
Correctness of Work�ows in the Presence of Concurrency �

Ismailcem Budak Arpinar�� Sena �Nural� Arpinar�� Ugur Halici�� and Asuman Dogac�

Software Research and Development Center
�Dept� of Computer Engineering
�Dept� of Electrical Engineering

Middle East Technical University �METU�

����� Ankara Turkiye

fbudak	 nural	 asumang
srdc�metu�edu�tr	 halici
rorqual�cc�metu�edu�tr

Abstract

Work�ow processes are long�duration activities and therefore

it is not possible to apply the well accepted correctness

techniques of transactions directly to work�ow systems�

In this paper� we �rst mention the correctness problems

of work�ow systems and then exploit the available seman�

tics in work�ow speci�cation in the form of data and serial

control��ow dependencies to de�ne isolation units� We show

that isolation units in a work�ow can be identi�ed automat�

ically� i�e� without human intervention� from the work�ow

de�nition� We then propose a technique to provide for the

correctness of concurrently executing work�ows on the ba�

sis of isolation units� The technique is general enough to

handle the correctness of hierarchically structured work�ows

consisting of compound tasks�

Keywords� Work�ow System� Correctness of Work�ow

Systems� Concurrency Control in Work�ow Systems� Iso�

lation Units�

� Introduction

A work�ow consists of a set of processing steps �tasks�
together with some speci�cation of the control and
data��ow between these tasks� Although there is
some work on the interactions among concurrently
executing work�ows� the issue has not been completely
resolved yet� As long as we deal with loosely coupled
systems where no integrity constraints exist that span
multiple systems� the single tasks of a work�ow can be
executed without any further control� In a more tightly

� This work is partially being supported by the Turk�
ish State Planning Organization� Project Number� AFP����
��DPT�	
K���
��� by the Scienti�c and Technical Research
Council of Turkey� Project Number� EEEAG�Yazilim
� by Mo�
torola �USA and by Sevgi Holding �Turkey

coupled system� however� there are dependencies that
must be observed� The conventional techniques used
in concurrency control are not suitable for work�ow
environments because work�ow execution may take
several days or weeks�
In this paper� we �rst mention the correctness prob�

lems in work�ow systems� Then by using the data and
serial control��ow dependency information in the work�
�ow de�nition� we introduce isolation units� i�e� the
parts of a work�ow that must be executed in synchro�
nization to provide correctness� We show that isolation
units can be automatically identi�ed within a work�ow
system� We develop a technique based on isolation units
which allows for correct execution of concurrently exe�
cuting hierarchically structured work�ows consisting of
compound tasks�
The paper is organized as follows� Section 	 presents

the related work� In Section
 our basic work�ow model
and correctness problems in work�ows are explained�
Section � introduces isolation units and correctness of
nested tasks of work�ows� In Section �� NT �Nested
Tickets� technique for the correctness of concurrently
executing work�ows is presented� We conclude with
Section �

� Related Work

��� Invariants of ConTract Model

In the ConTract model �WR �	� in order for tasks
to work correctly� predicates named as invariants are
de�ned to hold on the database� Invariants do not
solve the problem of improper interleaving of two or
more tasks from di�erent work�ows at multiple sites� In
�WR �	�� authors state that in many cases it is su�cient
to make sure that a certain tuple is not deleted� that a
certain attribute value stays within a speci�ed range�
that there are no more than a certain number of certain
type of tuples� etc� to ensure correct execution of
work�ows and the work�ow designer can specify these
constraints as invariants�
For example� consider the two tasks of a �Business

�

Trip Reservations Work�ow� named as Travel Data
Input and F light Reservation� Exit invariant of �rst
task is speci�ed as �budget � cost limit� and entry
invariant of second task is speci�ed as ��budget �

cost limit�and�cost limit � ticket price��� At the ex�
ecution time� the run�time system checks at the end
of execution of a task if the predicates are valid� If
they are valid� the constraint is satis�ed and the trans�
action which protects the step is allowed to commit�
After this task is committed� other tasks of concur�
rent work�ows can access and update the variable in
the predicate which resides in a shared Resource Man�
ager �RM�� However� when a second task starts its en�
try invariant is evaluated to ensure correct execution�
For example� after Travel Data Input task accessed
budget and committed� other tasks of concurrent work�
�ows can update budget� In F light Reservation task
budget is accessed and its entry invariant ��budget �
cost limit�and�cost limit � ticket price�� is evaluated�
If it evaluates to false� the task is not allowed to start�
So ConTracts permits unserializable executions but en�
force application speci�c correctness�

Alternatives for predicate speci�cation can be a state
based approach� CNF �Conjunctive Normal Form�� or
�rst�order logic expressions �CNF plus quanti�ers� or
a more powerfull method� Yet it may be di�cult to
determine and�or to enforce the invariants�

��� Step Compatibility

In �BDS �
� to ensure data consistency� semantic seri�
alizability of work�ows is proposed as the correctness
criterion� A human expert declares a compatibility ma�
trix for tasks of a work�ow� Compatibility of two tasks
means that the ordering of two tasks in a schedule is
insigni�cant from an application point of view� If two
tasks are not de�ned as compatible they are in con�
�ict� A schedule is semantically serializable if an equiv�
alent serial execution exists with the same ordering of
con�icting tasks� For example Risk Evaluation and
Risk Update tasks of di�erent Loan Request Process�
ing work�ows can be de�ned as in con�ict whereas two
Enter Decision tasks of di�erent work�ows can be de�
�ned as compatible although two Enter Decision tasks
update the same data item� Hence Risk Evaluation

and Risk Update tasks of di�erent work�ows must be
executed serializable to ensure the consistency of banks
total involvement�

In �BDS �
�� the compatibility matrix is restricted to
the tasks of di�erent instances of the same work�ow
type� e�g� compatibility matrix for the tasks of two
Loan Request Processing work�ows is de�ned� But in
real applications tasks of di�erent work�ow types can
be executed concurrently and a compatibility matrix
should be de�ned for them� for example� between the

tasks of a Loan Request Processing work�ow and tasks
of a Risk Management work�ow�

��� Transaction Speci�cation and
Management Environment �TSME�

In TSME �GHM ��� using the transaction speci�cation
language� correctness as well as state dependencies can
be speci�ed between tasks of work�ows� Di�erent cor�
rectness dependencies such as serializability� temporal�
cooperative dependencies can be speci�ed� For example
for the concurrent execution of two alternative line pro�
visioning tasks of a Provisioning and Billing work�ow
for a telecommunication application the correctness cri�
teria can be speci�ed as serializability� or if one of them
is allowed to commit they may use same lines and slots
and the correctness criteria can be speci�ed as cooper�
ative�
To de�ne con�icts� each objects is associated with

a con�ict table� Serialization dependencies are speci�
�ed as acyclic serialization order dependencies between
tasks� Temporal order dependencies are speci�ed by
giving speci�c serialization order between tasks� Coop�
eration between tasks is provided by using breakpoints
or augmenting con�ict tables of shared objects� Two co�
operating tasks read and write speci�c objects without
restrictions at breakpoints or some tasks are de�ned as
non�con�icting on speci�c objects�

��� M	serializability

In �RS ���� M�serializability is de�ned as a correctness
criterion for concurrent execution of work�ows� In this
model� related tasks of a work�ow are grouped into
execution atomic units� M�serializability requires that
tasks belonging to the same execution atomic unit of
a work�ow have compatible serialization orders at all
sites they access� Yet this approach does not consider
the nesting of tasks�

��
 Multilevel Atomicity

In �L �
�� transactions are grouped into semantic types
and a transaction can belong to more than one semantic
type� Each type has di�erent sets of breakpoints� in�
serted between the steps of a transaction at appropriate
points� Steps of compatible transactions can be inter�
leaved at these breakpoints� This idea can be adopted to
work�ows by inserting appropriate breakpoints between
tasks of a work�ow� but due to autonomy of local sites
intervention of local transactions can not be restricted
by breakpoints� Commitment of individual tasks are
breakpoints from the viewpoint of local transactions�

��� Commercial and Prototype WFMSs

Most commercial WFMSs provide limited capabilities
for concurrency control� XAIT�s InConcert �DS �
� sup�
ports a form of check�in and check�out model which is

�

a primitive way for concurrency control� Lotus Notes
�GHS ��� allows a user to update an object and create
a new version of it� When very large amount of objects
are updated� this method is not feasible because keep�
ing every version of an updated object is very costly�
Sta�ware �GHS ��� uses a pass�by�reference�pass�by�
value approach for concurrency control� Data items
that can be shared among multiple clients are passed
by reference� i�e� clients access a centrally stored data
item using a pointer� possibly concurrently� Mentor
�WWW �� supports the distributed execution of work�
�ows and uses a TP Monitor� namely Tuxedo to pro�
vide atomicity of distributed transactions� The synchro�
nization is provided by means of update messages be�
tween work�ows at synchronization points� The ATM
�DHL ��� approach includes an extended nested trans�
action model and language for describing long running
activities�

��� Multilevel Transaction Frameworks

Work�ows may contain a hierarchy of tasks� Therefore
we need to deal with the concurrent execution of nested
tasks� In �BBG ��� a concurrency theory is provided
for nested transaction systems� In this theory� com�
mutativity and pruning concepts are used to prove the
correctness of a concurrency control technique� Princi�
ples and realization strategies of multilevel transaction
management is described in �W ���� In �HAD ��� we
have developed a theory for the serializability of nested
transactions in multidatabases�

� Work�ow Correctness Issues

��� Workow Model

In this section we de�ne the basic work�ow model to be
used throughout the paper�

The individual steps that compromise a work�ow are
termed as tasks� Tasks may involve humans as well as
programs� Each task has a set of input and output
parameters� A task includes Data Manipulation �DM�
operations or subtasks� Hence� a work�ow is a tree of
tasks� the subtrees of which are either nested or �at
tasks�

A Work�ow Management System �WFMS� involves
distributed objects managed by either a number of pre�
existing and autonomous Local DBMSs �LDBMSs� �e�g�
Sybase�� Adabas D��� or non� transactional Resource
Managers �RMs� �e�g� �le systems� as well as human
participants� These LDBMSs� non�transactional RMs�
and human participants may exist on a distributed
heterogeneous platform�

�Sybase is a trademark of Sybase Corp�
�Adabas D is a trademark of Software AG Corp�

In a WFMS environment there exists at least three
types of tasks and transactions�

� Local Transactions� those transactions that access
data managed by a single DBMS and they are
executed by the LDBMS� outside the control of
WFMS�

� Transactional Tasks� those tasks that are exe�
cuted under WFMS control and they access data
controlled by RMs with transactional properties �i�e�
ACID�� Transactional RMs o�er at least two trans�
actional operations� commit and abort�

� Non	Transactional Tasks are also executed un�
der WFMS control� but they access data controlled
by RMs without transactional properties such as
�le systems� Yet it is possible to introduce trans�
actional properties to these systems� for exam�
ple by wrapping non�transactional RMs to provide
transaction and concurrency control services accord�
ing to OMG�s Object Transaction Service �OTS�
�OMG ��� and Concurrency Control Service �CCS�
speci�cations� Hence these RMs can behave similar
to transactional RMs�

From this point on task and transaction will be used
interchangeably throughout the paper� Both of the
terms refer to an atomic unit of work in general�
A task or a local transaction ti is a sequence of read

�ri� and write �wi� operations terminated by either
a commit �ci� or an abort �ai� operation from the
concurrency control perspective� A single task may
contain Data Manipulation �DM� operations at more
than one site� Note that DM operations are invisible to
the work�ow system�
There are two types of �ow dependencies between

tasks of a work�ow�

� Data Flow Dependencies map an output param�
eter of a task to input parameter of one or more
tasks�

� Control Flow Dependencies specify the execu�
tion dependency between the tasks�

��� Correctness Problems in Workow
Systems

The two correctness problems arising from the concur�
rent execution of tasks in work�ow systems are dis�
cussed in the following through examples� In these ex�
amples we choose to explicitly show the DM operations
although they are not visible at the work�ow level� just
to provide clari�cation to the problems presented�

Example �� Consider two concurrently executing
Airline Reservation work�ows as shown in Figure �� A

�

Check_Cond Flight_Res Report

Air_Reserv

Check_Cond Flight_Res Report

1

11 12 13 21 22 23

Air_Reserv
2

Trip Ret_Trip
121 122

r (seats1) r (seats1)r (seats2) w (seats2)w (seats1)
11 11 21 22 121 122

w (seats1)

Fig� �� Concurrency Control Problem of Work�ows At A Single Site

customer wants to make a round trip �ight from Istan�
bul to Paris� Therefore� an Airline Reservation work�
�ow �Air Reserv�� is created� Check Condition task
�Check Cond��� of Air Reserv� work�ow checks the
available seats for both Istanbul to Paris and Paris to Is�
tanbul �ights from the Flight Reservation Database� If
there are available seats in these �ights� Flight Reserva�
tion task �F light Res��� is started� F light Res�� task
is broken into two subtasks� Trip �Trip���� which re�
serves the �ight from Istanbul to Paris� and Return
Trip �Ret Trip���� which reserves the �ight from Paris
to Istanbul� Report task �Report��� writes �ight infor�
mation of the customer to her ticket� Air Reserv� is
another instance of the same work�ow and also updates
available seats for Istanbul to Paris �ight �seats���
In Example � the problem arises because after read�

ing seats� and seats	� Check Cond�� commits and
F light Res�� task of Air Reserv� updates seats��
However� the previously read value of seats� by Check
Cond�� is used later in processing of Air Reserv� work�
�ow to control the �ow of task F light Res��� Note that
this value of data is no longer valid� �

This example considers correctness problem of data
residing on a single site� We would like to point out
that passing references instead of data itself� does not
solve the inconsistent data �ow problem since a task
may perform a certain computation to create the data
to be used by another task� In this case� even if the
data is stored to be accessed through a pointer� it may
no longer be correct because the underlying data used
in computing this data may have changed�
Next example demonstrates that data consistency can

be violated by the concurrently executing work�ows at
multiple sites�

Example �� Consider the two work�ows in Figure 	�
Transfer� work�ow transfers money from one account
to another� These accounts are in di�erent subsidiaries
of a bank �i�e� di�erent sites�� Transfer� work�ow
includes two tasks� namelyWithdraw�� and Deposit���
Withdraw�� task withdraws the given amount of money
from acc� at the �rst site by means of read and write
operations on the underlying records as shown in Figure
	� Deposit�� adds the given amount of money to acc	
at the other site� Audit� work�ow checks the balance of
the bank by summing up all the accounts in the bank�s
subsidiaries in TotalBal�� task� TotalBal�� has two
Check subtasks for Site� and Site�� Balances accessed
by Check��� and Check��� are summed in Sum���� Also
assume each work�ow executed in the system updates a
log record for bank�s security and statistical purposes�
Report�� and Report�� tasks update this log record
which is located at Site��

The schedule in Figure 	 is not correct because
Audit� sees an inconsistent result� since it misses the
money being transferred from acc� to acc	� In order to
prevent this inconsistency� the tasks of Transfer� and
Audit� work�ows must be executed so that they have
compatible serialization orders at each site� �

� Concurrency Control for

Work�ows

Data consistency can be violated by improper inter�
leaving of concurrently executing work�ows as shown
in Examples � and 	� Also� such inconsistencies can
occur due to improper interleaving of concurrently ex�
ecuting work�ows and local transactions� Such inter�
leavings must be prevented to ensure data consistency

�

WithDraw Deposit Report

Transfer

Site

w (log)(log)w
1322

3

(acc1)w
211

(acc1)r
212

r
12

(acc2)r (acc2)w
11

(acc1)r

SiteSite 2

11 12
(acc2)

1

TotalBal Report

2

Check Check Sum

1

11 12 13
211 212 213

21 22

Audit

Fig� �� Concurrency Control Problem of Work�ows At Multiple Sites

in WFMSs� In this section we introduce the �isolation
unit� concept and a related technique to provide for
the correctness of concurrently executing work�ows� In
achieving this goal we aim at increasing concurrency�
Our starting point is to exploit the available semantics
in work�ow speci�cation� How this semantic knowledge
is extracted by using data and serial control��ow depen�
dencies between tasks is discussed in Section ���� Usage
of this knowledge to preserve data consistency is pro�
vided in Section ��	�

��� Isolation Units

We de�ne an isolation unit to be the set of �sub�tasks
that have data��ow and also serial control��ow depen�
dencies among them� We claim that the work�ow
correctness can be provided by identifying the isola�
tion units in a work�ow system automatically from the
data and serial control��ow dependency information ob�
tained from the work�ow speci�cation� Before providing
a formal de�nition of an isolation unit we will provide
some motivating examples�
Consider Example �� Check Cond�� accesses data

items seats� and seats	 and these data items are passed
to F light Res�� and F light Res�� uses these data items
in its internal processing� Yet� because these tasks com�
mit independently they are not executed within the
scope of an isolation unit� i�e� a transaction� which pro�
vides isolation from other concurrently executing tasks�
Other tasks of concurrently executing work�ows can in�
validate the data �e�g� seats�� seats	� being transferred
between these tasks� Data��ow dependent tasks of a
work�ow such as Check Cond�� and F light Res�� can
be grouped into a single isolation unit�

In Example 	� a similar condition occurs at multiple
sites� Because there is a serial control��ow and data�
�ow dependency between Withdraw�� and Deposit��
they must be executed in isolation and their serialization
order must be compatible at every site that they
have executed� that is� Site� and Site�� So� either
Withdraw�� must be serialized after Check��� at Site�
or Deposit�� must be serialized before Check��� at
Site�� Note that Report tasks can be serialized in any
order� since they do not a�ect the correct execution
of other tasks� So� for example Report�� should not
necessarily have a consistent serialization order with
Wihdraw�� and Deposit�� for the correctness�
To express these ideas precisely� a formal presentation

of isolation units is given�

De�nition �� A task is a quadruple t � �in� out� �� ��
where in denotes the input parameters of task t� out
denotes the output parameters of t� � is the name of t�
and � is the computation of the t� Actually computa�
tion � is a tree on Odm � Ot where Odm are the nodes
representing the DM operations and Ot are the nodes
corresponding to the abstract operations representing
subtasks� �

De�nition �� There is a data��ow dependency between
tasks ti and tj if outi � inj �� �� The data��ow depen�
dency is denoted as ti j� tj � �

In other words� at least one of the output parameters
of ti is mapped to an input parameter of tj �

De�nition �� There is a serial control��ow dependency

�

Transfer
1

acc1, acc2, money

serial

end serial

Withdraw
Deposit

Report

end

12

13

(in acc2, in money)

()

Audit

end

serial
TotalBal
Report

end serial

21

22 ()

serial
parallel

Check
Check

end parallel
Sum

end serial
end

(out bal1)
(out bal2)

(in bal1, in bal2)

211

212

213

TotalBal
21

bal1, bal2

2

(in acc1, out money)11

Fig� �� Determining Isolation Units Using Data and Serial Control�Flow Dependencies

between tasks ti and tj if tjBCDti� BCD �CR ���
denotes begin on commit dependency which means tj
can begin only after the commitment of ti� The serial
control��ow dependency is denoted as ti �j � �

De�nition �� Two tasks ti and tj belong to same iso�
lation unit � if ti j� tj and ti � tj � �

The isolation units can be constructed automati�
cally �i�e� without human intervention� by apply�
ing the De�nition � repeatedly� Figure
 repre�
sents an example to clarify De�nition �� In Fig�
ure
� de�nitions of Transfer� and Audit� work�
�ows of Example 	 are presented� Transfer� work�
�ow contains three tasks to be executed in serial and
Audit� contains two tasks namely TotalBal�� and
Report�� to be executed in serial� Yet TotalBal�� is
a compound task that also includes two subtasks ex�
ecuting in parallel� namely Check��� and Check����
Starting with Withdraw��� ��

� of Transfer� con�
tains Withdraw��� Because Withdraw�� j� Deposit��
and Withdraw�� � Deposit��� ��

� is augmented to
fWithdraw��� Deposit��g� Finally� ��

� � fWithdraw���

Deposit��g and ��
� � fReport��g since there is no data�

�ow dependency between Report�� and other two� Sim�
ilarly� since Check��� j� Sum���� Check��� � Sum���

and Check��� j� Sum���� Check��� � Sum���� �
�
� �

fCheck���� Check���� Sum���g and ��
� � fReport��g�

In the following section� isolation of nested tasks will
be discussed�

��� Isolation of Nested Tasks

In our model� work�ows may contain a hierarchy of
tasks� In other words a compound task can contain
any number of tasks and compound tasks� Therefore
we need to deal with the isolation of hierarchically
organized tasks� Nested tasks di�er from �at tasks
in that when two �sub�tasks are ordered this imposes
an order between their parents� Thus isolation of tree
of tasks must be de�ned� The theory provided in
�HAD ��� for nested transactions in multidatabases is
general enough to be applicable to work�ow systems�

In the following� we will demonstrate how the order�
ing imposed by the leaf nodes are delegated to the up�
per nodes in the hierarchy� Note that� by assuming an
imaginary root for all submitted work�ows it is possible
to model an execution history of work�ows� Execution
history of work�ows is a tree on �sub�tasks and � is a
nonre�exive and antisymmetric relation on the nodes of
the tree� Actually� � is the ordering requirements on
the leaf nodes due to execution order of con�icting DM
operations� � satis�es the following axioms for any two
�sub�tasks ti and tj �

i� transitivity� if ti � tj and tj � tk then ti � tk
ii� delegation� if ti � tj and

�

12

Transfer TotalBal

Check Check Sum

Audit
2

1

212 213211

21

Deposit
11

(acc1)w (acc1)r r 12 (acc2)r (acc2)w11 (acc1)r

SiteSite 2

11 12
(acc2)

1

211 212

WithDraw

: Ordering due to conflicting DM operations

: Parent-child relationship

Legend:

: Isolation unit

: Ordering due to delegation axiom

Fig� �� Illustration of Delegation Axiom

a� if parent�tj� �	 ancestors�ti� then ti �
parent�tj�

b� if parent�ti� �	 ancestors�tj� then parent�ti��
tj ��

Theorem �� An execution history of work�ows is seri�
alizable i� � is a partial order �� �

The proof of Theorem � is given in �HAD ����
Consider the example in Figure �� Isolation units are

depicted within dotted rectangles in the �gure� Since
Withdraw�� and Check��� have issued con�icting DM
operations on acc� they are ordered as Withdraw�� �
Check��� at Site� �The DM operations are not available
at the work�ow level� we obtain the related information
from the data��ow by using the input� output parame�
ters and from the serial control��ow dependencies�� Also
Deposit�� and Check��� are ordered as Check��� �
Deposit��� Since� Withdraw�� and Check��� are or�
dered as Withdraw�� � Check���� Withdraw�� and
TotalBal�� �which is parent�Check����� are ordered as
Withdraw�� � TotalBal�� �from Axiom i�a above�� By
applying the delegation de�nition repeatedly� the follow�
ing order is obtained between Transfer� and Audit��
fTransfer� � Audit�� Audit� � Transfer�g� � is
not partial order here because its antisymmetry prop�
erty is violated and the execution history for the isola�
tion units in Figure � is not serializable� Some of the
delegated orderings are not shown in Figure � for the
sake of simplicity�

�Note that our partial order relation is irre�exive� antisymmet�
ric and transitive

Now consider the case where tasks of ��
� and ��

�

have consistent serialization orders at Site� and Site�
as shown in Figure �� i�e� Withdraw�� � Check����
Deposit�� � Check���� Hence� Transfer� � Audit��
Since Report�� belongs to a di�erent isolation unit��

�
���

its serialization order is independent from the tasks of
��
� for correctness� Hence� the order due to Report��

must be delegated to a di�erent parent other than the
parent of elements of ��

�� i�e� Transfer�� In this
way� Report���s inconsistent serialization order with
Withdraw�� and Deposit�� does not e�ectWithdraw��

and Deposit��� Hence� parents of ��
� and ��

� are
di�erentiated and a virtual parent for ��

� is created and
it is denoted as Transfer�

�� For the same reasons�
Audit�� is created for ��

�� The point we want to
make over here is the following� The correctness of an
isolation unit can be checked and enforced by keeping its
�sub�tasks under the same parent whereas the unrelated
parts of the work�ow can be executed freely by making
them children of independent parents� So although the
total execution of the work�ow history in Figure � is
not serializable� we make it semantically serializable by
separating the parents of isolation units and delagating
ordering relations due to di�erent isolation units to
di�erent parents� Now� the order in Figure � is
fTransfer� � Audit�� Audit

�

� � Transfer�

�g which
is serializable and correct from the application point of
view�

As can be seen from the discussion presented above�
the isolation units in a work�ow can be identi�ed and
we claim that correctness measures can be applied
on the basis of isolation units� This will allow for

�

π 2
1

WithDraw Report

Transfer
1 TotalBal Report

Audit

Check Check Sum

2

21 22

11 12 13 211 212 213
Deposit

Transfer’1

Audit’
2

π
π

π

1
2

2

1
1

2

Fig� �� Separating Parents of Dierent Isolation Units

the concurrent execution of rest of the work�ow while
preserving the correctness of isolation units�

In the following we will present a technique to provide
for the correctness of concurrently executing nested
tasks of work�ow systems� based on isolation units�

� Nested Tickets for Work�ows

In this section� a technique for concurrency control
of nested tasks of work�ows� called Nested Tickets
�NT� is presented� As described in �GRS ���� tickets
determine the serialization orders of tasks� The main
idea of NT technique is to give tickets to �sub�tasks at
all levels� that is� both parent and child tasks obtain
tickets� Then each �sub�task is forced into con�ict with
its siblings through its parent�s ticket at all related
sites� Note that since the parents of isolation units
and unrelated parts of the work�ow are separated only
siblings within the same isolation unit are forced into
con�ict� The recursive nature of algorithm makes it
possible to handle correctness of di�erent task levels
smoothly� The algorithm is fully distributed� in other
words there is no central scheduler� This is due to each
�sub�task knows its predetermined serialization order
and behaves according to this order information�

To be able to provide a neat recursive algorithm� we
imagine all the work�ows to be children of a virtual
task called OMNI� When OMNI task starts executing�
it creates a siteTicket�OMNI� at each site whose default
value is ��

GlobalBegin�ti� assigns a globally unique and mono�
tonically increasing ticket number denoted as TN�ti� to
all tasks denoted by ti when they are initiated� that is�
both the parent and the child tasks at all levels obtain a
ticket� A Ticket Server provides tickets and guarantees
that any new �sub�task obtains a ticket whose value is

greater than any of the previously assigned ticket num�
bers� Since any child is submitted after its parent� this
automatically provides that any child has a ticket num�
ber greater than its parent�s ticket� When a �sub�task
ti starts at a local site� before it executes any of its
operations� LocalCheckTicket�ti� k� is executed at this
site� Each child task reads the local ticket created by
its parent at this site �this ticket is created for the chil�
dren of parent�ti�� i�e� siblings�ti��� and checks if its
own ticket value is greater than the stored ticket value
in the ticket for siblings�ti� at this site� If it is not� the
task ti is aborted at all related sites and resubmitted�
Otherwise� ti sets the local ticket created by its par�
ent to its own ticket value �TN�ti�� and creates a site
ticket� siteT icket�ti� with default value � for its chil�
dren� As a result� all siblings of a �sub�task accessing to
some Sitek are forced into con�ict through a ticket item
created by the parent of these siblings at Sitek� This
mechanism makes the execution order of all �sub�tasks
of an isolation unit to be consistent at all related sites�
In other words� the consistency of serialization order of
the siblings of an isolation unit is provided by guaran�
teeing them to be serialized in the order of their ticket
numbers� If a task is validated then its read and write
operations on any item x are submitted to related RM�

The NT Algorithm�

GlobalBegin�ti��
Get global ticket for ti so that
TN�ti���lastTicketNo�	

lastTicketNo��TN�ti�
 �

LocalCheckTicket�ti � k��
If ti is not OMNI then

�

π 2
1

WithDraw Report

Site

w (log)(log)w
1322

3

Transfer
1 TotalBal Report

Audit

Check Check Sum

2

21 22

11 12 13 211 212 213
Deposit

OMNI

Transfer’1

Audit’
2

π
π

π

(acc1)w 211(acc1)r 212r 12 (acc2)r (acc2)w11r

SiteSite 2

11 12
(acc2)

1

(acc1)

1
2

2

1
1

2

Fig� �� Example of NT Technique

If siteTicket�parent�ti�� � TN�ti� then
Abort�ti�

else
siteTicket�parent�ti����TN�ti�

Create�siteTicket�ti�� at site k
with default value �
 �

In the following� an example is provided to clarify how
NT technique is used to solve concurrency problems of
work�ow systems�

Example �� Let us consider the example in Figure
and assume the tickets obtained from the Ticket Server
to be as follows�

TN TN
OMNI � Deposit�� �
Transfer� � Sum��� �
Withdraw�� 	 Audit�� �
Audit�
 Report�� ��
TotalBal�� � Transfer�

� ��
Check��� � Report�� �	
Check���

Execution at Site��
Transfer� is accepted since siteT icket�parent
�Transfer��� � siteT icket�OMNI� � � � TN

�Transfer�� � � and siteT icket �OMNI� is set to

� and siteT icket �Transfer�� is created with default
value �� Since siteT icket �parent�Withdraw���� �
� � TN �Withdraw��� � 	� siteT icket �parent
�Withdraw���� is set to 	 and r���acc�� and w���acc��
are executed� Similarly siteT icket �parent�Audit��� �
siteT icket�OMNI� � � � TN�Audit�� �
� Audit�
is accepted and siteT icket�OMNI� becomes
 and
siteT icket�Audit�� is created with default value ��
Next TotalBal�� is accepted since siteT icket �parent
�TotalBal���� � � � TN �TotalBal��� � � and
siteT icket �TotalBal��� is created with default value
�� Check��� is also accepted and r����acc�� is ex�
ecuted because siteT icket �TotalBal��� � � � TN

�Check���� � ��

Execution at Site��
Audit� is accepted since siteT icket �parent�Audit��� �
siteT icket�OMNI� � � � TN �Audit�� �
 and
siteT icket �OMNI� is set to
� siteT icket �Audit��
is created with � value� TotalBal�� and Check���
are accepted similarly and r����acc	� is executed� Yet
Transfer� at Site� is rejected and resubmitted to
the system since siteT icket �parent �Transfer��� �
siteT icket �OMNI� �
 which is not less than ��

Execution at Site��
Audit�� and Report�� are accepted and w���log� is exe�
cuted� Now suppose that� Transfer� and Audit� are se�
rialized consistently according to their ticket values at
Site� and Site� and so Transfer� is accepted at Site��
If parents of di�erent isolation units are not di�eren�

	

tiated as in the original schedule� although tasks are
executed correctly at all the sites� Transfer� would
be rejected by the system� This due to siteT icket

�parent �Transfer��� � siteT icket �OMNI� is set
 by
Audit�� hence it is not less than TN �Transfer�� � �
at Site�� Since we di�erentiated parents of Report��
and Report�� the execution is as follows� Audit�� is ac�
cepted and siteT icket �OMNI� is set to �� Report��
is accepted and siteT icket �Audit��� is set to ��� Then
w���log� is executed� Similarly� Transfer�

� is accepted
since siteT icket �parent �Transfer�

��� � siteT icket

�OMNI� � � � TN �Transfer�

�� � ��� Finally�
Report�� is accepted and w���log� is executed�
It can easily be shown that improper interleavings

of the local transactions with the work�ow tasks are
also prevented with the NT technique� In fact� in
�HAD ��� it is shown that NT Technique prevents
improper interleaving of local transactions with global
transactions�

� Conclusions

To provide correctness in concurrently executing work�
�ow systems� we have de�ned isolation units and pro�
vided a technique based on isolation units� for correct�
ness of hierarchically structured work�ows�
Formally� our model de�nes a task as a quadruple�

Two �sub�tasks belong to same isolation unit ��� if
there is a data��ow and serial control��ow dependency
between them� A �sub�task is said to execute correctly
if it is ordered consistently with other �sub�tasks of
its isolation unit at all related sites� To guarantee
correct execution� each �sub�task at all levels is assigned
a global ticket and it is expected that �sub�tasks are
ordered according to their ticket values� otherwise they
are aborted and resubmitted to the system�
Currently we are in the process of implementing this

technique as a concurrency control service �A ��� for
our Work�ow Management System prototype� namely
MetuFlow�

References
�A ��� B� Arpinar� Concurrency Control and Transaction

Management in Work	ow Management Systems� Ph�
D� Thesis
 in preparation
 Dept� of Computer Engi�
neering
 Middle East Technical University
 �����

�BBG ��� C� Beeri
 P� A� Bernstein
 and N� Goodman� A Model
for Concurrency in Nested Transaction Systems� Jour�
nal of the ACM
 ����
 �����

�BDS ��� Y� Breitbart
 A� Deacon
 H� J� Schek
 A� Sheth
 and
G� Weikum� Merging Application�centric and Data�
centric Approaches to Support Transaction�oriented
Multi�system Work	ows� ACM SIGMOD Record

�����
 Sept� �����

�CR ��� P� K� Chrysanthis
 and K� Ramamritham� A Formal�
ism for Extended Transaction Models� In Proc� of the
��th Int� Conf� on VLDB
 Barcelona
 �����

�DHL ��� U� Dayal
 M� Hsu
 and R� Ladin� A Transaction Model
for Long�Running Activities� In Proceedings of the
��th International Conference on Very Large Data
Bases
 Barcelona
 September �����

�DS ��� D� R� McCarthy
 and S� K� Sarin� Work	ow and
Transactions in InConcert� Special Issue on Work	ow
and Extended Transaction Systems
 Bulletin of the
Technical Committee on Data Engineering
 Vol� �

No� �
 June �����

�GHM ��� D� Georgakopoulos
 M� Hornick
 and F� Manola�
Customizing Transaction Models and Mechanisms in
a Programmable Environment Supporting Reliable
Work	ow Automation� IEEE Trans� on Knowledge
and Data Eng�
 �����

�GHS ��� D� Georgakopoulos
 M� Hornick
 and A� P� Sheth� An
Overview of Work	ow Management� From Process
Modeling to Work	ow Automation Infrastructure�
Distributed and Parallel Databases
 �
 pp� �������

�����

�GRS ��� D� Georgakopoulos
 M� Rusinkiewicz
 and A� P�
Sheth� Using Tickets to Enforce the Serializability
of Multidatabase Transactions� IEEE Transactions on
Knowledge and Data Engineering
 ���
 �����

�HAD ��� U� Halici
 B� Arpinar
 and A� Dogac� Serializability of
Nested Transactions in Multidatabases� Intl� Conf� on
Database Theory �ICDT ����
 Greece
 January �����

�L ��� N� A� Lynch� Multilevel Atomicity� A New Correct�
ness for Database Concurrency Control� ACM Trans�
on Database Systems
 Vol� �
 No� �
 pp� �������
 Dec�
�����

�OMG ��� Object Transaction Service� OMG Document
 �����

�RS ��� M� Rusinkiewicz
 and A� P� Sheth� Transactional
Work	ow Management Systems� In Proceedings of
Advances in Database and Information Systems
 AD�
BIS���
 Moscow
 May �����

�WR ��� H� Waechter
 and A� Reuter� The ConTract Model� In
Ahmed K� Elmagarmid
 editor
 Database Transaction
Models for Advanced Applications
 chapter �
 pp� ����
��
 Morgan Kaufmann Publishers
 San Mateo
 �����

�W ��� G� Weikum� Principles and Realization Strategies of
Multilevel Transaction Management� ACM TODS

����
 �����

�WWW �� D� Wodtke
 J� Weissenfels
 G� Weikum
 and A� K� Dit�
trich� The Mentor Project� Steps Towards Enterprise�
Wide Work	ow Management� In Proc� Twelfth Intl�
Conf� on Data Eng�
 New Orleans
 Louisiana
 ����

�

