
A Multidatabase System Implementation on CORBA�

A� Dogac� C� Dengi� E� Kilic� G� Ozhan� F� Ozcan� S� Nural� C� Evrendilek�

U� Halici� B� Arpinar� P� Koksal� S� Mancuhan

Software Research and Development Center of TUBITAK
Middle East Technical University �METU�� Turkiye

email� asuman�srdc�metu�edu�tr

Abstract

METU INteroperable DBMS �MIND� is a multi�
database system based on OMG�s distributed object
management architecture� It is implemented on top
of a CORBA compliant ORB� namely� DEC�s Ob�
jectBroker� In MIND all local databases are encap�
sulated in a generic database object� The interface
of the generic database object is de�ned in CORBA
IDL and multiple implementations of this interface�
one for each component DBMSs� namely� Oracle��
Sybase� Adabas D and MOOD are provided� MIND
provides its users a common data model and a single
global query language based on SQL� The main com�
ponents of MIND are a global query manager� a global
transaction manager� a schema integrator� interfaces
to supported database systems and a graphical user in�
terface�

The integration of export schemas is currently per�
formed by using an object de�nition language �ODL�
which is based on OMG�s interface de�nition lan�
guage� MIND global query optimizer aims at maximiz�
ing the parallel execution of the intersite operations of
the global subqueries� Through MIND global transac�
tion manager� the serializable execution of the global
transactions �both nested and 	at� is provided�

� Introduction

A multidatabase system �MDBS� is a database system
that resides unobtrusively on top of existing database
systems and allows the users to simultaneously access
autonomous� heterogenous databases using a single
data model and a query language�

A recent standard by OMG� � namely CORBA
�The Common Object Request Broker Architecture�
���� provides several advantages when used as the in	
frastructure of a multidatabase system� CORBA han	
dles the heterogeneity at the platform level and in do	
ing this it provides location and implementation trans	
parency� In other words� the changes in object imple	
mentation� or in object relocation has no e
ect on the

�This project is being partially supported by Motorola Inc��

USA�
�OMG is a registered trademark� and CORBA� ORB� OMG

IDL� Object Request Broker are trademarks of OMG�

client� This reduces the complexity of the client code
and allows clients to discover new types of objects
added to the system and use them in plug	and	play
fashion without any change in the client code� This
feature of CORBA is very useful in registering new
DBMSs to the system without a
ecting the already
existing system and also this feature dramatically re	
duces the code that needs to be developed� Further	
more� CORBA and COSS �Common Object Speci�	
cation Service� together provide much of the function	
ality to handle heterogeneity at the database level and
some functionality to handle application interoperabil	
ity� Note that COSS ���� is a complementary standard
developed by the OMG for integrating distributed ob	
jects�

In MIND� there is a generic Database Object de	
�ned in CORBA IDL and there are multiple imple	
mentations of this interface� one for each of the local
DBMSs� namely Oracle�� Sybase�� Adabas D�and
MOOD �METU Object	Oriented Database System�
��� �� �� ��� The current implementation makes uni�ed
access possible to any combination of these databases
through a global query language based on SQL� When
a client application issues a global SQL query to ac	
cess multiple databases� this global query is decom	
posed into global subqueries and these subqueries are
sent to the ORB �CORBA�s Object Request Broker�
which transfers them to the relevant database servers
on the network� On the server site� the global sub	
query is executed by using the corresponding call level
interface routines of the local DBMSs and the result
is returned back to the client again by the ORB� The
results returned to the client from the related servers
are processed if necessary� This approach hides the
di
erences between local databases from the rest of
the system� Thus� what the clients of this level see
are homogeneous DBMS objects accessible through a
common interface�

The rest of the paper is organized as follows� The
architecture of MIND is described in Section �� Sec	
tion � presents the infrastructure of the system� The
design decisions and experiences in developing generic
Database Object implementations for various DBMSs
are also discussed in this section� Section � describes

�Oracle� is a trademark of Oracle Corp�
�Sybase is a trademark of Sybase Corp�
�Adabas D is a trademark of Software AG Corp�



the schema integration in MIND� The global query
manager of the system is brie�y summarized in Sec	
tion �� Finally� Section � provides a short description
of the global transaction manager�

� MIND Architecture

MIND architecture is based on OMG�s Object Man	
agement Architecture �OMA�� CORBA and COSS�
The OMA de�nes a Reference Model identifying and
characterizing the components� interfaces� and proto	
cols that compose a distributed object architecture�
CORBA is the core communication mechanism which
enables distributed objects to operate on each other�
COSS provides a set of standard functions to create
objects� to control access to objects and to keep track
of objects and object references�

In CORBA� clients ask for work to be done and
servers do that work� all in terms of tasks called op	
erations that are performed on entities called objects�
Applications interact with each other without know	
ing where the other applications are on the network or
how they accomplish their tasks� By using CORBA�s
model� it is possible to encapsulate applications as sets
of distributed objects and their associated operations
so that one can plug and unplug those client and server
capabilities as they need to be added or replaced in
a distributed system� These properties provide the
means to handle heterogeneity at the database level�
Thus� CORBA provides an infrastructure for imple	
menting a multidatabase system� Semantic interop	
erability remains to be solved at the application pro	
gramming level�

An overall view of MIND is provided in Figure ��
Before we proceed with the architecture of MIND�

we mention the fact that a common object server
con�guration in a CORBA environment supports two
kinds of objects� The �rst kind of object� say X� has
a standard interface with operations that change or
query the object state� the second kind of object� say
Y� is a factory object whose interface de�nes a single
operation that creates objects of the X kind� A client
uses interface X primarily to manipulate objects and
interface Y to create objects� Thus� there is a fac	
tory object associated with each kind of object in the
system except for the factory object itself which is
created in the initialization part of the MIND system�
Note the anology between an object factory and a class
in an object	oriented programming language which is
also an object factory� In the following discussion we
choose to call object kinds as classes�

The basic components of MIND are a Global
Database Agent �GDA� class �Object Factory in
CORBA terminology� and a Local Database Agent
�LDA� class�

�� A LDA class objects are responsible from�

� maintaining export schemas provided by the
local DBMSs represented in the canonical
data model�

� translating the queries received in the global
query language to the local query language

� providing an interface to the LDBMSs�

�� A GDA class objects are responsible from�

� parsing� decomposing� and optimizing the
queries according to the information ob	
tained from the SchemaInformationManager
object�

� global transaction management that ensures
serializability of multidatabase transactions
without violating the autonomy of local
databases�

When a user wants to interact with MIND� a GDA
object �GDAO� is created by sending a Create mes	
sage to the Object Factory� ORB provides the lo	
cation and implementation transparency for GDAOs�
The locations of GDAOs are dynamically determined
by the ORB using the information provided by the
ORB administrator� The default site for the GDAO
is usually the local host to prevent communication
costs� A GDAO contains the objects of two classes�
one responsible from global transaction management�
namely Global Transaction Manager �GTM� class
and the other from global query processing� namely
Global Query Manager �GQM� class� A GTM object
�GTMO� and a GQM object �GQMO� are created
for each session of each client� GQMO obtains the
global schema information necessary for the decom	
position of the query from the SchemaInformation	
Manager object� After decomposing� GQMO sends
the subqueries to GTMO� GTMO is responsible from
the correct execution of global transactions� For this
purpose� it modi�es the global subtransactions when
necessary �e�g� enriching them with ticket operations�
and controls the submission of global subtransations
to the LDAOs� LDAOs control submission of opera	
tions to the LDBMSs and communicate with GTMO
and GQMO to achieve atomic commitment of global
transactions� Note that the LDAOs execute the global
subqueries in parallel� The LDAO interface to the
LDBMSs supports basic transaction and query primi	
tives like BeginTrans� SendQuery� PrepareToCommit�
CommitTrans� AbortTrans� GetNext� DeleteObj by
using the Call Level Interface routines �CLI� of the
component DBMSs�

In this architecture there is another class� called the
Query Processor class responsible from processing the
partial results returned by the LDAOs� As soon as
two partial results that can be processed together ap	
pear at the LDAOs� a Query Processor Object�QPO�
is created to process them� There could be as many
QPOs running in parallel as needed to process the par	
tial results� We think this is a highly dynamic scheme
which provides maximum parallelism in the system
that is possible without performing cost analysis�

In Figure �� a screen snapshot of MIND graphical
user interface is provided�

MIND is an evolving system �versions V����� V����
and V���� have been produced upto now�� As the sys	
tem evolves� it provides clearer insights regarding the
nature of issues in implementing a multidatabase sys	
tem on a distributed object management architecture�



Local

DBMS

Local
DBMS

Local
Database

Agent

Local
Database

Agent

Local
Database

Agent

Local
Database

Agent

Global
Database

Agent

Schema

Information

Manager

Ticket Server

GLOBAL CURSOR
QUERY PROCESSOR IMPL.

Client

Local

DBMS

Local

DBMS

Object
Factory

Query Processor

Query Processor

DECOMPOSER

GLOBAL TRANSACTION MANAGER

OPTIMIZER

GLOBAL SQL PARSER

TYPE CONVERTERS

CURSOR IMPL.

INTERFACE TO LOCAL DBMS (e.g. CLI)

GLOBAL SQL to LOCAL
SQL TRANSLATOR

Figure �� An Overview of MIND Architecture

� The Infrastructure of MIND

As an initial step in implementingMIND� we encapsu	
lated Oracle� Sybase� Adabas D and MOOD DBMSs
in multiple implementations of a generic Database
Object ����� The Database Object conveys requests
from the client to the underlying DBMSs by using
the CLIs of these DBMSs� The CLIs of these systems
���� ��� �� �� support SQL data de�nition� data manip	
ulation� query� and transaction control facilities� We
have used C bindings of these CLIs to access the cor	
responding database servers� Results of the requests
returned from the CLIs of underlying DBMSs are con	
veyed to the client through CORBA� Note that the
clients of LDBMSs are LDAOs�

Our basic implementation decisions in registering
di
erent databases to CORBA are as follows�
�� Object granularity� In CORBA� objects can

be de�ned in any granularity� In registering a DBMS
to CORBA� an object can be a row in a relation or
it can be a database itself� When �ne granularity ob	
jects� like tables are registered� all the DBMS function	
alities to process these tables� like querying� transac	
tional control� etc�� must be supported by the mul	
tidatabase system itself� However� when a relational
DBMS� for example� is registered as an object� all the
DBMS functionality needed to process these tables are
left to the DBMS� Note that when more COSS func	
tionality� like query services� transaction services are
incorporated into CORBA implementations� most of
the DBMS functionality will be available for database
processing� In other words� the basic object services
provide much of the functionality of a componentized

DBMS� including both Object DBMS and Relational
DBMS functionality�

Another disadvantage of registering �ne granular	
ity objects is the following� with each insertion and
deletion of these classes� it is necessary to recompile
the IDL code and rebuild the server� In fact� it is nec	
essary to recompile IDL code for ObjectBroker since
it does not support dynamic server�skeleton interface
yet� For other CORBA implementations �like Sun	
Soft�s DistributedObjectsEverywhere where dynamic
server�skeleton interface is supported� such a recom	
pilation may not be necessary�

Furthermore� the IDL code will be voluminous�
For the reasons stated above� we have de�ned each

DBMS as an object�
�� Invocation style� CORBA allows both dy	

namic and stub	style invocation of the interfaces by
the client�

In stub�style interface invocation� the client uses
generated code templates �stubs� that cannot be
changed at run time� In dynamic invocation� the client
de�nes and builds requests as it runs� We have cho	
sen to use mostly the stub	style interface invocation
because in our current implementation all the objects
are known and the interface that the clients use is not
likely to change over time� However� for certain op	
erations in MIND �like SendQuery primitive of LDA�
deferred synchronous mode is necessary� In DEC�s
ObjectBroker deferred synchronous mode is supported
only in dynamic interface invocation� Therefore� for
such cases dynamic invocation is used as explained in
section �� Figure � illustrates invoking an operation
to a database object instance�



Figure �� MIND GUI Screen snaphots

�� Mapping client requests to servers� In asso	
ciating a client request with a server method� CORBA
provides the following alternatives�
i� One interface to one implementation
ii� One interface to one of many implementations
iii� One interface to multiple implementations
When mapping one interface to one implementa	

tion� there is a direct one	to	one relationship between
the operations in the interface and the methods in the
implementation�

In the second alternative� for any one interface� it
is possible to have several di
erent implementations�
Here again� there is a direct one	to	one relationship
between the interface operations and the methods in
the implementations�

The third alternative makes it possible to have mul	
tiple implementations associated with the same inter	
face� with each implementation providing only a por	
tion of the interface�

Since every database management system regis	
tered to CORBA provides methods for all of the opera	
tions that the interface de�nition speci�es� the second
alternative is su�cient for our purposes�
�� Object Life Cycle� A client application needs

an object reference to make a request� In CORBA�
the initial object reference can be obtained in one of
the following three ways�
i� The application developer can build the object

reference into the client� This requires the client appli	
cation to be compiled together with the server appli	
cation� During compilation a built	in object reference
is generated in both codes� Thus� the �rst request is
statically bound to this built	in object reference�
ii� The client can get the object reference from an

external source� This external source can be a �le or a
database containing initial object references in string
form�
iii� ObjectBroker allows servers to store initial ob	

ject references in the Advertisement Partition of Reg	
istery which corresponds to naming service of COSS�
Then clients can access the Advertisement Partition
to obtain object references�

The �rst approach makes the system in�exible since
it is impossible to change a statically bound object
reference without recompiling the system�

The second approach is not suitable either� since
it is not feasible to maintain or replicate a single �le
or a database as an external source in a distributed



DBMS
Interface

 DBMS

Database Client

Dynamic

Invocation

Stub_style

Invocation

Operation

An object reference to 

a DB Object

Object Adapter

Server

Database

A Method

Object

Implementation

Server Skeleton

ORB

Client Stub

Figure �� Invoking an operation to a Database Object
instance through ORB

environment�
Therefore� we have chosen the third approach to

get initial object references� The Advertisement Parti	
tion of Registry of ORB contains the object references
of the following three objects� ObjectFactory object�
TicketServer object and the SchemaInformationMan	
ager object� Since these objects serve the whole MIND
system continuously� they are not created on demand�
they are always active� Another point to note is the
following� there is no need to have a di
erent Ob	
jectFactory for each kind of object� like GDA� LDA
etc� Since the only function of Object Factory is to
create these objects� having one ObjectFactory to cre	
ate these objects does not create a bottleneck in the
system�

The object references selected from the Advertise	
ment Partition are used to create corresponding ob	
jects�
�� Activation Policy� When registering di
erent

databases to CORBA� one has to specify an activation
policy for the implementation of each kind of object�
This policy identi�es how each implementation gets
started� An implementation may support one of the
following activation policies �
i� Shared � The server can support more than one

object for the implementation�
ii� Unshared � The server can support only one

object at a time for the implementation�
iii� Server per method � A new server is used

for each method invocation�
iv� Persistent � The server is never started auto	

matically� Once started� it is the same as the shared
policy�

We have used the shared activation policy for
activating ObjectFactory� TicketServer� and the
SchemaInformationManager object� There is one
TicketServer object in MIND which provides a glob	
ally unique� monotonically increasing ticket number at
its each invocation� The activation of SchemaInforma	
tionManager object is also shared� since it serves its
clients for a short duration of time� there is no need
to create a server for its each activation� Similarly�
since one ObjectFactory server is enough to meet the
object creation demands within the system� its acti	
vation policy is also shared�

All the other objects in the MIND sytem are acti	
vated in the unshared mode� If GTMO were activated
in the shared mode� it would be necessary to preserve
the transaction contexts in di
erent threads� There	
fore� GTMO is activated in the unshared mode to ob	
tain the same functionality with a simple implemen	
tation� GQMO is activated in the unshared mode for
the same reason� Query Processor Objects �QPO� are
activated in the unshared mode to provide parallelism
in query execution� Each implementation is responsi	
ble for only one QPO and thus when a new QPO is
activated a new QPO implementation is executed by
the ORB dedicated to that object� In this way� QPOs
accomplish their jobs in parallel without waiting for
one another� If shared policy were used� one QP im	
plementation would be responsible for more than one
QPO� And these QPOs would have to accomplish their
jobs sequentially using the same QP implementation�

LDAOs are activated in the unshared mode to be
able to access the LDBMSs in a multiuser environ	
ment� Note that� if a LDAO were activated in the
shared mode� the server created for this LDAO would
not serve another user until it has completed its service
with the current user� Such a scheme would reduce the
LDBMS to a single user system�

� Schema Integration in MIND

MIND implements a four	level schema architecture
that addresses the requirements of dealing with dis	
tribution� autonomy and heterogeneity in a multi	
database system� This schema architecture includes
four di
erent kinds of schemas�

�� Local Schema� A local schema is the schema
managed by the local database management system�
A local schema is expressed in the native data model
of the local database and hence di
erent local schemas
may be expressed in di
erent data models�

�� Export Schema� An export schema is derived by
translating local schemas into a canonical data model�
The process of schema translation from a local schema
to an export schema generates mappings between the



local schema objects and the export schema objects�
�� Derived �Federated� Schema� A derived schema

combines the independent export schemas to a �set
of� integrated schema�s�� A federated schema also
includes the information on data distribution �map	
pings� that is generated when integrating export
schemas� The global query manager transforms com	
mands on the federated schema into a set of commands
on one or more export schemas�

�� External Schema� In addition� it should be possi	
ble to store additional information that is not derived
from export databases� An external schema de�nes
a schema for a user or an application� An external
schema can be used to specify a subset of information
in a federated schema that is relevant to the users of
the external schema� Additional integrity constraints
can also be speci�ed in the external schema�

The classes in export and derived schemas behave
like ordinary object classes� They consist of an in	
terface and an implementation� But unlike ordinary
classes� which store their objects directly� the imple	
mentations of the classes in these schemas derive their
objects from the objects of other classes�

��� Classi�cation of Schema Con�icts

The potential schematic con�icts between the export
schemas are identi�ed according to the following clas	
si�cation framework�

�� Semantic Con�icts �Domain Con�icts�� Two de	
signers do not perceive exactly the same set of real
world objects� For instance� a �student� class may
appear in one schema� while a more restrictive �cs	
student� class is in another schema� This is the �rst
kind of con�ict which relate to the domains of classes�
The domain of a class is the set of objects in that
class� According to their domains� relationships be	
tween classes are classi�ed in four groups�

a� Identical Classes � Classes in export schemas rep	
resent the same set of objects �e�g� �instructors� in one
database and �lecturers� in another database�� These
classes are merged into a single class in the global
schema�

b� Intersecting Classes� Classes may represent over	
lapping sets of objects� For instance� �student� and
�employee� classes in two databases may have com	
mon objects which represent research	assistants� Such
classes are integrated in the global schema as classes
having a common subclass that contains the set of
common objects�

c� Inclusion Classes� The domain of one class is
a subset of another class �e�g� Employee � Manager
classes�� In the global schema the more restrictive
class is represented as the subclass of the other class�

d� Disjoint Classes� These are classes whose do	
mains are completely di
erent but related �e�g� Grad	
uate vs Undergraduate students�� Such classes are
generalized into a superclass in the global schema�

�� Structural Con�icts �Descriptive Con�icts��
When describing related sets of real	world objects�
two designers do not perceive exactly the same set
of properties� This second kind of con�ict includes

naming con�icts due to the homonyms and synonyms�
attribute domain� scale� constraints� operations etc�
For instance� di
erent number of attributes or meth	
ods may be de�ned for semantically equivalent classes�
or di
erent names may be used for identical at	
tributes� Such con�icts are resolved by providing a
mapping between the class and attribute names in the
global schema and class and attribute names in export
schemas� This mapping is expressed in the object def	
inition language described in Section ����

��� MIND Schema Integrator

In MIND� LDAOs translate the local schemas into
the export schemas using ODL� and then their export
schemas are stored in the SchemaInformationMan	
ager� SchemaInformationManager integrates these ex	
port schemas to generate a global schema� Schema
integration is a two phase process�

�� Investigation phase� First commonalities and
discrepancies among the export schemas are deter	
mined� This phase is manual� That is� the DBA
examines export schemas and de�nes the applicable
set of inter	schema correspondences� The basic idea is
to evaluate some degree of similarity between two or
more descriptions� mainly based on matching names�
structures and constraints� The identi�ed correspon	
dences are prompted according to the classi�cation of
schema con�icts given in Section ����

�� Integration phase� The integrated schema is
built according to the inter	schema correspondences�
The integration phase cannot be fully automated� In	
teraction with the DBA is required to solve con�icts
among export schemas� In MIND� the integration of
export schemas is currently performed by using an
object de�nition language �ODL� which is based on
OMG�s interface de�nition language� The DBA builds
the integrated schema as a view over export schemas�
The functionalities of ODL allow selection and restruc	
turing of schema elements from existing local schemas�
In ODL� a schema de�nition is a list of interface de�	
nitions whose general form looks as follows�

interface classname�superclass�list �
extent extentname�
keys attr��
attribute attr�type attr��
���
relationship OtherClass relname

inverse OtherClass��invrel�
���

�

where classname is the name of the class whose in	
terface is de�ned� superclass list includes all super	
classes of the class� extentname provides access to
the set of all instances of the class� keys allows to de	
�ne a set of attributes which uniquely identi�es each
object of the class� Attribute and relationship con	
stitute the signature of the class�

In addition to its interface de�nition� each class
needs information to determine the extent and to map
the attributes onto the local ones� The general syntax



for this mapping de�nition which is similar to ���� is
provided in the following�

mapping classname �
origin originname�� classname� alias� �	

originname
� classname
 alias
	�����
def�ext extname as

select
from alias�	 alias
	 ���
where ����

def�attr attr� as �alias��attrname �
select alias��attrname	

alias
�attrname
from alias�	 alias

where ���� �

def�rel relname as
select 
from alias�	 alias
 ���
where ��� ���

�

The keyword mapping marks the block as a map	
ping de�nition for the derived class classname� The
origin clauses de�ne a set of private attributes that
store the back	references to those objects� from which
an instance of this class has been derived� The extent
derivation clause starting with def ext de�nes a query
that provides full instantiation of the derived class� A
list of def attr lines de�nes the mapping for each at	
tribute of the class� And �nally� a set of def rel lines
express the relationships between derived classes as
separate queries which actually represent the traver	
sal path de�nitions�

After the global schema is obtained SchemaInfor	
mationManager provides the necessary information to
the GQMO on demand� We are currently developing
a graphical tool which will automatically generate tex	
tual speci�cation of the global schema� Our ultimate
aim is to establish a semi	automated technique for de	
riving an integrated schema from a set of assertions
that state the inter	schema correspondences� The as	
sertions will be derived as a result of the investigation
phase� For each type of assertion� there will corre	
spond an integration rule so that the system knows
what to do to build the integrated schema�

� Query Processing in MIND

MIND V���� ��� has a cost based optimizer ��� In
MIND V����� we implemented a dynamic query pro	
cessor� The main idea behind dynamic query proces	
sor is to exploit the inherent parallelism in the system
as much as possible without performing a cost based
analysis�

The dynamic MIND query processor is imple	
mented as follows� When a user submits a global query
to MIND� a GDAO� a GTMO and a GQMO are cre	
ated as explained in Section �� GQMO obtains the
global schema information necessary for the decom	
position of the query from GlobalSchemaInformation
object� GQMO sends the subqueries to GTMO which
controls the submission of global subtransations to the
LDAOs� The subqueries are submitted to LDAOs in

the deferred synchronous mode� i�e�� after submitting
the subquery the GTMO does not wait for it to com	
plete� This provides di
erent LDBMSs to execute the
subqueries in parallel�

GQMO schedules the intersite operations dynami	
cally as follows� GQMO keeps a waiting list of object
identi�ers of the LDAOs to which a subquery has been
submitted and polls this list to see whether any of the
partial results has appeared� When a partial result
appears� if there is no matching operand to process
this partial result� the object identi�er of the LDAO
containing the partial result is added to a success list�
Whenever the object identi�ers of two partial results
that need to be processed together �e�g� a join oper	
ation� a union operation� etc�� appears in the success
list� GQMO creates a QPO by sending a Create mes	
sage to Object Factory� Activation of QPO is also in
deferred synchronous mode and the object identi�er
of this QPO is added to the waiting list� It is clear
that in this architecture two partial results that need
to be processed together are executed as soon as they
appear� This architecture is highly dynamic and ob	
tains the maximum parallel execution that is possible
without cost calculation�

	 MIND Transaction Management

In MIND V���� ���� a ticket based algorithm has been
implemented for �at transactions� For MIND V����
a technique for global concurrency control of nested
transactions in multidatabases� called Nested Tickets
Method for Nested Transactions �NTNT� is developed
���� It should be noted that the concurrency control
techniques developed for �at multidatabase transac	
tions do not provide the correctness of nested trans	
actions in multidatabases because for nested transac	
tions a consistent order of global transactions is not
enough� the execution order of siblings at all levels
must also be consistent at all sites�

NTNT ensures global serializability of nested and
�at multidatabase transactions without violating au	
tonomy of LDBMSs�

The main idea of NTNT technique is to give tick	
ets to global transactions at all levels� that is� both
the parent and the child transactions obtain tickets�
Then each global �sub�transaction is forced into con	
�ict with its siblings through its parent�s ticket at all
related sites� The recursive nature of the algorithm
makes it possible to handle the correctness of di
erent
transaction levels smoothly�

Among the DBMSs incorporated to MIND� only
Sybase supports nested transactions� Therefore� the
parts of a global transaction submitted to Sybase
servers can be nested transactions� the others must
be �at transactions� In the following the NTNT al	
gorithm is explained� In Section ��� an example is
provided to clarify the technique�

We present the NTNT technique by referring to
the pseudocode of the algorithm� To be able to pro	
vide a neat recursive algorithm� we imagine all the
global transactions to be children of a virtual trans	
action called OMNI� When OMNI transaction starts



executing� it creates a siteTicket�OMNI� at each site
whose default value is �� Then we imagine that OMNI
transaction executes forever� Since it is an imaginary
transaction� it does not need to commit �nally to make
the updates of its children persistent�

GlobalBegin�TG
i
� assigns a globally unique and

monotonically increasing ticket number denoted as TN
to all transactions when they are initiated� that is�
both the parent and the child transactions at all levels
obtain a ticket� A Ticket Server object in MIND pro	
vides tickets and guarantees that a new subtransaction
obtains a ticket whose value is greater than any of the
previously assigned ticket numbers� Since any child is
submitted after its parent� this automatically provides
that any child has a ticket number greater than its par	
ent�s ticket� When the �rst Data Management�DM�
read or DM write operation of a subtransaction TG

i

is to be executed at a local site� LocalBegin�TG
i
� k� is

executed which starts all ancestors of the subtransac	
tion if they are not initiated at this site yet� Next�
each child transaction reads the local ticket created
by its parent at this site �this ticket is created for the
children of parent�TG

i
�� i�e� siblings�TG

i
��� and checks

if its own ticket value is greater than the stored ticket
value in the ticket for siblings�TGi � at this site� If
it is not� the transaction TG

i
is aborted at all related

sites and resubmitted to MIND using the algorithms
given in GlobalAbort�TG

i
� and GlobalRestart�TG

i
�� As

a result� all siblings of a subtransaction accessing to
some site k are forced into con�ict through a ticket
item created by the parent of these siblings at site
k� The pseudocode of the algorithm to check ticket
values is presented in LocalCheckTicket�TG

i
� k�� This

mechanism makes the execution order of all siblings
of a subtransaction to be consistent at all related sites
by the use of tickets� In other words� the consistency
of serialization order of the siblings are provided by
guaranteeing them to be serialized in the order of
their ticket numbers� If a transaction is validated us	
ing the LocalCheckTicket�TG

i
� k� algorithm then its

read and write operations on any item x are submit	
ted to related LDBMS by LocalWrite�x�� LocalRead�x�
algorithms and committed by GlobalCommit�TG

i
��

GlobalCommit�TG
i
� is executed after all children of TG

i

commit or abort� GlobalCommit�TG
i
� coordinates the

�PC protocol and if all LDBMSs replied Ready then
commits the subtransaction�

In multidatabases when a local scheduler fails to
commit a subtransaction� in order to provide the
atomicity of the nested transaction� this subtransac	
tion must be aborted at all related sites� This in turn
necessitates commit operations of subtransactions to
be achieved in two phases� PrepareToCommit� and
Commit� In other words� LDBMSs should also sup	
port �PC protocol for subtransactions� When this is
not supported� a solution to remedy the situation is to
abort the immediate parents at all related sites� This
is possible because the commit message of the parent
has not been sent yet�

If PrepareToCommit message is available at the
user transaction level �i�e� immediate child of OMNI�

this facility is used at this level� If the underlying
DBMS does not support PrepareToCommit even at
this level then PreparedToCommit state of a user
transaction can be simulated as described in ����

GarbageCollector algorithm which is not presented
here is executed periodically to delete the ticket items
created by the subtransactions�

NTNT Algorithm�

GlobalBegin�TG
i
�


begin
Get global ticket for TG

i
so that

TN�TG
i
�
�lastTicketNo��

lastTicketNo
�TN�TG
i
�

end �

LocalBegin�TG
i
� k�


begin
If parent�TG

i
� k� has not started at site k yet then

begin
LocalBegin�parent�TG

i
�� k��

Send Begin�TG
i
� as child of parent�TG

i
� to Local

Transaction Manager �LTM� at site k�
end
LocalCheckTicket�TG

i
� k��

If check FAILs then GlobalRestart�TG
i
��

end �

LocalCheckTicket�TG
i
� k�


begin
If TG

i
is not OMNI then

begin
If siteTicket�parent�TG

i
�� � TN�TG

i
� then FAIL�

else
begin

siteTicket�parent�TG
i
��
�TN�TG

i
��

create�siteTicket�TG
i
�� at site k with default

value ��
end

end
end �

LocalWrite�x�� LocalRead�x�

begin

If the site�x� is to be visited �rst time by TG
i

then
LocalBegin�TGi �k��

Forward the operation to Local Data Manager on
behalf of TG

i
�

end �

GlobalAbort�TG
i
�


begin
for each related site k

send LocalAbort�TG
i
� message to LTM at site k�

end �

GlobalRestart�TG
i
�


begin
GlobalAbort�TG

i
��



r 21(b) wL1(c) w12(c)wL1(b)r 21(a)

Site 2Site 1

OMNI

T T

T TG G

G

11 T
12

G
21

GT
1 2 1

L2

1
(a)w w (a)11

Figure �� A Schedule of Nested Multidatabase Trans	
actions

GlobalBegin�TG
i
��

end �

GlobalCommit�TG
i
�


begin
wait until all children�TG

i
� commits or aborts�

for each related site k
send PrepareToCommit�TG

i
� message to LTM at

site k�
If all LTMs have replied Ready

for each related site k
send Commit�TG

i
� message to LTM at site

k� If any site fails to PrepareToCommit then
GlobalAbort�TG

i
��

end �

	�� An Example

In the following� an example is provided to clarify the
NTNT technique� Assume a multidatabase system
with two LDBMSs at sites � and �� User transactions
can be arbitrarily nested and each �sub�transaction
can issue read and write operations denoted as r�a�
and w�a� respectively�

Figure � depicts the execution of two nested multi	
database transactions TG

�
and TG

�
� and a local trans	

action TL�
�

� Global transaction TG
�

has two subtrans	
actions TG

��
and TG

��
� and TG

�
has one subtransaction

TG
��
�
NTNT technique works for this example as follows�

Assume the tickets obtained from the ticket server to
be as follow�

TN �OMNI� � ��
TN �TG

�
� � ��

TN �TG
�
� � ��

TN �TG
��
� � ��

TN �TG
��
� � ��

TN �TG
��
� � ��

Execution at site ��

TG
�

is accepted since
siteT icket�parent�TG

�
�� �

TN �OMNI� � � � TN �TG
�
� � �

and siteT icket�parent�TG
�
�� is

set to � and siteT icket�TG
�
� is created with default

value �� Thus w��a� is executed� Since
siteT icket�parent�TG

��
�� � � � TN �TG

��
� � ��

siteT icket�parent�TG
��
�� is set to � and w���a� is exe	

cuted� Similarly
siteT icket�parent�TG

�
�� � � � TN �TG

�
� � ��

TG
�
is accepted and siteT icket�OMNI� becomes � and

siteT icket�TG
�
� is created with default value �� r���a�

is executed because
siteT icket�parent�TG

��
�� � � � TN �TG

��
� � �

and siteT icket�parent�TG
��
�� is set to ��

Execution at site ��

TG
�

is accepted since
siteT icket�parent�TG

�
�� �

TN �OMNI� � � � TN �TG
�
� � �

and siteT icket�parent�TG
�
�� is set to ��

siteT icket�TG
�
� is created with default value �� TG

��

is accepted and r���b� is executed since
siteT icket�parent�TG

��
�� � � � TN �TG

��
� � ��

Yet TG
�

at site � is rejected and aborted at all sites
since siteT icket�parent�TG

�
�� � � which is not less

than TN �TG
�
� � ��

The correctness proof of the NTNT technique is
provided in ���� The recovery manager of MIND is
under development�


 Conclusions

In this paper� we describe our experiences in build	
ing a multidatabase system� namely MIND� based
on OMG�s object management architecture� Since
CORBA handles heterogenity at the platform and
communication layers� MIND development is focused
on the upper layers of the system such as schema in	
tegration� global query execution and global transac	
tion management� which reduced the required devel	
opment e
ort dramatically� Our experience have indi	
cated that CORBA o
ers a very useful methodology
and a middleware to design and implement distributed
object systems�

Furthermore� using CORBA as a middleware made
it possible for MIND to become an integral part of a
broad distributed object system that not only contains
DBMSs but may also include many objects of di
er	
ent kinds such as �le systems� spreadsheets� work�ow



systems� etc�

References

��� ENTIRE SQL	DB Server Call Interface� ESD	
���	���� SOFTWARE AG� April �����

��� Dogac� A�� Evrendilek� C�� Okay� T�� Ozkan� C��
�METU Object	 Oriented DBMS�� Advances in
Object�Oriented Database Systems� edited by Do	
gac� A�� Ozsu� T�� Biliris� A�� Sellis� T�� Springer	
Verlag� �����

��� Dogac� A�� et� al�� �METU Object	Oriented
Database System�� Demo Description� in the
Proc� ACM SIGMOD Intl� Conf� on Management
of Data� Minneapolis� May �����

��� Dogac� A�� Altinel� A�� Ozkan� C�� Durusoy� I�� Al	
tintas� I�� �METU Object	Oriented DBMS Ker	
nel��Proc� of Intl� Conf on Database and Expert
Systems Applications� London� September ���
�Lecture Notes in Computer Science� Springer	
Verlag� ������

��� Dogac��A�� Dengi� C�� Kilic� E�� Ozhan� G�� Oz	
can� F�� Nural� S�� Evrendilek� C�� Halici� U��
Arpinar� B�� Koksal� P�� Kesim� N�� Mancuhan�
S�� �METU Interoperable Database System��
ACM SIGMOD Record� Vol���� No��� September
�����

��� Dogac� A�� Altinel� M�� Ozkan� C�� Durusoy� I��
�Implementation Aspects of an Object	Oriented
DBMS�� ACM SIGMOD Record� Vol���� No���
March �����

�� Evrendilek� C�� Dogac� A�� Nural� S�� Ozcan� F��
�Query Optimization in Multidatabase Systems��

Proc� of the Next Generation Information Tech�
nologies and Systems� Israel� June �����

��� Georgakopoulos� D�� Rusinkiewicz� M�� and
Sheth� A�� �Using Tickets to Enforce the Seri	
alizability of Multidatabase Transactions�� IEEE
Trans� on Data and Knowledge Eng�� Vol� �� No���
�����

��� Halici� U�� Arpinar� B�� and Dogac� A�� �Se	
rializability of Nested Transactions in Multi	
databases�� Technical report ��	��� Software
R�D Center� Middle East Technical University�
October �����

���� Huck� G�� Fankhauser� P�� Busse� R�� Klas� W��
�IRO	DB � An Object	Oriented Approach to	
wards Federated and Interoprable DBMSs�� Proc�
of ADBIS ���� Moscow� May �����

���� Kilic� E�� Ozhan� G�� Dengi� C�� Kesim� N�� Kok	
sal� P� and Dogac� A�� �Experiences in Using
CORBA in a Multidatabase Implementation��
Proc� of �th Intl� Workshop on Database and Ex�
pert System Applications� London� Sept� �����

���� Object Management Group� �The Common Ob	
ject Request Broker� Architecture and Speci�ca	
tion�� OMG Document Number �������� Decem	
ber �����

���� Object Management Group� �The Common Ob	
ject Services Speci�cation� Volume ��� OMG
Document Number ������� January �����

���� Programmer�s Guide to the Oracle Call Inter	
faces� Oracle Corporation� December �����

���� Open Client DB	Library �C Reference Manual�
Sybase Inc�� November �����


