
A Cost Model for Path Expressions in Object-Oriented Queries

Cetin Ozkan Asuman Dogac Mehmet Altinel
Software Research and Development Center

Scientific and Technical Research Council of Turkiye
Middle East Technical University

06531, Ankara Turkiye

e-mail: asuman@vm.cc.metu.edu.tr

Abstract

Query processing remains one of the important challenges of Object-Oriented Database
Management Systems. Cost based query optimization involves creating alternative executing plans
for a given query and executing the least costly one within a cost model framework.

In Object-Oriented Database Management Systems (OODBMSs) objects may store references to
other objects (precomputed joins), and path expressions are used in query languages. Although the
cost fomulas for explicit joins and the selectivities of attributes and joins are well-known in the
relational model, there is no similar work involving path expressions for OODBMSs. However
in order to optimize object-oriented queries involving path expressions, a cost model is essential.
This information is necessary for deciding whether to use pointer chasing or to convert the path
expressions into explicit joins and also for deciding the execution order of path expressions. In this
paper, we provide a cost model that includes the formulas for the costs and selectivities of forward
and backward path traversals.

1. Introduction

The goal of query optimization is to find an execution plan for a specific query in order to
minimize the cost of executing the query. The steps involved in this process can be considered at
two levels, logical query optimization (query rewriting) using semantic properties of the language
in order to find expressions equivalent to the one given by the user, and physical query
optimization, based on a cost model to choose the best algorithm for evaluating the query.

In calculating the cost of an execution plan for object-oriented queries, estimation of the cost of
forward and backward traversals in path expressions is necessary. Although executing precomputed
joins is not the best in all situations, estimations of the cost of path traversals is essential to
compare their costs with other possible alternatives to choose the best performing access plan. The
fact that path traversals must be taken into account when deciding on an execution plan is
demonstrated through the following query:

1

SELECT emp.name, emp.job.name, emp.dept.name
FROM Employee emp
WHERE emp.dept.plant.location=’Dallas’ and emp.eno=15

Assuming that there is no index in any of the extensions of the classes, this query will require one
sequential scan of the extension of the Employee class and 3 disk accesses, (one to fetch the
corresponding dept object, one to retrieve the plant object and the last one to fetch the job object)
when the path expression is evaluated through pointer chasing. If this query is executed with an
explicit join technique it will require the sequential scan of the extensions of the emp, dept, plant,
and job classes, and even for very small sized extensions, this cost will exceed the cost of path
traversal.

On the other hand, the optimal execution plan for the following query is through explicit joins
[Bla 93] :

SELECT emp.name, emp.job.name, emp.dept.name
FROM Employee emp
WHERE emp.dept.plant.location=’Dallas’

It is clear that to be able to decide on the better execution plan, we should be able to calculate
the cost of possible alternatives. Although the cost formulas for explicit joins and selectivities of
attributes, and joins are well-known in relational model, there is no similar work in calculating the
selectivities and costs of path expressions for OODBMSs.

In this paper, we provide the formulas for calculating the selectivities of path expressions, for
estimating the size of an explicit join involving path expressions, and for calculating the costs of
forward and backward traversals.

Previous work on object-oriented query optimization involved the definition of new object algebras
[Alh 93, Sha 90, Str 90], query rewriting techniques [Clu 92], and new execution algorithms to
efficiently traverse complex object structures such as pointer based joins [She 90] and complex
object assembly [Kel 91]. Recently the design and implementation of a query optimizer based on
complete extensible framework has been reported in [Bla 93]. In [Bla 93], only the selectivities
of the attributes are considered when there is index on them that can be used to assist selectivity
estimation. In other cases, selectivities are assumed to be 10%.

2. Cost Model Parameters

In the object model [Atk 92] used in this paper, complex objects are built from simpler ones by
applying constructors to them. The simplest objects are integers, characters, byte strings of any
length, Booleans, and floats. The complex object constructors are Tuple, Set, List and Reference.
Any constructor can be applied to any object. Each object has a unique Object Identifier (OID).
Objects are grouped in the abstraction level of a class, in other words, classes have extensions.
Each object is as a member of only one class.

2

In this section cost model parameters are defined and calculated for the object model presented.
These parameters are used in various selectivity calculations which form the basis of the cost
calculation of path traversals. In the Table 1, the cost model parameters are presented. Similar cost
model parameters have been defined in [Kem 90], [Ber 92] and [Ber 93]. In defining the cost
model, [Kem 90] considers the extensions of classes where in [Ber 92] and [Ber 93], the class
inheritance hierarchy is also taken into account. Our cost model considers the class extensions.
Furthermore we have defined some more parameters that serve our purposes better.

In the Table 1, Ci is a class, A is either an attribute or a parameterless method of class Ci with an
atomic return type which is treated in the same way as an atomic attribute, and Ci+1 is the class
referenced by attribute A of class Ci.

Parameter Short Hand
Notation

Definition

| Ci| - Total number of instances of Ci

nbpages(Ci) - Total number of pages Ci occupies

size(Ci) - Size of an instance of class Ci

notnull(A, Ci) - The proportion of instances of class Ci where attribute
A is not null

fan(A,Ci,Ci+1) fani(A) The average number of instances of class Ci+1 that are
referenced by an instance of Ci through attribute A

totref(A,Ci,Ci+1) totrefi(A) The total number of objects in class Ci+1 that are
referenced by at least one object in class Ci through
attribute A

dist(A, Ci) disti(A) The number of distinct values of the atomic attribute A
of class Ci

max(A, Ci) maxi(A) The maximum value of the atomic attribute A of class
Ci

min(A, Ci) mini(A) The mimimum value of the atomic attribute A of class
Ci

Table 1 . Cost Model Parameters

The parameters calculated by using the above listed cost model parameters are as follows: The
number of the total references from class Ci to class Ci+1 through attribute A is denoted by
totlinks(A,Ci,Ci+1) and given by the following equation :

totlinks(A,Ci,Ci+1) = fan(A,Ci,Ci+1) * Ci

3

The probability that an instance of class Ci+1 is referenced by the instances of class Ci through
attribute A is given by the following formula:

hitprb(A,Ci,Ci+1) = totref(A,Ci,Ci+1) / Ci+1

The shorthand notation for these parameters as follows:

hitprbi(A)= hitprb(A,Ci,Ci+1)
totlinksi(A) = totlinks(A,Ci,Ci+1).

2.1 Selectivity

Selectivity is a parameter used with a predicate to denote the ratio of the elements of a collection
satisfying the predicate. When optimizing the queries, selectivity of a predicate is estimated
assuming that the values are uniformly distributed. The traditional uniformity and randomness
assumptions about value distributions and object placements tend to overestimate costs. However
the more sophisticated techniques require more statistical information about the database. The
question of how to maintain such information within tolerable overhead is not yet fully resolved
[Jar85].

A simple predicate in the system is a triplet of the form <P, Θ, oprnd>, where P is a path
expression, Θ is a comparison operator (=, <>, >=, <=, >, <), and oprnd is either a constant or
another path expression.

2.1.1 Selectivity for Atomic Attributes

The well-known selectivity calculations described in [Ozk 90] that assume a uniform distribution
of the atomic values will be used throughout the derivations presented in this paper.

i. The selectivity of the predicate <p.A, = ,constant> denoted fs(p.A,=), where p is a variable bound
to a class Ci, and A is an atomic attribute, is given by the following formula.

fs(p.A,=) = 1 / disti(A)

ii. The selectivity of the predicate < p.A, > ,constant> is

fs(p.A,>) = (maxi(A) - constant) / (maxi(A) - mini(A))

iii. The selectivity of the predicate <p.A, BETWEEN, constant1 and constant2 >, where constant1

is less than constant2, is

fs(p.A, BETWEEN) = (constant2 - constant1) / (maxi(A) - mini(A))

The parameterless methods of a class Ci with atomic return types are treated in the same manner

4

as the atomic data members of that class.

2.1.2. Selectivity of Path Expressions

Assume that there is a path expression that contains m attributes, A1 through Am, where A1 through
Am-1 is constructed using the set and the reference constructors. Am is an atomic attribute and Ai

is an attribute of class Ci. We define the selectivity, fs(p.A1.A2...Am,Θ), for the path expression
predicate "p.A1.A2...Am Θ c", where Θ is a comparison operator and c is a constant, as the ratio of
the elements of the starting collection (to which p is bounded) satisfying the predicate.

The calculation of the selectivity of the predicate <p.Am ,Θ, c>, fs(p.Am, Θ), is clear from the
previous section. Therefore the expected number of instances of Cm, denoted by km, that satisfies
this condition is:

km = Cm * fs(p.Am, Θ)

Consider the following problem: When we start with k objects in class C1 and follow k*fan1(A1)
links through attribute A1 into class C2, how many objects do we obtain in class C2? Note that the
total number of objects referenced in class C2 through attribute A1 of class C1 is totref1(A1). This
question can be reduced to the following statistical problem: Given n objects uniformly distributed
over m colors, how many different colors c are expected to be selected if we take r objects? This
statistical problem has been solved by using different mathematical approximations. An
approximation assumed in [Cer 85] is as follows:

r , r < m/2
c(n,m,r) = (r+m)/3 , m/2 ≤ r ≤ 2m

m , r > 2m

When we generalize this assuming that we start with k objects of class C1 and traverse the path
p.A1.A2...Ai in forward direction, the expected number of objects of class Ci+1 , denoted by fref,
is given by the following formula:

k , i = 0
fref(p.A1.A2...Ai,k) =

c(totlinksi(Ai), totrefi(Ai), fref(p.A1.A2...Ai-1 ,k) * fani(Ai)), i > 0

Note that [Car 75] and [Yao 77], in approximating the number of block accesses to a file for a
given query, has defined better approximations to this statistical problem. However, we have
calculated and compared the average error per unit time, and found out that c(n,m,r) serves our
purposes well.

Starting with one instance of class C1 , the number of objects of class Cm obtained at the end of
forward path traversal is given by fref(p.A1...Am-1,1) which will be denoted as set S1. On the other
hand, there are km objects satisfying the predicate <p.Am,Θ,c> in the extent of Cm and this set will

5

be denoted by S2 . The number of objects that are referenced by the objects in the class Cm-1 in S2

can be calculated as km*hitprb(Am-1,Cm-1,Cm). Denoting this set as S3, Figure 1 illustrates the set
containment relationship among S1, S2 and S3 assuming that S1 intersects with S2 and S3 although
this is not the case always.

Figure 1 Relation between S1 , S2 and S3

It is clear that if the sets S1 and S3 intersects then the object we have started with in C1 satisfies
the predicate <p.A1...Am,Θ,c>. Therefore, the selectivity of a path expression can be defined as the
probability that the sets S1 and S3 will intersect. This probality, Pintersect, can be calculated as
follows:

Pintersect= o(totrefm-1(Am-1), fref(p.A1.A2...Am-1,1), km* hitprb(Am-1,Cm-1,Cm))

where o(t,x,y) is the probability that there exists at least one object in common in two sets having
cardinalities x and y respectively (x, y ≤ t). Elements of these sets are selected without replacement
from the same set of t distinct objects seperately (i.e. after the construction of first set, its elements
are placed back to the original set for the selection of the second set). o(t,x,y) is defined as:

1 ,x+y>t
o(t,x,y) =

1 - C (t-x,y) / C(t,y) ,otherwise

where C(u,v) stands for the number of combinations of u objects selected from a set of v objects
without replacement.

Thus the selectivity of a path expression fs(p.A1.A2...Am , Θ) is:

fs(p.A1.A2...Am,Θ) = Pintersect

6

2.1.3. Estimating the Size of a Join

Assume that a join predicate is defined on two path expressions as follows:

p.A1.A2...Am = s.B1.B2...Bn.

Ai is an attribute of Ci, and Bj is an attribute of Dj. The number of instances of C1 and D1 are
denoted by tp and ts, respectively. Notice that if there are no previous selections on these classes,
then tp = |C1 | and ts = | D1 |.

Estimation of the size of a join size necessary for the optimizer to make correct estimates of the
costs of alternative query execution plans. The join size will be estimated for three cases.

Case 1. Object Identifier Equality

Our cost model considers the class extensions and an object can be an instance of only one class.
Therefore when we consider the object identifier equality, it is clear that Am and Bn reference the
same class, say E. For one instance of C1, the expected number of instances of E obtained by
traversing the path expression starting with the bind variable p is

kp = fref(p.A1.A2...Am,1)

In the same way,

ks = fref(s.B1.B2...Bn,1)

We will define the selectivity of a join predicate defined on two path expressions:

p.A1.A2...Am = s.B1.B2...Bn, where both Am and Bn contain object identifiers.

Starting with one instance of class C1, the number of objects of class E obtained at the end of
forward path traversal is given by kp. However not all of these objects may be hit by the links
coming from class Dn. Thus kp*hitprb(Bn,Dn,E) gives the size of the set whose elements are also
hit by the links coming from class Dn. Similarly ks*hitprb(Am,Cm,E) gives the size of the set which
is obtained by starting with one instance of class D1 and following the path s.B1.B2...Bn and whose
elements are also hit by the links coming from class Cm. Notice that both of these sets are
contained in the set whose cardinality is totref(Am,Cm,E)*totref(Bn,Dn,E)/|E|. Notice also that
totref(Bn,Dn,E)/|E| is hitprb(Bn,Dn,E). The probability, Pi, that these two sets intersects is given by
the following formula:

Pi= o(totref(Am,Cm,E)*hitprb(Bn,Dn,E), kp*hitprb(Bn,Dn,E), ks*hitprb(Am,Cm,E)).

We define the selectivity, q, of a join predicate defined on two path expressions p.A1.A2...Am =
s.B1.B2...Bn as the probability of an object being in the intersection of two sets with cardinalities

7

kp*hitprb(Bn,Dn,E) and ks*hitprb(Am,Cm,E) selected from a set whose cardinality is
totref(Am,Cm,E)*hitprb(Bn,Dn,E) with replacement.

q=Pi * (kp*hitprb(Bn,Dn,E)*ks*hitprb(Am,Cm,E)/(totref(Am,Cm,E)*hitprb(Bn,Dn,E))**2).

The size of the resulting join, hence, is calculated to be:

join_size = fref(p.A1.A2...Am,tp) * fref(s.B1.B2...Bn,ts) * q.

Case 2. Value-based Equality

After forward traversing the path p.A1.A2...Am-1 starting with one instance of class C1, we have
obtained kp objects in class Cm. We need to find out the number of non-null distinct values of
attribute Am corresponding to kp objects. There is a total of |Cm|* notnull(Am, Cm) number of non-
null values of Am distributed over dist(Am,Cm) number of distinct values. When we select kp*
notnull(Am, Cm) number of values out of |Cm|* notnull(Am, Cm) values, the number of non-null
distinct values of attribute Am corresponding to kp objects, denoted by kp′ is:

kp′ = c(|Cm|* notnull(Am, Cm), dist(Am,Cm), kp* notnull(Am, Cm)).

and similarly,

ks′ = c(|Dn|*notnull(Bn, Dn), dist(Bn,Dn), ks*notnull(Bn, Dn)).

Then the range of the two-path value-based join is defined to be

rangejoin = [max(min(Am , Cm), min(Bn , Dn)), min(max (Am , Cm), max(Bn , Dn))]

On the other hand, range of each path expression is as follows:

rangep = [min(Am,Cm), max(Am,Cm)],
ranges = [min(Bn,Dn), max(Bn,Dn)].

Number of distinct values of kp objects which fall into the rangejoin, denoted by Distp is calculated
as:

Distp = kp′ * len(rangejoin) / len(rangep), where len(range) = i-j, and range=[j,i].

Similarly,

Dists = ks′ * len(rangejoin) / len(ranges) gives the number of distinct values of ks objects
falling into the rangejoin. The probability, Pi, that these two distinct values intersect is given as
follows:

8

Pi = o(len(rangejoin),Distp, Dists)

The selectivity of the value-based two-path join, q′, is defined as the probality of the value of an
object being in the intersection of two sets with cardinalities kp′*len(rangejoin)/len(rangep) and
ks′*len(rangejoin)/len(ranges) selected from a set whose cardinality is len(rangejoin) with replacement
and it is calculated as:

q′ = Pi * (kp′*len(rangejoin)/len(rangep)) * (ks′*len(rangejoin)/len(ranges)) / len(rangejoin)**2

Then, estimated join size is

join_size = fref(p.A1.A2...Am,ts) * fref(s.B1.B2...Bn,tp) * q′.

Case 3. Non-equality Joins

For such joins, estimated join size is taken as the cardinality of the cartesian product of two
collections obtained by traversing the links in the path expressions, which is the result of a
pessimistic assumption.

join size = fref(p.A1.A2...Am,ts) * fref(s.B1.B2...Bn,tp)

3. Cost Analysis of Operators in a Paging Environment

In this section a number of parameters will be defined which are used in the analysis of the costs
of forward and backward traversals. These parameters are the costs of sequential, random and
indexed accesses.

In Table 2 the physical parameters of a disk which are used in the numerical examples are
provided.

Parameter Definition

B Block size

btt Block transfer time

ebt Effective block transfer time

r Avarege rotational latency

s Avarage seek time

Table 2. Physical Parameters for hard disk

9

The cost of sequential accesses to b pages is denoted by SEQCOST(b) and is calculated as

SEQCOST(b) = s + r + b * ebt .

The cost of random access to b pages, denoted by RNDCOST(b) is

RNDCOST(b) = b * (s + r + btt).

In Table 3, the information kept by the system for a B+-tree index I is shown.

Parameter Definition

v(I) Order of the B+ tree

level(I) Number of levels

leaves(I) Number of pages at
the leaf level

keysize(I) Size of the key value

unique(I) Unique flag

Table 3. Parameters for a B+-tree

The cost of accessing object identifiers of k random keys by using a B+ tree secondary index I is
calculated as follows:

The number of pages at the leaf level of the B+ tree is given as leaves(I). Assuming there are 2v
keys at each page and also assuming that the leaves are ln2 full [Yao 78], the total number of keys
at the leaf level is leaves(I) *2v*ln2. Then number of leaf level pages to be fetched in order to
retrieve k keys is given by:

c(n1,m1,r1)=c(leaves(I)*2v*ln2, leaves(I), k)

In other words, there are leaves(I)*2v*ln2 keys distributed over leaves(I) pages, and the question
is, how many pages should we retrieve in order to get k keys from the leaf level of the B+ tree
index. Generalizing this to the upper levels of the secondary B+ tree we obtain the formula,
INDCOST(k), giving the cost of indexed access in terms of pages to be retrieved.

where ni = leaves(I) / (2v*ln2)i-2, mi = leaves(I) / (2v*ln2)i-1, and

10

k , i = 1
ri =

c(ni-1,mi-1,ri-1) , otherwise.

Finally, the cost of a range query using a secondary B+-tree index I, given by RNGXCOST(fract),
is given by the equation

RNGXCOST(fract) = fract * leaves(I) * (s + r + btt)

where fract is the proportion of the objects in the given range to the whole domain.

3.1 Cost of Forward Traversal

Assume that there exists a path expression, p.A1.A2...Am, where A1 through Am are constructed
using set, list or reference contructors, Ai is an attribute of Ci and Am references class Cm+1. We
will calculate the cost of forward traversal for this expression. We use the short-hand notation for
fani, totrefi and totlinksi given previously.

Given k1 object identifiers of instances of C1, it is necessary to find out the cost of forward
traversing a given path. In this analysis, the following assumptions are made:

i. No pages of an instance of Ci is in the buffer, where i>1.
ii. To eliminate the complexity of taking the effect of the page replacement policy of the buffer
management system into account, the available buffer space is assumed to be large enough to hold
all of the pages fetched during the traversal.

Let ki be the number of distinct instances of Ci which are referenced by attribute Ai-1 of Ci-1. Then,
after following the links from C1 to C2 for k1 objects in C1, the number of objects in C2 , is
given by k2 :

k2 = c(totlinks1(A1), totref1(A1), k1*fan1(A))

If there is a binary join index between the classes C1 and C2, which is implemented as a pair of
B+ trees, through attribute A1 then the cost of forward traversing into these k2 items is just the cost
of dereferencing them since the contents of k1 objects from C1 will not be accessed. Then, the cost
function, bjicost, is written as:

bjicost = INDCOST(k1)

If there are no binary join indices, on the other hand, the cost is the total cost of accessing the
pages over which k1 objects of C1 are distributed, together with the cost of accessing the blocks
in which set information on object identifiers are stored, if A1 is a set. In this case, the cost is
given as:

11

rcost = RNDCOST(nbpg) + k1 * SETINFO(I)
where

nbpg = nbpages(C1) * (1 - (1 - 1 / nbpages(C1)) k1) .

and nbpg gives the number of pages to be fetched from class C1 to retrieve k1 objects, where |C1|
objects are distributed over nbpages(C1)[Car 75].

If the type constructor of attribute A1 is of REFERENCE type, then obviously the second term of
the equation for rcost, i.e. k1 * SETINFO(I), disappears. The parameter SETINFO(I) is a value
proportional to the average cost of accessing the elements of a set organized as a B+-tree and it
is as given below:

SETINFO(I)=(level(I)+leaves(I))*RNDCOST(1)

The minimum of bjicost and rcost is chosen and added to the total forward traversal cost. Then
the procedure for calculating the cost of a forward traversal of a path expression is as given below:

function ftracost(int k1, PathExpression p.A1.A2...Am)
{

/* k1 is the initial number of object identifers of instances of class C1 */

function ftracost
int i = 1;
float fcost=0, bjicost, rcost;

while(i ≤ m) {
If (there are forward binary join indices on Ai) bjicost = INDCOST(ki);
else bjicost = ∞ ;
nbpg = nbpages(Ci) * (1 - (1 - 1/nbpages(Ci))ki);
switch(the constructor of Ai) {

case SET :
rcost = RNDCOST(nbpg) + ki * (SETINFO(I));

case REF :
rcost = RNDCOST(nbpg);

} /* switch */

fcost = fcost + min(bjicost,rcost);
i = i + 1;
ki = c(totlinksi-1, totrefi-1, ki-1 * fani-1);

} /* while */

return(fcost);

} /* function */

12

3. 2 Cost of Backward Traversal

In our object model, there are no backward links. If there is binary join index between Ci and Ci+1,
the costs are calculated as in the forward traversal. However, if there are no binary join indices,
instances in Ci are selected by sequential scan of Ci. The number of instances, ki, selected in Ci

as the result of this operation is estimated as:

ki = |Ci| * notnull(Ai, Ci) * o(totrefi, fani, ki+1) , where ki+1 is the number of instances in
Ci+1 selected in the backward traversal of the path expression and o(totrefi, fani, ki+1) is the
probability is that an object in Ci gives reference to an instance in this set.

Given a path p.A1.A2...Am, and keeping the assumptions made in the previous section, an
analoguous algorithm for calculating the cost of backward traversal is given below.

function btracost(int km, PathExpression p.A1.A2...Am)
/* km is the initial number of object identifers of instances of class Cm */
int i;
float bcost=0, bjicost, scost;
i=m;
while (i ≠ 0) {

ki = ki * hitprb(Ai-1,Ci-1,Ci);
bjicost=∞;
If (there are binary join indices on Ai)

bjicost = INDCOST(ki);
scost = SEQCOST(nbpages(Ci)) ;
bcost = bcost + min(bjicost,scost);
i = i - 1;
ki = |Ci| * notnull(Ai, Ci) * o(totrefi, fani, ki+1) ;

} /* while */
return(bcost);

} /* function */

4. An Example

In order to provide a better understanding to the use of the cost formulas introduced in the
previous sections, the following example is provided.

Assume the following SQL query:

SELECT c.name
FROM Company c
WHERE c.division.staff.drives.color=’blue’

and c.location.country= ’USA’

13

The physical parameters values of a typical disk drive is given in the table 4.

Parameter Value

B 2 KByte

btt 0.8 msec

ebt 0.84 msec

r 8 msec

s 16 msec

Table 4. Physical Parameters values for a typical hard disk

Let us also assume the database statistics are as shown in Table 5, Table 6 and Table 7.

Class |C| nbpages(C) size(C)

Company 30 30 2 KByte

Division 50 50 2 KByte

Employee 15000 45000 6 KByte

Vehicle 60000 150000 6 KByte

City 30 30 2 KByte

Table 5 . Statistics on the example database

Class Attribute dist

Vehicle color 10

City country 10

Table 6. Statistics on the example database

14

Class Attribute fan totref totlinks hitprb

Company division 4 40 120 0.80

Division staff 150 7000 7500 0.47

Employee drives 4 50000 60000 0.83

Company location 1 30 30 1.00

Table 7. Statistics on the example database

The sequential scan costs of the class extensions are as given in Table 8.

Class Sequential Scan Cost(secs.)

Company 0.0495

Division 0.0663

Employee 37.8243

Vehicle 126.0243

City 0.0495

Table 8. Sequential scan costs of the class extensions

The selectivities of the path expressions are calculated by the following formulas:

fs(P1)= fs(c.division.staff.drives.color, =) = 1.00

fs(P2)= fs(c.location.country, =) = 0.1

By using the cost formula for backward traversal, btracost, the costs of the backward traversals of
the path expressions P1and P2 are calculated to be:

bP1 = Sequential scan cost of Vehicle to evaluate "color= ’blue’ "+
backward traversal of c.division.staff.drives

= 126.0243 + btracost(fs(color,=)*|Vehicle|, c.division.staff.drives)
= 126.0243 + 37.9401
= 163.9644 secs

15

bP2 = Sequential scan cost of City to evaluate "country= ’USA’ "+
backward traversal of c.location

= 0.0495 + btracost(fs(country,=)*|City|, c.location)
= 0.0495 + 0.0495
= 0.099 secs

It should be noted that there can be some fast access paths defined on the classes like access
support relations [Kem 90] which are redundant seperate structures to store object references that
are frequently traversed or path indices [Kim 90, Ber 93] which store instantiations of a path, that
is, sequences of objects. We will assume that there are no such indices on the classes. Then, some
of the available alternatives to be checked by the query optimizer are as follows:

1. A backward traversal of the predicate P1 followed by a forward traversal of the path expression
P2.

The cost of this alternative is computed to be:

c1 = bP1 + ftracost(fs(P1) * |Company|, c.location)
= 163.9644 + 0.9628
= 164.9272 secs

2. A backward traversal of the path expression P2 followed by a forward traversal of the path
expression P1. The cost of the second alternative is expressed as follows:

c2 = bP2 + ftracost(fs(P2) * |Company|, c.division.staff.drives)
= 0.099 + 119.024
= 119.123 secs.

3. Converting all implicit joins in the path expressions to the explicit joins, and executing these
joins by using a pointer-based join algortihms like hybrid hash partitioning join or sort-merge
join[She 90]. No matter what join technique is used, it will require at least one sequential scan of
the file. Therefore the minimum cost for this alternative is greater than the sum of sequential scans
of the extensions of the classes.

c3 >= 163.9644 secs.

It is clear from this example that for the optimizer to decide on the best execution plan among
the available alternatives, it is in need of the selectivities and the costs of path expressions.

4. Conclusions

The query optimizer needs to know the cost of possible alternatives to choose the best one. The
selectivities of attributes and the selectivities and the cost of explicit joins for relational data model
are well-known. These formulas are also used for object-oriented query processing. However path

16

traversals, that is, executing precomputed joins is one of the possible alternatives in executing
object-oriented queries. In this paper we have provided the formulas for calculating the
selectivities of path expressions, for estimating size of an explicit join involving path expressions,
and also for calculating the cost of forward and backward traversals.

References

[Alh 93] Alhajj, R, Arkun, M. E., "A Query Model for Object-Oriented Databases", Proc. IEEE Conf. on Data Eng.,
1993.

[Atk 92] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, D., Maier, D., Zdonik, S., "The Object-Oriented Database
System Manifesto", in Building an Object-Oriented Database System (F. Bancilhon, C. Delobel, and P. Kanellakis,
Edtrs.), Morgan-Kaufmann, 1992.

[Ber 93] Bertino, E., Martino, L., Object-Oriented Database Systems: Concepts and Architectures, Addison-Wesley,
1993.

[Ber 92] Bertino, E., Foscoli, P., "A Model of Cost Functions for Object-Oriented Queries", In Proc. of 5th
International Workshop on Persistent Object Systems, Italy, September 1992.

[Bla 93] Blakeley, J. A., McKenna, W. J., Graefe, G., "Experiences Building the Open OODB Query Optimizer", Proc.
of the ACM SIGMOD Conf., 1993.

[Car 86] Carey, M., DeWitt, D.. Richardson, J., Shekita, E., "Object and File Management in EXODUS Extensible
Database System", in Proc. of the 12th Intl. Conf. on VLDB, 1986.

[Car 88] Carey M.J., DeWitt D.J., Vandenberg S.L., "A Data Model and Query Language for EXODUS", Proc. of the
ACM SIGMOD Conf., 1988.

[Car 75] Cardenas A.F., "Analysis and Performance of Inverted Data Base Structures", Comm. ACM, May 1975.

[Cer 85] Ceri, S., Pelagatti, G., Disributed Database systems, McGraw Hill, 1985

[Clu 92] Cluet S., Delobel C., "A General Framework for the Optimization of Object-Oriented Queries", Proc. of the
ACM SIGMOD Conf. on Management of Data, 1992.

[Dar 92] Dar S., Gehani N.H., Jagadish H.V., "CQL++: A SQL for the Ode Object-Oriented DBMS",in Proc. of
Extending Database Technology, 1992.

[Deu 91] Deux, O., et al., "The O2 System", Comm. of the ACM, Vol. 34, No.10, 1991.

[Jar 84] Jarke M., Koch J., "Query Optimization in Database Systems", Computing Surveys, Vol. 16, No. 2, 1984.

[Jar 85] Jarke M., Koch J., Schmidt J. W., "Introduction to Query Processing", Query Processing in Database Systems,
Springer-Verlag, 1985, pp 3-28.

[Jen 90] Jeng, B. P., Woelk, D., Kim, W., Lee, W-L., "Query Processing in Distributed ORION", In Proc. of Extending
Data Base Technology, 1990.

[Kel 91] Keller, T., Graefe, G., Maier, D.," Efficient Assembly of Complex Objects", Proc. of the ACM SIGMOD

17

Conf., 1991.

[Kem 90] Kemper A., Moerkotte G., " Access Support in Object Bases", Proc. of the ACM SIGMOD Conf., 1990.

[Kim 90] Kim W., Introduction to Object-Oriented Databases, The MIT Press, 1990.

[Lan 91] Lanzelotte, R. S. G., Valduriez, P., Ziane, M., Cheiney, J-P., "Optimization of Nonrecursive Queries in
OODBs", In Proc. of the Second Intl. Conf. on Deductive and Object-Oriented Databases, 1991.

[Ozk 90] Ozkarahan E., "Database Management Concepts, Design and Practice", Prentice-Hall, 1990.

[Ozk 92] Ozkan C., Evrendilek C., Dogac A., " Optimization and Implementation of MOODSQL", Software Research
and Development Center, TUBITAK, Technical Report No.8, September 1992.

[Sal 88] Salzberg B., "File Structures, an Analytic Approach", Prentice-Hall International, Inc, 1988.

[Sha 90] Shaw, G. M., Zdonik, S. B., "A Query Algebra for Object-Oriented Databases", Proc. IEEE Conf. on Data
Eng., 1990.

[She 90] Shekita, E. J., Carey, M. J., "A Performance Evaluation of Pointer-Based Joins", Proc. of the ACM SIGMOD
Conf., 1990.

[Str 90] Straube, D. D., Ozsu, M. T., "Queries and Query Processing in Object-Oriented Database Systems", ACM
Trans. on Inf. Sys. 8, 4, 1990.

[Ull 88] Ullman J. D., Principles of Database and Knowledge-Base Systems, Vol 2, Computer Science Press, 1988.

[Yao 77] Yao S.B., "Approximating Block Access in Database Organizations", Comm. of the ACM, Vol. 20, No. 4,
April 1977.

[Yao 78] Yao, A., "Random 3-2 Trees", Acta Informatica, Vol.9, No.2, 1978.

18

