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Abstract. The correctness of nested transactions for multidatabases dif-
fers from that of flat transactions in that, for nested transactions the
execution order of siblings at each related site should also be consistent.
In this paper we first propose a simple but powerful theory for the se-
rializability of nested transactions in multidatabases and then a tech-
nique called Nested Tickets Method for Nested Transactions (NTNT).
The NTNT technique provides correctness of nested transactions in mul-
tidatabases without violating the local autonomy of the participating DB-
MSs. The algorithm is fully distributed, in other words there is no central
scheduler. The correctness of the NTNT technique is proved by using the
developed theory.

1 Introduction and Related Work

A multidatabase system (MDBS) is a software that allows global applications
accessing data located in multiple heterogeneous, autonomous DBMSs by provid-
ing a single database illusion. A multidatabase environment supports two types
of transactions: local transactions submitted directly to a single Local DBMS
(LDBMS), and executed outside the control of MDBS and global transactions
that are channeled through the MDBS interface and executed under the MDBS
control. The objectives of a multidatabase transaction management are to avoid
inconsistent retrievals and to preserve the global consistency in the presence of
updates.

Transaction management has always been one of the most important parts
of a DBMS [GR 93]. The research on transaction management for central-
ized DBMSs is first extended to distributed DBMSs [BHG 87, HD 89, HD
91] and then to multidatabases. The transaction management for flat trans-
actions in multidatabases have received considerable attention in recent years
and correctness criteria have been defined [ZE 93] and several concurrency con-
trol techniques have been suggested [BGS 92, ZE 93, GRS 94]. In [GRS 94]
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a ticket method is suggested to enforce serializability of global transactions in
a MDBS environment. However it has been observed that nested transactions
are more suitable to distributed environments since they provide more general
control structures and support reliable and distributed computing more effec-
tively. Nested transactions [M 85] facilitate the control of complex persistent
applications by enabling both fine-tuning of the scope of rollback and safe intra-
transaction parallelism. As a result nested transactions have become integral
parts of some important standards, e.g. OMG’s Common Object Services Speci-
fication (COSS). OMG’s transaction service specification supports nested trans-
actions along with flat transactions in a distributed heterogeneous environment
based on the CORBA architecture [OMG 94]. Yet, to the best of our knowledge
there is no technique suggested for the correctness of nested transactions in mul-
tidatabases, although some multidatabase projects have decided to use nested
transaction model in their implementations [HFBK 94, DDK 96].

Principles and realization strategies of multilevel transaction management
is described in [W 91]. A multi-level transaction approach to federated DBMS
transaction management is discussed in [SWS 91].

DOM Transaction Model [BOH 92] for multidatabases allows closed nested
and open nested transactions. InterBase Transaction Model [ELLR 90] is based
on nested transaction model and allows a combination of both compensatable
and non-compensatable subtransactions. However the correctness theory has not
yet been developed for the models mentioned above.

In this paper we have developed a simple, neat and powerful theory for the
serializability of nested transactions in multidatabases. Note that the theory
provided in [BBG 89] for nested transactions could have been generalized to
multidatabases. However the theory developed in [BBG 89] is very general in the
sense that it takes semantics of transactions into account by allowing compatible
transactions. Thus to prove the correctness of a concurrency control technique,
commutativity and pruning concepts are used. We are able to develop a simpler
theory, provided in Section 3, by not taking the semantics of transactions into
account.

We then present a technique called Nested Tickets Method for Nested Trans-
actions (NTNT) that provides for the correct execution of nested transactions
in multidatabases. It should be noted that the concurrency control techniques
developed for flat multidatabase transactions do not provide for the correctness
of nested transactions in multidatabases because for nested transactions a con-
sistent order of global transactions is not enough; the execution order of siblings
at all levels must also be consistent at all sites.

The main idea of NTNT technique is to give tickets to global transactions at
all levels, that is, both the parent and the child transactions obtain tickets. Then
each global (sub)transaction is forced into conflict with its siblings through its
parent’s ticket at all related sites. The recursive nature of the algorithm makes it
possible to handle the correctness of different transaction levels smoothly. NTNT
technique also produces correct executions for flat transactions, flat transactions
being a special case of nested transactions.



NTNT technique is fully distributed and does not violate the autonomy of
participating LDBMSs. A transaction manager using the NTNT technique is im-
plemented within the scope of the METU Interoperable DBMS (MIND) project
[DDK 96, DEO 96]. MIND is based on OMG’s object management architecture
and is developed on top of a CORBA [OMG 91] compliant ORB, namely, DEC’s
Object Broker. A generic database object is defined through CORBA IDL and
an implementation is provided for each of the participating DBMSs (namely,
Oracle7?, Sybase®, Adabas D* and MOOD (METU Object-Oriented DBMS)
[DAO 95]). Among these DBMSs Sybase and Adabas D support nested trans-
actions. Therefore the restrictions of a global transaction to Sybase and Adabas
D servers can be nested transactions, the others are flat transactions.

The paper is organized as follows: In Section 2 nested transaction models for
centralized and multidatabase systems are given. Section 3 introduces a serial-
izability theory for nested transactions in multidatabases. In Section 4, NTNT
technique and its correctness proof are presented. We conclude with Section 5.

2 Nested Transactions

A nested transaction is a tree of transactions, the subtrees of which are either
nested or flat transactions. The transaction at the root of the tree is called the
top-level transaction. The others are called subtransactions. A transaction’s pre-
decessor in the tree is called a parent and subtransaction at the next lower level is
called a child. The ancestors of a transaction are the parent of the subtransaction
and recursively the parents of its ancestors. The descendants of a transaction are
the children of the transaction and recursively the children of its descendants.
The children of one parent are called siblings. We use the term (sub)transaction
to refer to both top-level transaction and subtransactions.

2.1 A Nested Transaction Model

In the following we summarize a nested transaction model [CR 91] that we use
in our work. Let ¢y be the top-level transaction, ¢, be a root or a subtransaction,
t. be a subtransaction of ¢,, and ¢, be the ancestors of ¢..

i. Abort Rule: All the children ¢. must be aborted if the parent transaction ¢,
aborts. A child transaction can abort independently without causing the abor-
tion of its ancestors.

ii. Commit Rule: The parent transaction ¢, cannot commst until all its chil-
dren t, commit or abort. The child transaction will finally commit only if it has
committed and all its ancestors have finally committed.

iii. Visibility Rule: The child transactions t. can view the partial results of
their ancestors t,, plus any results from committed detached transactions. Also
they can view the partial results of their committed siblings due to following

2 Oracle7 is a trademark of Oracle Corp.
% Sybase is a trademark of Sybase Corp.
% Adabas D is a trademark of Software AG Corp.



delegation rule.
iv. Delegation Rule: At commit, child transaction t. delegates its objects to
parent transaction ¢,. So all changes done by a child transaction become visible
to the parent transaction upon the child transaction’s commit. The effects of
delegation can be found in [CR 91].
v. Conflict Rule Between A Child Transaction and Its Ancestors: Con-
sider a child transaction ¢, and its ancestors ¢, and conflicting operations p and
q: t, can not invoke ¢ after . invokes p. O

It should be noted that rule v. prevents parent/child parallelism.

2.2 A Nested Transaction Model for Multidatabases

In distributed systems such as multidatabases, nested transaction model provides
more general control structures to support reliable and distributed computing
more effectively [HR 93].

A nested transaction submitted to a multidatabase may have to be executed
in several LDBMSs if the related data is scattered across a number of sites. Oper-
ations submitted by (sub)transactions are executed by LDBMSs’ Data Managers
(DM) and they are called as DM operations. If a (sub)transaction in the hierar-
chy has a DM operation in a LDBMS, the operation is dispatched to the related
site. If a LDBMS does not support nested transactions, their effect with respect
to hierarchical domains of recovery can be simulated by using savepoints [GR
93].

Since each (sub)transaction of a nested transaction is failure-atomic, restric-
tions of a (sub)transaction to sites must be executed as an atomic unit. So,
atomicity rule is defined for nested multidatabase transactions as follows:

Let ¢ be a (sub)transaction and t* be the restriction of ¢ at sites k = 1,2, ..., n.
i. Atomicity Rule: All the restrictions of a (sub)transaction ¢ at sites k =
1,2, ...,n should be aborted if ¢ aborts.

3 A Serializability Theory for Nested Transactions in
Multidatabases

Before presenting the serializability theory of nested transactions in multidata-
bases, we provide an intuitive explanation.

It is possible to view a nested transaction as a tree, where the leaf nodes
contain the DM operations and intermediate nodes represent the subtransac-
tions. Note that this tree is not necessarily balanced. When a nested transaction
is executed, the (sub)transactions that conflict on the same data item must be
ordered in such a way that the order of their conflicting DM operations are
preserved. Another important point is that when two subtransactions are or-
dered, this imposes an order between their parents. To be able to express these
concepts formally we define an ordered hierarchy where the ordering imposed
by the leaf nodes are delegated to the upper nodes in the hierarchy. With this
ordered hierarchy definition it is possible to formally model an ordering within a
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Fig. 1. (a) Hlustration of delegation axiom, (b) Subhierarchy, restriction, and
hierarchy portion

tree. Furthermore by assuming an imaginary root transaction for all submitted
transactions it is possible to model an execution history of nested transactions
through the ordered hierarchy definition.

In order to extend the theory to distributed DBMSs, we define restriction of a
hierarchy to represent the executions at different sites. And to extend the theory
further to multidatabases, where there is no global control on local transactions,
we define global portion and local portions of an execution.

Definition 1. An ordered hierarchy (or shortly a hierarchy) is a tuple H =
(—=,0,T) where O is a set of nodes, T is a tree on O, and — is a nonreflexive
and antisymmetric relation on O satisfying the following axioms for any a,b € O

a. parent-child order® : parent(a) — a

b. transitivity: if a = b and b — ¢ then a — ¢

c. delegation: if a — b and

i. if parent(b) & ancestors(a) then a — parent(b)
ii. if parent(a) & ancestors(b) then parent(a) — .0

In fact the relation defined is an ordering relation with further restrictions
imposed by Definition 1.a and 1.c. The closure obtained by by applying the
axioms of the hierarchy definition repeatedly is denoted by *.

Figure 1.(a) presents an example to clarify the delegation axiom. Given an

% Note that ordered hierarchy definition takes only sibling parallelism into consider-
ation assuming the conflict rule given in Section 2.1.v. Therefore we have chosen
parent’s preorder priority in Definition 1.a.



Ordering t111 — t121, t111 and t12 (WhiCh is parent(tlgl)) are ordered as t111 —
t12 (from Definition 1.c.i). Also t121 and t1; (which is parent(t111)) are ordered
as t11 — t121 (from Definition 1.c.ii). Yet although ¢191 and 122 are ordered as
t121 — t122, since t12 (which is parent(t122)) is also one of the ancestors(tis1),
the order is not delegated upwards. Finally, ¢;; and 1, are ordered as t1; — t12
(from Definition 1.c.i and ordering 17 — t121).
Definition 2. Let H = (—,0,T) be a hierarchy, and T; be a complete subtree
of T rooted at the node t; € O, and let T be a part of T} such that TF is also a
tree rooted at the node t; but leaves(TF) C leaves(T;). A restriction HY is the
tuple HF = (=%, OF, TF) where OF is the set of nodes related to T} and —¥ is
the restriction of the order — to OF. If T} = T; then the restriction is denoted
as H; = (—,0;,T;) and called as subhierarchy. A hierarchy portion Pk
of H on restriction HF is the hierarchy tuple P¥ = (—F* OF TF) satisfying
—PEC—F If T; is T itself, then restriction and portion related to part 7% are
denoted as H* = (=%, 0%, T*) and P* = (=%, OF, T*) respectively.O

Figure 1.(b) shows: a subhierarchy Hy; rooted at ¢17 with —11= {t1111 —
ti1112,t1112 — t1121,t1121 — f1122,t111 — tllg}*, a restriction Hlll with —)%1:
{t1112 — t1121,%1121 — t1122,%111 — tllg}*, and a hierarchy pOI‘tiOI’l Plll with
—){311: {t1112 — t1121,t111 — tnz}*. Note that —>ﬁ1g—>hg—>11 and leaves(Tlll)
C leaves(T11). In Figure 1.(b) transitive edges and edges from parent to child
are not shown for the sake of simplicity.
Proposition 1. Given hierarchy H = (—,0,T) then a restriction HF = (—*
,OF T¥) is also a hierarchy since it satisfies Definition 1.0

In the following definition, a partial order represents an irreflexive, antisym-
metric, and transitive relation.
Definition 3. A hierarchy H = (—,0,T) is said to be partially (totally)
ordered iff — is a partial (total) order on 0.0
Definition 4. A subhierarchy H; = (—;,0;,T;) of a hierarchy H = (—,0,T)
is said to be isolated in H iff for any &;p,, tin € Oy, t; € O — O; — ancestors(t;),
the following holds: not(¢;,, — t; = t;,,) and either t; — t;,,, or t;,, — ;.0
Definition 5. A subhierarchy H; = (—;,0;,T;) of a hierarchy H = (—,0,T) is
said to be hierarchically isolated in H iff every subhierarchy H;; (including
H; itself) of H; is isolated in H.O
Definition 6. A hierarchy H = (—,0,T) said to be serial if H itself is hierar-
chically isolated and — is a total order.O
Definition 7. A hierarchy H = (—,0,T) is said to be serializable if there
exists a serial hierarchy H* = (—»*,0,T), such that -C—*.0
Theorem 1. A hierarchy H = (—,0,T) is serializable iff — is a partial order.
Proof: (if) Consider the preorder traversal of T' where the siblings are traversed
in consistency with the order —. If the siblings are not ordered by — then their
traversal order is immaterial. Since — is a partial order and since — is closed
under delegation axiom, such a traversal exists. Let —T be the total order de-
termined by such a preorder traversal. Obviously =C—T and H+ = (=1,0,T)
is serial. Therefore H = (—, 0, T) is serializable by definition.

(only if) Assume H = (—,0,T) is serializable and — is not a partial order



(Note that our partial order relation is irreflexive, antisymmetric and transitive).
Since — is transitive by definition of a hierarchy, there should be a — a for
some a € O. However, this in turn implies that there is no total order satisfying
—C—7T, which means H is not serializable.O
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Fig. 2. An unserializable hierarchy

As an example to an unserializable hierarchy consider Figure 2. An initial

order is given as {t121 — t1111,t1121 — t122} C—. From the definition of ordered
hierarchy, — also contains the following set obtained by applying the delegation
axiom of Definition 1.c repeatedly: {t1121 — t12,t112 — t12,t11 — t12,t12 —
t1111,t12 — t111,t12 — tll}- — is not a partial order because of t12 = t11 and
t11 — t12 and hence the hierarchy in Figure 2 is not serializable.
Definition 8. A nested transaction T is a tree on O = Og,,, U Oy where
Ogpm are the nodes representing the DM operations and Oy, are the nodes cor-
responding the abstract operations representing (sub)transactions, such that
{leaves(T)} = Ogp, and t = root(T') is the node representing the abstract opera-
tion corresponding to T and any subtree T; rooted at t; € {child(t) —leaves(T')}
is a subtransaction defined recursively.O

We assume an imaginary top-level transaction such that any transaction
submitted by the users is a subtransaction of it. Thus it is possible to model the
execution history of nested transactions as an ordered hierarchy.

Definition 9. An execution history is an ordered hierarchy H = (—,0,T)
where T is a transaction on O and —= (—gm U —¢p)* where —gp, is the
ordering requirements on the leaf nodes due to execution order of conflicting
DM operations, —, is the ordering requirement due to execution policy%. A

6 If there are additional ordering requirements due to transactions — can be written
as == (—dm U —¢p U —4)" where —, is the transaction specific ordering re-
quirements. However it is easier here to assume any execution policy to cover such
requirements, that is —=¢,C—ep.



subhierarchy of an execution is called a subexecution and a hierarchy portion of
it is called an execution portion.O

Two DM operations are in conflict if one of them is a write operation,
they operate on the same data item and they belong to different parents in the
transaction tree. Note that in the transaction tree, the parent of a DM operation
is the (sub)transaction itself that issued the DM operation.

We take the serializability of an ordered hierarchy as the correctness criterion
of executions. Therefore as a consequence of Theorem 1 an execution history
H = (—,0,T) is correct iff — is a partial order. At this point it should be
noted that to provide the correctness of executions it is sufficient to find a total
order consistent with the order of conflicting DM operations. In other words
—4m 18 the order to be preserved. Yet, a concurrency control technique while
trying to guarantee the consistent order of DM operations may introduce a more
restrictive ordering. We denote the ordering that stems from the execution policy
as —¢p. As an example, in a technique that allows only serial executions, —¢p
itself is a total order.

In centralized databases only a single site contributes to the execution and

the serializability of the execution can be checked easily. In distributed databases
there are several sites contributing to the execution.
Definition 10. A distributed execution H = (—,0,T) is an execution his-
tory such that Og,, = Ug(Ok ) where OF s the set of DM operations on
data items stored at site k, for £ = 1,..,n. The execution of H at site k is the
restriction H* = (—=*, O, T*) such that leaves(T*) = Ok .0

Notice that O% N 0!, = ¢ when k # [, however this is not true in general
for OF and O}, since OF NO!, gives root nodes corresponding to subtransaction
trees having DM operations at both sites.

H = (—,0,T) with restrictions H* = (=F, OF T*) at site k, for k = 1,..,n,
satisfies O = U, (OF), T = U,(T*), and —=(U;, —*)*. — contains the order
enforced by the distributed execution policy, —4¢p in addition to Uy, —>§m; on
the other hand —* contains also —>§ep.

In distributed DBMSs, the concurrency control information related to hierar-
chy restrictions are completely available and can be used to decide on the serializ-
ability of the execution. In distributed DBMSs the restriction H* = (=%, Ok T*)
of H at site k is known.

However, in multidatabases, the complete information about H is not avail-
able. A local scheduler at site & knows only the local execution portion L* =
(=L* OF, T*) where —L*C—* and does not have the complete information on
the restriction H* = (=F, OF T*).

Furthermore a global scheduler in multidatabases have knowledge only about
global execution portion, G = (=%, 0% T%) while a distributed DBMS sched-
uler has the complete information about H = (—,0,T).

Definition 11. On a multidatabase having sites k = 1,..,n, a multisite exe-
cution H = (—, O,T) is an execution history such that

e O =0%U (U0, 09 = U, 0%, and T = T U (U, TE*), TC = U, TE*
and —= ((Uy =) U =9)*,



e H has restrictions H* = (—=F OF T*) at site k, for k = 1,..,n where
OF = O¥*UOL* and T* = TE*UT* with alocal execution portion L* = (—F*,
Ok, Tk), s thC ok k= (S5 U = [ k) where =% is the ordering enforced
by local execution policy,

e H hasrestriction H? = (—9,0%,T%) to T with a global execution portion
G = (=%09 7T, %= ((Ur =5F)U —4ep)* where — 4, is the ordering due
to global execution policy, =% C—9,

e G has restriction G¥ = (=% 0% TGCk) at sites k = 1,..,n, »FFC—F,
—GkC 6 and %?@Q—)llirﬁ (but not necessarily —-%*C—Lk or —+LkCCk) 0O

Sitel Site 2
Fig. 3. A Multisite execution H

Figure 3 depicts a multisite execution H where the edges due to axioms of
Definition 1 are not demonstrated for the sake of simplicity. Figure 4.(a) shows
local execution portions L' and L? of H at site 1 and site 2 respectively. Note
that local scheduler at site 1 does not have the complete knowledge of —! which
contains orderings that come from local scheduler at site 2 such as T§* — T\%.
This is symmetrically true for the local scheduler at site 2. Also ordering due to
global execution policy is hidden from the local schedulers. In Figure 4.(a), these
orderings which are not included in —%! and —%2 are depicted as dotted lines
and the delegated orderings are displayed as dashed lines. In Figure 4.(b), the
global execution portion G of H is given. = does not contain orderings coming
from local schedulers due to conflicting DM operations with local transactions
at those sites and these orderings are also depicted as dotted lines.

One of the necessary condition for serializability of H is that (U —*)* should
not introduce any cycles, which is not satisfied in the example shown in Figure
3 and Figure 4.
Definition 12. A multisite execution is said to be EGOL (enforcing global
order locally on siblings) iff a =¥ b implies a —%* b whenever parent(a) =
parent(b), and a,b € OY, and a,b € OF for any a,b € 0.0
Definition 13. A multisite execution is said to be ELOT (enforcing local
ordering transparency for siblings) iff a —%* b implies a —“* b whenever
parent(a) = parent(b), and a,b € O, and a,b € O* for any a,b € 0.0

If an execution is EGOL and ELOT, then the order of the siblings are con-
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Fig. 4. (a) Local execution portions L' and L? of H at site 1 and site 2, (b) Global
execution portion G of H

sistent at each site as shown in the following Lemma.

Lemma 1. If a multisite execution H = (—,0,T) is EGOL and ELOT then
a —T* b implies a —* b for any site k,! whenever parent(a) = parent(b), and
a,b € O and a,b € OF for any a,b € O.

Proof: a —%* b implies a —%* b by ELOT property which inturn implies
a =% b since G* = (=% OF* TGEF) is the restriction of G at sites k. a =% b
since a,b € O' and since G! = (=%, 0% T) is the restriction of G at sites .
Furthermore, since the restriction is EGOL, a —* b implies a =% 5.0
Theorem 2. Let H = (—,0,T) be a multisite EGOL and ELOT execution
having serializable local execution portions L¥F = (=¥ OF T*) at site k for
k =1,.,n. Then H is serializable iff the global portion G = (=%, 0%, TY) is
serializable.

Proof: (if) Due to EGOL and ELOT properties of H and Lemma 1, and due
to serializability of L* for k = 1,..,n and serializability of Gj; all the orderings
in - and —»%*, k = 1,..,n are consistent for any siblings a,b. Therefore a
preorder traversal =7 (total order) of T exists for any siblings a and b such that
—7 is consistent with the following;:

1. If a,b € OY and a = b then a is traversed before b,

2.If a,b € O% and a —%* b for any k then a is traversed before b,

3. Otherwise the ordering of a and b is immaterial
and this preorder traversal satisfies —C— 7. Since —7 is a total order consistent
with —, H is serializable.

(only if) If H is serializable then — is a partial order by Theorem 1. Since
—%C— by definition this in turn implies =& is a partial order. Therefore HE
is serializable by Theorem 1.0



4 Nested Tickets Method for Nested Transactions

In this section, a technique for global concurrency control of nested transac-
tions in multidatabases, called Nested Tickets Method for Nested Transactions
(NTNT) is presented.

NTNT ensures global serializability of nested multidatabase transactions
without violating autonomy of LDBMSs. It is assumed that LDBMSs’ sched-
ulers guarantee local serializability of nested transactions.

We present the NTNT technique by referring to the pseudocode of the algo-
rithm. To be able to provide a neat recursive algorithm, we imagine all the global
transactions to be children of a virtual transaction called OMNI. When OMNI
transaction starts executing, it creates a siteTicket(OMNI) at each site whose
default value is 0. Then we imagine that OMNI transaction executes forever.
Since it is an imaginary transaction, it does not need to commit finally to make
the updates of its children persistent.

GlobalBegin(T{ ) assigns a globally unique and monotonically increasing ticket
number denoted as TN(TF) to all transactions denoted by T when they are
initiated, that is, both the parent and the child transactions at all levels obtain a
ticket. A Ticket Server object in MIND provides tickets and guarantees that any
new subtransaction obtains a ticket whose value is greater than any of the previ-
ously assigned ticket numbers. Since any child is submitted after its parent, this
automatically provides that any child has a ticket number greater than its par-
ent’s ticket. When the first DM read or DM write operation of a subtransaction
Tl-G is to be executed at a local site, LocalBegm(TiG, k) is executed which starts
all ancestors of the subtransaction if they are not initiated at this site yet. Next,
each child transaction reads the local ticket created by its parent at this site (this
ticket is created for the children of parent(TS), i.e. siblings(T)), and checks
if its own ticket value is greater than the stored ticket value in the ticket for
siblings(T) at this site. If it is not, the transaction T\ is aborted at all related
sites and resubmitted to MIND using the algorithms given in GlobalAbort(T)
and GlobalRestart(T ). Otherwise, T sets the local ticket created by its parent
to its own ticket value (T'N (7)) and creates a site ticket, siteT'icket(T) with
default value 0 for its possible future children. As a result, all siblings of a sub-
transaction accessing to some site k are forced into conflict through a ticket item
created by the parent of these siblings at site k. The pseudocode of the algorithm
to check ticket values is presented in LocalCheckTicket(T<, k). This mechanism
makes the execution order of all siblings of a subtransaction to be consistent at
all related sites since the execution is EGOL and ELOT by the use of tickets.
In other words, the consistency of serialization order of the siblings are provided
by guaranteeing them to be serialized in the order of their ticket numbers. If a
transaction is validated using the LocalCheckTicket(T<, k) algorithm then its
read and write operations on any item x are submitted to related LDBMS by
LocalWrite(x), LocalRead(x) algorithms and committed by GlobalCommit(T ).
GlobalCommit(TE ) is executed after all children of T commit or abort due to
Commit Rule in Section 2.1.ii. GlobalCommit(T< ) coordinates the 2PC protocol
and if all LDBMSs replied Ready then commits this subtransaction.



The NTNT Algorithm:
GlobalBegin(TE ):
Get global ticket for TiG so that
TN(TE ):=lastTicketNo+1;
lastTicketNo:=TN(TE ); O
LocalBegin(TE, k):
If parent(TE, k) has not started at site k yet then
LocalBegin (parent(TE ), k);
Forward begin operation for TiG as child of parent(TiG) to Local Transaction Manager
(LTM) at site k;
else
Forward begin operation for TiG as child of parent(TiG) to LTM at site k;
LocalCheck Ticket(TE, k);
If check FAILs then GlobalRestart(TC); O
LocalCheck Ticket(TE, k):
If TiG is not OMNI then
If site Ticket(parent(TC )) > TN(TE ) then FAIL;
else
site Ticket(parent(TC )):=TN(TE );
create(siteTicket(TF)) at site k with default value 0; O
LocalWrite(z), LocalRead(z):
If the site(x) is being visited for the first time by TiG then LocalBegin(TiG, k);
Forward the read/write operation to Local Data Manager on behalf of Tl-G; [m]
GlobalAbort(TE ):
for each related site send LocalAbort(TiG) message to LTM at site k; O
GlobalRestart(TF ):
GlobalAbort(TE );
GlobalBegin(TF ); O
GlobalCommit(TF ):

wait until all children(TE ) commit or abort;
for each related site k send PrepareToCommit(TiG) message to LTM at site k;
If all LTMs have replied Ready
for each related site k send C’ommit(TiG) message to LTM at site k;
If any site fails to Prepare ToCommit then GlobalAbort(TE ); O

An Example: In the following, an example is provided to clarify the NTNT
technique. Assume a multidatabase system with two LDBMSs at sites 1 and 2.
User transactions can be arbitrarily nested and each (sub)transaction can issue
read and write operations denoted as r(a) and w(a) respectively.

Figure 5 depicts the execution of two nested multidatabase transactions T
and T, and a local transaction T}“2. Global transaction 7" has two subtransac-
tions TG and TS, and T has one subtransaction T%;. At site 1, first T writes
a, then TS writes a, and then T%j reads a. Therefore, T and T directly con-
flict at site 1 and the serialization order of the transactions is {T% — T} } C—!.
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Fig. 5. A Schedule of Nested Multidatabase Transactions

Using the delegation axiom in Definition 1.c the serialization order of T\® and
TS at site 1is {TF — T} C—t At site 2, T reads b and later TS writes
c. Therefore, there is no direct conflict between T%; and T\ at site 2. However,
a local transaction T'L? writes b and ¢, and thus 7%; and T'% conflict indirectly
at site 2. Therefore the serialization order is {T5] — T{? — TG} C—? at site
2. Using the delegation axiom the serialization order of T{* and T¥" at site 2 is
{T§ — TE} C—2. Because of the local autonomy, the indirect conflict between
siblings 774 and T3 at site 2 cannot be detected at the global level without a
technique like NTNT. Although local schedules for nested transactions are seri-
alizable, the complete schedule is not serializable because the local schedules at
sites 1 and 2 are not consistent with a total order {—=!* U —=?} C— defined on
transactions ¢ and T§".

NTNT technique works for this example as follows: Assume the tickets ob-
tained from the ticket server to be as follow: TN(OMNI) = 0, TN(T¥) = 1,
TN(TS) =2, TN(TS) = 3, TN(T$) = 4, TN(TS) = 5 and let siteTicket
(OMNI) =0 at each site.

Execution at site 1:

TC is accepted since siteTicket(parent(T)) = siteTicket(OMNI) = 0 <
TN(TF) =1 and siteTicket(OMNI) is set to 1 and siteTicket(TC) is created
with default value 0. Thus w; (a) is executed. Since siteT'icket(parent(TS)) =
0 < TN(TS) = 3, siteTicket(parent(T(})) is set to 3 and siteTicket(T) = 0 is
created and wy; (a) is executed. Similarly siteTicket(parent(T5')) = siteTicket
(OMNI)=1<TN(T§) = 2, T is accepted and siteTicket(OM NI) becomes
2 and siteTicket(TY) is created with default value 0. ro1 (a) is executed because
siteTicket(parent(T§])) = 0 < TN(TS}) = 4 and siteTicket(parent(Ts])) is set
to 4 and siteTicket(TS}) is created with default value 0.
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Fig. 6. Illustration of serialization order assignment through || (concatenation)
operation

Execution at site 2:
T§ is accepted since siteTicket(parent(TS')) = TN(OMNI) =0 < TN(T§) =
2 and siteTicket(OMNI) is set to 2. siteTicket(TS’) is created with default
value 0. TS} is accepted and ry; (b) is executed since siteTicket(parent(TS;)) =
0 < TN(TS) = 4. Yet T at site 2 is rejected and aborted at all sites since
siteTicket(parent(T{)) = siteTicket(OMNI) = 2 which is not less than TN
() =1.

Correctness Proof of the Method:

Theorem 3. NTNT method produces serializable multisite executions.

Proof: To prove the serializability of any H = (—,0,T) produced by NTNT
method we apply Theorem 2 through the following steps: 1) We have only sibling
parallelism and all the siblings are enforced into conflict with each other through
their parent’s ticket at all related sites. When the local serialization orders of
transactions are not consistent with their ticket numbers, they are aborted. In
the global execution portion G = (—%,0% T%), = is a total order consistent
with the alphabetical ordering of TNO(a) = TNO(parent(a)) || TN(a) for any
subtransaction a € OY where TNO(parent(a)) || TN (a) denotes the concate-
nation of the TNO(parent(a)) and the ticket of a as illustrated in Figure 6.
Note that the alphabetical order for OMNI is TNO(OMNTI) = 0. 2)Since L*
is serializable, —* is a partial order for k = 1,..,n from Theorem 1. For any
a,b € OY if parent(a) = parent(b) and a,b € OF, then a and b conflict on a
common ticket item at site k and these siblings are enforced to be ordered in
—Lk in the order of their ticket numbers otherwise they are aborted. Therefore
H is EGOL. 3) Furthermore for every sibling a,b € OY, if a,b € OF then they
are enforced to be ordered in —%*. Since a —* b implies ¢ =% b, and since
—Tk is a partial order, it is not possible to have b =% . Hence H is ELOT.

Therefore due to Theorem 2 we have H = ((U, =*)u —%)*, O, T') serializab-
le.O0



5 Conclusions

In this paper we have presented a theory for the serializability of nested trans-
actions in multidatabases and then developed a technique called NTNT that
provides for the correctness of nested transactions in multidatabases. To the
best of our knowledge NTNT is the first technique to provide serializability of
nested transactions in multidatabases. The correctness of the NTNT technique is
proved by using the developed theory. Note that the theory developed is general
enough to be applicable to correctness of future techniques.
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