requires that all client applications must know the
statically bound object references to make any requests.

The second approach is not suitable either, since it
is not feasible to maintain or replicate a single file or a
database as an external source in a distributed environ-
ment.

Therefore we have chosen the third approach to get
initial object references. Every DBMS server puts an
initial object in the Advertisement Partition of Registry
of ORB. Object references selected from the Advertise-
ment Partition are then used to get the object references
of the corresponding DBMS objects and to connect the
client to that specific database. In this way each client
has its own object to communicate with the DBMS
servers. This approach also allows users to discover new
objects as they become available in the Advertisement
Partition. Thus clients will be aware of new database
servers connected to the network and can send requests
to these DBMSs. Discovering new objects is something
that can not be done in the first two approaches.

5) Activation Policy: A server code contains sev-
eral implementations for the interface defined servers.
There is a direct one-to-one relationship between the
interface operations and the methods in the implemen-
tations.

When registering different databases to CORBA,
one has to specify an activation policy for the implemen-
tation of each DBMS. This policy identifies how each
implementation gets started. An implementation may
support one of the following activation policies :

1. Shared : The server can support more than one
object for the implementation.

ii. Unshared : The server can support only one
object at a time for the implementation.

iii. Server_per_method : A new server is used
for each method invocation.

iv. Persistent : The server is never started au-
tomatically. Once started, it is the same as the shared
policy.

The shared activation policy is best suited to our
server implementations since it is used when multiple
objects are related and handled by the implementation.
In our system, more than one client may request an ob-
ject of a database implementation. Therefore the imple-
mentations of DBMSs must support shared activation
policy. This policy also allows the server to be more

flexible.

6) ORB Binding policies: ORB has different
binding policy options to resolve object references. Note
that there could be more than one implementation for
For example, in our case, there are dif-
ferent implementations of our generic Database Object
for Oracle7, Sybase and MOOD. In binding a request to
an implementation ORB provides the following policy
options:

an Interface.

1. Static: All methods for an implementation must
be executed by one specific server.

ii. Automatic: All methods for an implementa-
tion must be executed by the same server, but the server
can be any server that can handle that implementation.

iii. Dynamic: Each method for an implementation
can be executed by a different server.

The static binding is best used when only one, spe-

cific implementation can handle an interface’s opera-
tions for the duration of the process. But in our imple-
mentation any server can support more than one imple-
mentation of the interface’s operations. So static bind-
ing is also not suitable for our implementation.

In our implementation all the interface’s operations
are handled by each of the DBMS’s implementation.
So there is no need to use dynamic binding which is
best when the interface’s operations can be processed
independently but worse on performance than the other
bindings since method resolution is necessary for each
method invocation.

We selected automatic binding so that the inter-
face’s operations are all handled by one implementation
but also, more than one instance of an implementation
can exist at a time. Performance of servers with auto-
matic binding is generally better than for servers with
dynamic binding because method resolution is bypassed
after the initial method invocation. Automatic binding
provides more than one instance of an implementation.

7) Event Notification: In COSS, there are some
event notification routines for the management of ob-
jects and implementations. These routines allow the
Basic Object Agent (BOA) to tell the application when
events occur, so that the application can react in an
event-driven way. ObjectBroker supports event notifi-
cation. We use these routines when deactivating objects
and implementations. For object or implementation de-
activation, event notification routines are used to man-
age servers from the command line so that system man-
agers can ask any implementation to shut itself down.

5 Conclusions

In this paper we describe our experiences in using
CORBA for a multidatabase implementation. We have
defined an interface of a generic Database Object ac-
cessible through CORBA and developed multiple im-
plementations of this interface for Oracle7, Sybase and
MOOD (METU Object-Oriented DBMS).

The basic decisions involved in the process are as fol-
lows: In registering the different DBMSs to CORBA | we
have chosen the object granularity to be a database. We
have chosen to use stub- style interface because in our
current implementation all the objects are known and
the interface that the clients use is not likely to change
over time; thus there is no need for dynamic invocation.
In associating a client request with a server method,
we have chosen single server multiple implementation
method since every database management system reg-
istered to CORBA provides methods for all of the op-
erations that the interface definition specifies. In order

to obtain the initial object reference, the naming ser-
vice provided by the ORB is used. We have decided
to support shared activation policy since it allows more
than one client to request an object of a database im-
plementation at the same time. We selected automatic
binding so that the interface operations are all handled
by one implementation but also, more than one instance
of an implementation can exist at a time. And finally
we use event notification routines when deactivating ob-
jects and implementations.

We have implemented all these design decisions and
tested them on the three databases mentioned above. As
a result of our experiences we can state that CORBA
proved to be a highly effective architecture for the im-
plementation of the communication layer of a multi-
database system. At the moment a global query lan-
guage based on SQL is supported. A global SQL query
is processed by the query manager of the MIND and
the subqueries are sent to the corresponding databases
through CORBA. For global transaction management
a fully decentralized global concurrency control mecha-
nism based on tickets has been implemented. This solves
the global serializability problem. A global crash recov-
ery system is yet to be designed.

The future work includes designing and implement-
ing a schema integrator on top of the existing system.
There is going to be a global schema which is defined
as the integration of the schemas exported from the
underlying databases. The global schema will support
the ODMG-93 data model [Cat 94] with the extensions
suggested in [GAR 95] and OQL [Cat 94] as the global
query language. The global OQL queries will be trans-
lated into local SQL queries which are going to be sent
to the local databases through CORBA. Also the design
and implementation of a global query optimizer is under
development [ED 95]

References

[GAR 95] M.J.Carey, et. al., "Towards Hetero-

geneous Multimedia Information Sys-

tems: The Garlic Approach”, in Proc.
of RIDE-ROM 95

[Cat 94] Cattell, R.G.G., The Object Database
Standard: ODMG-93, Morgan Kauf-
mann, 1994.

[DEC 94a) The Guide to CORBA, Digital Equip-
ment Coop., August 1994.

[DEC 94b)] ObjectBroker, System Integra-

tor’s Guide, Digital Equipment Coop.,
August 1994.

[DEOO 94]

[Dog 94a]

[Dog 94b]

[DAOD 95]

[ED 95]

Dogac, A., Evrendilek, C., Okay, T.,
Ozkan, C., "METU Object- Oriented
DBMS”, in Object-Oriented Database
Systems, edited by Dogac, A., Ozsu, T.,
Biliris, A., Sellis, T., Springer-Verlag,
1994.

Dogac, A., et. al., "METU Object-
Oriented Database System”, Demo De-
scription, in the Proc. ACM SIGMOD
Intl. Conf. on Management of Data,
Minneapolis, May 1994.

Dogac, A., ”The MOOD User Manual”,
May 1994.

Dogac, A., Altinel, M., Ozkan, C., Du-
rusoy, 1., ”Implementation Aspects of an
Object-Oriented DBMS”, in ACM SIG-
MOD Record, Vol.24, No.1, March 1995.

Evrendilek, C., Dogac, A., Nural, S., Oz-
can, F., ”Query Optimization in Multi-
database Systems” | in Proc. of the

[HFBK 94]

[OMG 91]

[OMG 94]

[ORACLE 92]

[SYBASE 90]

Next Generation Information Technolo-
gies and Systems, Israel, June 1995.

Huck, G., Fankhauser, P., Busse, R.,
Klas, W., "IRO-DB : An Object-
Oriented Approach towards Federated
and Interoprable DBMSs”, in Proc. of
ADBIS 94, Moscow, May 1994.

Object Management Group, ” The Com-
mon Object Request Broker: Architec-
ture and Specification”, OMG Docu-
ment Number 91.12.1, December 1991.

Object Management Group, ” The Com-
mon Object Services Specification, Vol-
ume 17, OMG Document Number
94.1.1, January 1994.

Programmer’s Guide to the Oracle Call
Interfaces, Oracle Corporation, Decem-

ber 1992.

Open Client DB-Library /C Reference
Manual, Sybase Inc., November 1990.

