Implementation Aspects of an Object-Oriented DBMS

Asuman Dogac

Mehmet Altinel

Cetin Ozkan

[lker Durusoy

Software Research and Development Center

Scientific and Technical Research Council of Turkiye
Middle East Technical University (METU)
06531 Ankara Turkiye

email: asuman@srdc.metu.edu.tr

Extended Abstract

1 Introduction

This paper describes the design and implementation
of an OODBMS, namely the METU Object-Oriented
DBMS (MOOD). MOOD [Dog 94b] is developed on the
Exodus Storage Manager (ESM) [ESM 92] and therefore
some of the kernel functions like storage management,
concurrency control, backup and recovery of data were
readily available through ESM. In addition ESM has
a client-server architecture and each MOOD process is
a client application in ESM. The kernel functions pro-
vided by MOOD are the optimization and interpreta-
tion of SQL statements, dynamic linking of functions,
and catalog management. SQL statements are inter-
preted whereas functions (which have been previously
compiled with C++) within SQL statements are dy-
namically linked and executed. A query optimizer is
implemented by using the Volcano Query Optimizer
Generator. A graphical user interface, namely Mood-
View [Arp 93a, Arp 93b], is developed using Motif.
MoodView displays both the schema information and
the query results graphically. Additionally it is possi-
ble to update the database schema and to traverse the
references in query results graphically.

The system is coded in GNU C++ on Sun Sparc 2
workstations. MOOD has a SQL-like object-oriented
query language, namely MOODSQL [Ozk 93b, Dog 94c].
MOOD type system is derived from C++, thus elimi-
nating the impedance mismatch between MOOD and
C++4. The users can also access the MOOD Ker-
nel from their application programs written in C++.
For this purpose MOOD Kernel defines a class named
UserRequest that contains a method for the execu-
tion of MOODSQL statements. The MOOD source

code is available both for anonymous ftp users from
ftp.cs.wisc.edu and for the WWW users from the site
http://www.srdc.metu.edu.tr along with its related doc-
uments.

In MOOD, each object is given a unique Object
Identifier (OID) at object creation time by the ESM
which is the disk start address of the object returned
by the ESM. Object encapsulation is considered in two
parts, method encapsulation and attribute encapsula-
tion. These encapsulation properties are similar to the
public and private declarations of C++.

Methods can be defined in C++ by users to manipu-
late user defined classes and after compilation, they are
dynamically linked and executed during the interpre-
tation of SQL statements. This late binding facility is
essential since database environments enforce run-time
modification of schema and objects. With our approach,
the interpretation of functions are avoided thus increas-
ing the efficiency of the system. Dynamic linking prim-
itives are implemented by the use of the shared object
facility of SunOS [Sun 90]. Overloading is realized by
making use of the signature concept of C++.

2 MOOD Kernel Design
Considerations and an Overview

Objects are grouped in the abstraction level of a class, in
other words, classes have extensions. Class extensions
are implemented as ESM files. A class in the system has
an unique type identifier which is inherited from a meta
class named MoodsRoot. This type identifier is used
in accessing the catalog to obtain the type information
to be used in interpreting the ESM storage objects
which are untyped arrays of bytes. The relation between
clagses and instances is a 1:n relation, i.e., under a class
there could be any number of instances associated with
it, but an instance can not be associated with more than
one class. Class inheritance mechanism of the MOOD
is multiple inheritance. The name resolution is handled
as in standard C++. Additionally in our system in case
of name conflicts, if the scope resolution operator is not



