
Design and Implementation of a Distributed

Work�ow Management System� METUFlow �

Asuman Dogac� Esin Gokkoca� Sena Arpinar� Pinar Koksal� Ibrahim Cingil�
Budak Arpinar� Nesime Tatbul� Pinar Karagoz� Ugur Halici� Mehmet Altinel

Software Research and Development Center
Dept� of Computer Engineering
Middle East Technical University �METU�
����� Ankara Turkiye
asuman	srdc�metu�edu�tr

Summary� Work
ows are activities involving the coordinated execution of mul�
tiple tasks performed by di�erent processing entities
 mostly in distributed het�
erogeneous environments which are very common in enterprises of even moderate
complexity� Centralized work
ow systems fall short to meet the demands of such
environments�

This paper describes the design and implementation of a distributed work
ow
management system
 namely
 METUFlow� The main contribution of this prototype
is to provide a truly distributed execution environment
 where the scheduler
 the
history manager and the worklist manager of the system are fully distributed giving
rise to failure resiliency and increased performance�

�� Introduction

A work�ow system can be de�ned as a collection of processing steps �also
termed as tasks or activities� organized to accomplish some business process�
A task may represent a manual operation by a human or a computerizable
task to be invoked� Computerizable tasks may vary from legacy applications
to programs to control instrumentation� In addition to the collection of tasks�
a work�ow de�nes the order of task invocation or condition�s� under which
tasks must be invoked �i�e� control��ow� and data��ow between these tasks�

This paper describes the design and implementation of a Work�ow Man�
agement System prototype� namely METUFlow� METUFlow handles the in�
teroperability of applications on heterogeneous platform by using CORBA as
the communication infrastructure� The distinguishing features of METUFlow
are� a distributed scheduling mechanism with a distributed history and a dis�
tributed worklist management� In current commercial work�ow systems� the
work�ow scheduler is a single centralized component� A distributed work�ow
scheduler� on the other hand� should contain several schedulers on di	erent

� This work is partially being supported by the Middle East Technical Uni�
versity
 Project Number� AFP������������
 by the Turkish State Planning Or�
ganization
 Project Number� AFP������DPT���K������
 by the Scienti�c and
Technical Research Council of Turkey
 Project Number� EEEAG�Yazilim� and
by Sevgi Holding �Turkey��

� Asuman Dogac et al�

nodes of a network each executing parts of process instances� Such an archi�
tecture �ts naturally to the distributed heterogeneous environments� Further
advantages of such an architecture are failure resiliency and increased perfor�
mance since a centralized scheduler is a potential bottleneck� In order to fully
exploit the advantages brought by the distributed scheduling� METUFlow
history management� work�ow relevant data management and the worklist
management are also handled in a distributed manner�

Data inconsistency can be violated by improper interleaving of concur�
rently executing work�ows� Therefore� there should exist a mechanism to
prevent such interleavings to ensure data consistency in work�ow manage�
ment systems �WFMS�� In METUFLow� we introduce the concept of
sphere
of isolation
 for the correctness of concurrently executing work�ows while in�
creasing concurrency� Spheres of isolations are obtained by exploiting the
available semantics in work�ow speci�cation�

METUFlow has a block structured speci�cation language� namely METU�
Flow De�nition Language �MFDL�� The advantages brought by this language
can be summarized as follows�

� As noted in ���� state�of�the�art work�ow speci�cation languages are un�
structured and
or rule based� Unstructured speci�cation languages make
debugging
testing of complex work�ow di�cult and rule based languages
become ine�cient when they are used for speci�cation of large and complex
work�ow processes� This is due to the large number of rules and overhead
associated with rule invocation and management� MFDL prevents these
disadvantages�

� A block structured language con�nes the intertask dependencies to a well
formed structure which in turn proves extremely helpful in generating the
guards of events for distributed scheduling of the work�ow�

� A block not only clearly de�nes the data and control dependencies among
tasks but also presents a well�de�ned recovery semantics� i�e�� when a block
aborts� the tasks that are to be compensated and the order in which they
are to be compensated are already provided by the block semantics�

The paper is organized as follows� Section � describes the METUFlow
Speci�cation Language� In Section �� we give the underlying mechanism of
METUFlow scheduler� The architecture of METUFlow is provided in Section
�� In the sections that follow namely Section �� �� �� � and �� the details
of the components of METUFlow� namely� scheduler� task handlers� worklist
manager� history manager and transaction manager are explained� In Section
��� our concurrency control mechanism is described� Finally� the conclusions
are provided in Section ���

METUFlow �

�� The Process Model and the METUFlow De�nition

Language� MFDL

In a work�ow de�nition language� the tasks involved in a business process�
the execution and data dependencies between these tasks are provided�

METUFlow De�nition Language �MFDL� that we have designed has a
graphical user interface developed through Java which allows de�ning a work�
�ow by accessing METUFlow from any computer that has a Web browser�
This feature of METUFlow makes it possible to support mobile users�

The WfMC have identi�ed a set of six primitives with which to describe
�ows and hence construct a work�ow speci�cation ���� With these primitives
it is possible to model any work�ow that is likely to occur� These primi�
tives are� sequential� AND�split� AND�join� OR�split� OR�join and repeatable
task� These primitives are all supported by MFDL through its block types�
MFDL contains seven types of blocks� namely� serial� and parallel� or parallel�
xor parallel� contingency� conditional and iterative blocks� Of the above block
types� serial block implements the sequential primitive� And parallel block
models the AND�split and AND�join primitives� AND�split� OR�join pair is
modelled by or parallel block� Conditional block corresponds to OR�split and
OR�join primitives� Finally� Repeatable task primitive is supported by the it�
erative block�

A work�ow process is de�ned as a collection of blocks� tasks and subpro�
cesses� A task is the simplest unit of execution� Processes and tasks have input
and output parameters corresponding to work�ow relevant data to commu�
nicate with other processes and tasks� The term activity is used to refer to a
block� a task or a �sub�process� Blocks di	er from tasks and processes in that
they are conceptual activities which are used only to specify the ordering and
the dependencies between activities�

The following de�nitions describe the semantics of the block types where
B stands for a block� A for an activity and T for a task�

Syntax � B � �A��A��A�� ������An�� where B is a serial block�
De�nition � Start of a serial block B causes A� to start� Commitment of

A� causes start of A� and commitment of A� causes start of A�� and so
on� Commitment of An causes commitment of B� If one of the activities
aborts� the block aborts�

Syntax � B � �A� � A� � ����� � An�� where B is an and parallel block�
De�nition � Start of an and parallel block B causes start of all of the

activities in the block in parallel� B commits only if all of the activities
commit� If one of the activities aborts� the block aborts�

Syntax � B � �A�jA�j�����jAn�� where B is an or parallel block�
De�nition � Start of an or parallel block B causes start of all of the activ�

ities in the block in parallel� At least one of the activities should commit
for B to commit but B can not commit until all of the activities terminate�
B aborts if all the activities abort�

� Asuman Dogac et al�

Syntax � B � �A�jjA�jj�����jjAn�� where B is an xor parallel block�
De�nition � Start of an xor parallel block B causes start of all tasks in

the block in parallel� B commits if one of the activities commits� and
commitment of one activity causes the other activities in the block to
abort� If all of the activities abort� the block aborts�

Syntax � B � �A�� A�� �����An�� where B is a contingency block�
De�nition � Start of a contingency block B causes start of A�� Abort of

A� causes start of A� and abort of A� causes start of A�� and so on�
Commitment of any activity causes commitment of B� If the last activity
An aborts� the block aborts�

Syntax 	 B � �condition�A�� A��� where B is a conditional block�
De�nition 	 Conditional block B has two activities and a condition� If the

condition is true when B starts� then the �rst activity starts� Otherwise�
the other activity starts� The commitment of the block is dependent on
the commitment of the chosen activity� If the chosen activity aborts� then
B aborts�

Syntax
 B � �condition�A��A�� ������An�� where B is an iterative block�
De�nition
 The iterative block B is similar to serial block� but start of

iterative block depends on the given condition as in a while loop and
execution continues until either the condition becomes false or any of the
activities aborts� If B starts and the condition is true� then A� starts
and continues like serial block� If An commits� then the condition is
reevaluated� If it is false� then B commits� If is true� then A� starts
executing again� If one of the activities aborts at any one of the iterations�
B aborts�

Syntax � A � �Ac� AbortList�Ac��� where Ac is the compensation activity
of A�

De�nition � The compensation activity Ac of A starts if A has committed
and any of the activities in AbortList�Ac� has aborted� AbortList is a list
computed during compilation which contains the activities whose aborts
necessitate the compensation of A� If both an activity and its subactivities
have compensation� only the compensation of the activity is used� If only
the subactivities have compensation� it is necessary to use compensations
of the subactivities to compensate the whole activity�

Syntax � T � Tu� where Tu is the undo task of task T�
De�nition � The undo task Tu of T starts if T fails�

In addition to activities� there is an assignment statement in MFDL which
accesses and updates the work�ow relevant data�

The following is an example work�ow de�ned in MFDL�

TRANS�ACTIVITY register�patient �OUT int patient�id��
TRANS�ACTIVITY delete�patient�IN int patient�id��
USER�ACTIVITY examine�patient �IN int patient�id�

OUT int blood�test�type�list���	�
OUT int roentgen�list���	�

METUFlow �

PARTICIPANT DOCTOR�

USER�ACTIVITY blood�exam �IN int patient�id�
IN int blood�test�type�list���	� OUT STRING result���	�
PARTICIPANT LABORANT�

USER�ACTIVITY roentgen �IN int patient�id�
IN int roentgen�list���	� OUT STRING result���	�
PARTICIPANT ROENTGENOLOGIST�

USER�ACTIVITY check�result �IN int patient�id�
IN string result
���	� IN STRING result����	�
PARTICIPANT DOCTOR�

USER�ACTIVITY cash�pay �IN int patient�id�
PARTICIPANT TELLER�

USER�ACTIVITY credit�pay �IN int patient�id�
PARTICIPANT TELLER�

DEFINE�PROCESS check�up �IN int patient�id�
�
ACTIVITY register�patient register�
ACTIVITY delete�patient delete�
ACTIVITY examine�patient examine�
ACTIVITY blood�exam blood�
ACTIVITY roentgen roent�
ACTIVITY check�result check�
ACTIVITY cash�pay cash�
ACTIVITY credit�pay credit�

var int patient�id�
var STRING result
���	� result����	�
var int blood�test�type�list���	� roentgen�list���	�

IF �patient�id �� ��
register�patient�id�

COMPENSATED�BY delete�patient�id��
examine�patient�id� blood�test�type�list�

roentgen�list��
AND�PARALLEL
�

blood�patient�id� blood�test�type�list� result
��
WHILE �result� �� NULL�

roent�patient�id� roentgen�list� result���

check�patient�id� result
� result���
XOR�PARALLEL
�

cash�patient�id��
credit�patient�id��

This example is a simpli�ed work�ow of a check�up process carried out
in a hospital� First� a patient is registered to the hospital� if she
he has not
registered before� Then� she
he is examined by a doctor and according to the
doctor�s decision� a blood test is made and roentgen is taken for the patient

� Asuman Dogac et al�

Table ���� Event Attributes

activity types start abort�fail commit�done

transactional triggerable immediate normal
�PC transactional triggerable normal
immediate normal
non transactional triggerable immediate immediate
non transactional
with checkpoint triggerable immediate immediate

in parallel� Since the patient need not wait for blood test to be �nished in
order roentgen to be taken� these two tasks are executed in an and parallel
block� Roentgen can be taken more than once� if the result is not clear� This
is accomplished by an iterative block� After the results are checked by the
doctor� the patient pays the receipt either in cash or by credit� These two
tasks are placed in an xor parallel block so that� cash and credit begins in
parallel and commit of one causes the other to abort�

In METUFlow� there are �ve types of tasks� These are TRANSAC�
TIONAL� NON TRANSACTIONAL� NON TRANSACTIONAL with CHE�
CKPOINT� USER and �PC TRANSACTIONAL activities� USER activities
are in fact NON TRANSACTIONAL activities� They are speci�ed separately
in order to be used by the worklist manager which handles the user�involved
activities� The states and transitions between these states for each of the ac�
tivity types are demonstrated in Figure ���� The signi�cant events in METU�
Flow are start� commit and abort� The event attributes of these tasks are
shown in Table ���� They are taken into account during guard generation�
Normal events are delayable and rejectable �e�g� commit�� inevitable events
are delayable and nonrejectable� immediate events are nondelayable and non�
rejectable �e�g� abort�� and triggerable events are forcible �e�g� start��

Executing

Start

st

cm

st

pr

cm

Start

Executing

Prepared

2PC-TransactionalTransactional

ab

ab

st

donefail

Start

Executing

Failed Done CompensatedUndone

st

donefail

Start

Executing

Restart

Failed Done CompensatedUndone

Checkpointed

Non-Transactional with checkpointNon-Transactional

Transitions caused by activity’s own events

Transitions made by other events under Enactment Service control

Aborted Committed

Compensated

Compensated

 Underlined transitions are controllable events

Committedaborted

ab

Fig� ���� Typical task structures

METUFlow �

Note that the abort event of a �PC TRANSACTIONAL task after the co�
ordinator has taken a decision is normal whereas it is immediate before the co�
ordinator has taken a decision� Triggerable and normal events are controllable
because they can be triggerred� rejected or delayed while immediate events are
uncontrollable� We have chosen to include a second type of non transactional
activity� namely� NON TRANSACTIONAL with CHECKPOINT� in our
model by making the observation that certain non transactional activities
in real life� take checkpoints so that when a failure occurs� an application
program rolls the activity back to the last successful checkpoint�

These activity types may have some attributes such as CRITICAL�
NON VITAL and CRITICAL NON VITAL� Critical activities can not be
compensated and the failure of a non vital activity is ignored ��� ��� Besides
these attributes� activities can also have some properties like retriable� com�
pensable� and undoable� A retriable activity restarts execution depending on
some condition when it fails� Compensation is used in undoing the visible
e	ects of activities after they are committed� E	ects of an undoable activity
can be removed depending on some condition in case of failures� Some of
these properties are special to speci�c activity types� Undo conditions are
only de�ned for non transactional tasks� because transactional tasks do not
leave any e	ects when they abort� Only �PC transactional activities can be
de�ned as critical� Note that the e	ects of critical activities are visible to
the other activities in the work�ow but the commitment of these activities
are delayed till the successful termination of the work�ow� An activity can
be both critical and non vital at the same time� but can not be critical and
compensable�

In MFDL� activities in a process are declared using the reserved word AC�
TIVITY� This declaration allows the sharing of an activity de�nition among
many work�ow processes with possibly di	erent attributes and properties for
each instance�

�� Guard Generation for Distributed Scheduling

In this section� �rst the semantics of the block types are de�ned using ACTA
formalism� We then show that the two dependencies provided in ��� are ad�
equate to express the speci�ed block semantics and result in simple guard
expressions� Finally� a mechanism for guard construction is presented�

�
� Semantics of the Block Types using ACTA Formalism

We use the ACTA formalism ��� �� with slight modi�cations to express the
semantics of block types� as follows�

Let ti and tj be two transactions�

� We treat fail�done event of non transactional activities as abort�commit of
transactional activities�

� Asuman Dogac et al�

� Commit Dependency�tj CD ti�� if transaction ti commits� then tj com�
mits�

� Commit�on�Abort Dependency�tj CAD ti�� if transaction ti aborts�
then tj commits�

� Abort Dependency�tj AD ti�� if transaction ti aborts� then tj aborts�
� Abort�on�Commit Dependency�tj ACD ti�� if transaction ti commits�
then tj aborts�

� Begin Dependency�tj BD ti�� if transaction ti begins executing� then tj
starts�

� Begin�on�Commit Dependency�tj BCD ti�� if transaction ti commits�
then tj begins executing�

� Begin�on�Abort Dependency�tj BAD ti�� if transaction ti aborts� then
tj begins executing�

Conditional dependencies are added to the ACTA formalism� These de�
pendencies have an additional argument which is
condition
� For example�
a conditional begin dependency is expressed as BD�C�� If condition C is true�
then BD holds� else it does not hold�

Using the modi�ed ACTA formalism� semantics of block types can be
restated as follows�

Semantics � B � �A��A��A�� ������An�� where B is a serial block�

� A� BD B
� Ai�� BCD Ai � � �i�n
� B CD An

� B AD Ai �� � i �n

Semantics � B � �A� � A� � ����� � An�� where B is an and parallel block�
� Ai BD B �� � i �n
� B AD Ai �� � i �n
� �i�B CD Ai�

Semantics � B � �A�jA�j�����jAn�� where B is an or parallel block�
� Ai BD B �� � i �n
� �i �B CD Ai� � ��j��B CD Aj� � �B CAD Aj���� j��i
� �i�B AD Ai�

Semantics � B � �A�jjA�jj�����jjAn�� where B is an xor parallel block�
� Ai BD B �� � i �n
� �i �B CD Ai� � ��j�Aj ACD Ai��� i��j
� �i�B AD Ai�

Semantics � B � �A�� A�� �����An�� where B is a contingency block�
� A� BD B
� Ai�� BAD Ai� � � i�n
� B CD Ai� � �i�n
� B AD An

Semantics 	 B � �condition�C��A�� A��� where B is a conditional block�
� A� BD�C� B

METUFlow �

� A� BD��C� B
� B CD�C� A�

� B CD��C� A�

� B AD�C� A�

� B AD��C� A�

Semantics
 B � �condition�C��A��A�� ������An�� where B is an iterative
block�
� A� BD�C� B
� Ai�� BCD Ai� � �i�n
� B CD��C� An

� B AD Ai

Semantics � A � �Ac� AbortList�Ac��� where Ac is the compensation ac�
tivity of A�
� �Ac BCD A� � �Ac BAD AbortList�Ac��

Semantics � T � Tu� where Tu is the undo task of T�
� Tu BAD T

ACTA formalism speci�es the transaction semantics of a model by pre�
senting transaction relations with prede�ned dependencies� However� these
dependencies are expressed at the abstract level and therefore the following
two primitives ��� �� are used to specify intertask dependencies as constraints
on the occurrence and temporal order of events�

�� e� � e�� If e� occurs� then e� must also occur� There is no implied
ordering on the occurrence of e� and e��

�� e� � e�� If e� and e� both occur� then e� must preceed e��

The ACTA dependencies used in the speci�cation of the block semantics are
expressed in terms of these two primitives as follows�

� Commit Dependency�tj CD ti��
�Committj � Committi� � �Committi � Committj �

� Commit�on�Abort Dependency�tj CAD ti��
�Aborttj � Committi� � �Committi � Aborttj �

� Abort Dependency�tj AD ti��
�Aborttj � Abortti � � �Abortti � Aborttj �

� Abort�on�Commit Dependency�tj ACD ti��
�Aborttj � Committi� � �Committi � Aborttj �

� Begin Dependency�tj BD ti��
�Starttj � Startti� � �Startti � Starttj �

� Begin�on�Commit Dependency�tj BCD ti��
�Starttj � Committi� � �Committi � Starttj �

� Begin�on�Abort Dependency�tj BAD ti��
�Starttj � Abortti� � �Abortti � Starttj �

The guards of events corresponding to these two primitive dependencies
are as follows ��� ���

�� Asuman Dogac et al�

Table ���� Guards corresponding to the dependency set

dependency e f G�f� G�e�

A BD B Bst Ast Bst TRUE
A BCD B Bcm Ast Bcm TRUE
A BAD B Bab Ast Bab TRUE
A CD B Bcm Acm Bcm TRUE
A CAD B Bab Acm Bab TRUE
A AD B Bab Aab Bab TRUE
A ACD B Bcm Aab Bcm TRUE

For the constraint e � f� which corresponds to the dependency D� �
�e � �f � e 	 f � the guards are�

� G�e� � TRUE

� G�f � � ��e� e

Note that e means that e will always hold� �e means that e will eventually
hold �thus e entails �e�� At runtime e can occur at any point in the history
whereas f can occur only if e has occurred or it is guaranteed that �e will occur�

For the constraint f� e� which corresponds to the dependency D� � �f �e�
the guards of events are�

� G�e� � TRUE

� G�f � � �e

These guards state that e can occur at any time in the history� f can occur
if e has happened or will happen�

�
� Guard Construction Steps

We use the dependencies BD� BCD� BAD to compute start guards� AD� ACD
to generate abort guards and CD� CAD to compute commit guards of activ�
ities ���� Note that all of these dependencies are in the form of an expression
which contains one subexpression with � primitive and the other with �

primitive with a conjunction in between them such as �f � e� � �e � f�� We
present the construction of guards of events e and f for this dependency in
the following ����

G�e� � TRUE
G�f � � G�D�� f � � G�D�� f � � �e� � ��e� e� � � �e� ��e�� � �e�

e� � FALSE� � �e� e� � �e� e � e

Note that after simpli�cation� the guard of f turned out to be e� In
other words� the occurrence of event f only requires event e to have already
happened� This is an intuitively expected result since in our work�ow speci��
cation� the occurrence of events only depends on the events already occurred

METUFlow ��

with no references to the future events� This result facilitates the computa�
tion of the guards drastically� The guards of events of the dependency set
corresponding to our work�ow speci�cation language are computed as pre�
sented in Table ���� Note that from this result� we conclude that if we want
to compute the guard related to an activity A�� we must consider only
A�

ACTA Dep A�
 type dependencies� not
A� ACTA Dep A�
 type dependen�
cies� The reason is that in the latter� the guard of any event related with A�

is already TRUE from Table ����
If we summarize� by starting with a block structured work�ow speci�ca�

tion language� we obtain a well de�ned set of dependencies� all in the form �f
� e� � �e � f�� This produces very straightforward guards for events which
in turn� makes it possible to compute the guards directly from the process
de�nition with a simple algorithm� The complete guard generation process is
outlined in Figure ����

Workflow
Compiler

Construction
Guard specifies

generates

Business and Process Model

Process Trees

Temporal Algebra Specification

Workflow Definition Language

Guards on Events

Intertask Dependencies

Fig� ���� Guard generation
process

A process tree is generated from the work�ow speci�cation in MFDL� The
process tree consists of nodes representing processes� blocks and tasks� and is
used only during compilation time� execution being completely distributed�
Each of the nodes is given a unique label to refer it in the execution phase�
These activity labels make it possible for each task instance to have its own
uniquely identi�ed event symbols� This tree explicitly shows the dependencies
between the activities of the work�ow� In fact� with Table ��� at hand� it is
possible to generate the guards of a process from its process tree� In the
following we describe the guard construction process through an example�

�� Asuman Dogac et al�

register
2

examine
4

blood
6

roent
8

restart
9

check
10

cash
12

credit
13

0

and_parallel xor_parallel

delete
3

5
conditional

process

11
1

iterative
7

Fig� ���� Process tree of the example MFDL

In Figure ���� the process tree corresponding to MFDL example of Section
� is given� The nodes shown in dashed lines are the compensation activities
for the corresponding nodes�

Consider node � of Figure ��� which is a compensation task� Using Se�
mantics ��

D� � � BAD �
D� � � BCD �
D � D� � D�

Note that AbortList of � is f�g� because the compensation of � is needed
only when � aborts� From Table ����

G�D�� �st� � �ab
G�D�� �st� � �cm
G�D� �st� � G�D�� �st� � G�D�� �st� � �ab � �cm�

This guard states that task � should be started when process itself �node
�� is aborted while task � has committed�

In Figure ���� there is a restart node labeled as �� This node is special to
iterative block� Restart node is treated like the other children of the iterative
node during execution� Its role is to prepare the block for the next iteration
while the iteration condition is true� After restart node commits� the iteration
condition is checked� If it is true� the next iteration starts� Otherwise� the
iterative node commits� as stated in Semantics � �An corresponds to restart
node�� Note that this cyclic dependency in arbitrary tasks is handled in ���
by resurrecting a guard under appropriate conditions� Ours is a practical
implementation of this formal concept�

Table ��� shows the start� abort and commit guards for all the nodes of
the example process tree given in Figure ����

METUFlow ��

Table ���� Guards of the example work
ow de�nition

label start start
condition

abort commit commit
condition

� TRUE �ab� �ab� �ab�
��ab� ��ab

��cm

� �st patient id
�� �

�ab �cm

� �st TRUE TRUE
� �ab�

�cm
TRUE TRUE

� �cm TRUE TRUE
� �cm �ab� �ab �cm�

�cm
� �st TRUE TRUE
� �st result�

�� Null
�ab� �ab �cm result� ��

Null
� �st TRUE TRUE
� �cm TRUE TRUE
�� �cm TRUE TRUE
�� ��cm ��ab� ��ab ��cm�

��cm
�� ��st ��cm ��ab
�� ��st ��cm ��ab

It should be noted that in Table ���� some of the guards are set to TRUE
right away� This is because either the occurrences of these events do not
depend on the occurrence of any event or they are immediate events� Also
note that� xor parallel blocks identify a race condition without a need for
preprocessing� For example� from Table ���� it is clear that abort of �� is
dependent on the commitment of �� and commitment of �� is dependent on
the abort of ��� Obviously� this creates a deadlock situation� We implemented
a modi�ed � Phase Commitment protocol to handle this case �See Section ����
When xor parallel block starts� all of its immediate children are registered to
the coordinator object belonging to this block� The coordinator keeps track
of status of these children to ensure that only one of them commits� In this
case� the abort and commit guards are not constructed any more for the child
nodes�

�� METUFlow Architecture

A simpli�ed architecture of METUFlow system is given in Figure ���� In
METUFlow� �rst a work�ow is speci�ed using a graphical work�ow spec�
i�cation tool which generates the textual work�ow de�nition in MFDL as
explained in Section �� The core component of a work�ow management sys�
tem is the work�ow scheduler which instantiates work�ows according to the
work�ow speci�cation and controls correct execution of activities interacting

�� Asuman Dogac et al�

Guard
Handler

Guard
Handler

Guard
Handler

Guard
Handler

Guard
Handler

Worklist
Handler

Worklist
Handler

Worklist
Handler

Task Task Task Task

Message Passing using Reliable Queue:

Transactional
Task Handler Task Handler

Non-trans.

Scheduler

User UserUser

Task Handler Task Handler Task Handler
2PC trans. Assignment User

Work item Authorization
Service

History
Manager

Reliable Queue

OTS

Scheduler

Task Handler

Fig� ���� The simpli�ed architecture of METUFlow

with users via worklists and invoking applications as necessary� In METU�
Flow� the functionality of the scheduler is distributed to a number of guard
handlers which contain the guard expressions for the events of the activity
instances as explained in Section �� Also� there exist a task handler which
acts as an interface between the activity instance and its guard handler� De�
tails of task handling in METUFlow is discussed in Section �� In a work�ow
management system� there are activities in which human interactions are nec�
essary� In METUFlow� work item scheduler manages such interactions� It is
responsible for progressing work requiring user attention and interacts with
the scheduler through user task handler as shown in Figure ���� Work item
scheduler uses the authorization service to determine the authorized roles
and users� The detailed architecture of work item scheduler is provided in
Section �� History Manager provides the mechanisms for storing and query�
ing the history of both ongoing and past processes� It communicates with the
scheduler through a reliable message queue to keep track of the execution of
processes� It is also necessary for history manager to be in touch with the
authorization service to inform about the past processes that a	ect security�

The communication infrastructure of METUFlow is CORBA but CORBA
does not provide for reliable message passing� that is� when ORB crashes� all
of the transient messages are lost� For this reason� we have implemented a
reliable message passing mechanism which uses Object Transaction Service
�OTS� based transaction manager �See Section ��� to commit distributed
transactions� Note that reliable message passing is necessary among all the

METUFlow ��

components of METUFlow such as between guard handlers and task handlers
as indicated in Figure ����

�� Guard Handlers in METUFlow

After textual work�ow de�nition is produced by MFDL� a process tree is
generated using this textual de�nition as explained in Section ���� A guard
expression is generated for each node of the process tree� After the guards are
constructed� an environment in which these guards are evaluated through the
event occurrence messages they receive is created� Since METUFlow execu�
tion environment is distributed on the basis of activities� each activity should
know when to start� abort or commit without consulting to a top�level central
decision mechanism� For this purpose� a guard handler is associated with each
activity instance which contains the guard expressions for the events of that
activity instance ���� Also� there exists a task handler for each activity in�
stance which embodies a coarse description of the activity instance including
only the states and transitions �i�e� events� that are signi�cant for coordina�
tion� A guard handler provides the message �ow between the activity�s task
handler and the other guard handlers in the system�

Each node in the process tree is implemented as a CORBA ��� �� object
with an interface for the guard handler to receive and send messages� Figure
��� shows the execution environment of objects of guard handler for the
example check�up work�ow� The reason for creating objects for each node
rather than only for leaf nodes� which correspond to the actual tasks� is that
carrying block semantics to the execution reduces the number of messages to
be communicated� This is explained in the following example�

Assume that we have a process segment like�

serial �
and�parallel �

T
���
T����
���
Tn���

and�parallel �

T
���
T����
���
Tn���

Without a block abstraction during execution� the start guard of each
activity in the second and parallel block must contain the commit event of
each task of the �rst and parallel block� Obviously this necessitates to com�
municate the commit event of each of the n tasks in the �rst and parallel

�� Asuman Dogac et al�

GUARD HANDLER

occurred event queue
for start

occurred event queue
for abort

occurred event queue
for commit

start message list

abort message list abort guard

conditionstart guard

commit guard conditioncommit message list

condition

Task Handler

2PC
 modified

 coordinator

and(0.ab, 2.cm)
TRUE
TRUE

0.st

2.cm

2.st
0.ab

patient_id==0

4.st

1.st
TRUE
TRUE

1.ab
1.cm, 3.st

1.cm
TRUE
TRUE

0.ab
5.st

4.cm
or(6.ab, 7.ab)
and(6.cm, 7.cm)

6.st, 7.st
0.ab
10.st

5.st
TRUE
TRUE

5.ab
5.cm

5.st
or(8.ab, 9.ab)

8.st
5.ab
5.cm

result2==null

result!=null9.cm

7.st
TRUE
TRUE

7.ab
9.st

8.cm
TRUE
TRUE

7.ab
7.cm

5.cm
TRUE0.ab
TRUE11.st

10.cm
and(12.ab, 13.ab)
or(12.cm, 13.cm)

12.st, 13.st

0.cm
0.ab

11.st
13.cm13.cm, 11.ab

13.ab, 11.cm 13.ab

11.st
12.cm
12.ab

12.cm, 11.ab
12.ab, 11.cm

5.ab, 10.ab, 11.ab)or(1.ab,4.ab,
TRUE

11.cm

GUARD HANDLER(process(0))

GUARD HANDLER(conditional(1))

GUARD HANDLER(register(2))

GUARD HANDLER(delete(3))

GUARD HANDLER(credit(13))

GUARD HANDLER(iterative(7))

GUARD HANDLER(roent(8))

GUARD HANDLER(blood(6))

GUARD HANDLER(and_parallel(5))

GUARD HANDLER(examine(4)) GUARD HANDLER(restart(9))

Task Handler

Task Handler

Task Handler

Task Handler

Task Handler

Task Handler

Task Handler Task Handler

Task Handler

Task Handler

Task Handler

Task Handler

Task Handler

Task Handler

2.ab

flow of occurred events

GUARD HANDLER(cash(12))

GUARD HANDLER(xor_parallel(11))

GUARD HANDLER(check(10))

call of restart() method of guard handler

messages between task handler and coordinator

1.st
3.st

Fig� ���� Execution environment of objects of Guard Handler

METUFlow ��

and_parallel

serial

T1

T2

T1

T2

and_parallel

Tn
Tn

Flow of messages
Fig� ���� Environment of objects without
block abstraction

block to each of the n tasks in the second and parallel block� Hence without
a block abstraction� the number of messages to be communicated is n�� as
shown in Figure ����

When block abstraction is used during execution as shown in Figure ����
the start guard of the second and parallel block contains the commit event of
the �rst and parallel block� Thus the commit guard of the �rst and parallel
block contains the commit events of each of its n tasks� the start guards of
each of the tasks in the second and parallel block contain the start event of
the second and parallel block� For this case� the number of messages commu�
nicated reduces to �n � �� as shown in Figure ����

Flow of messages

T1

T2
and
parallel

and
parallel

T1

T2

serial

and_parallel

Tn Tn

and_parallel

Fig� ���� Environment of
objects with block ab�
straction

�� Asuman Dogac et al�

At compile time the guards are generated and stored locally with the
related objects� The objects to which the messages from this object are to be
communicated are also recorded� For example for task �� since its start guard
contains an abort event of the process� the abort message list of the process
contains the object identi�er of task � to indicate that the start guard of task
� should be informed of the abort of the process� When an object receives an
event to be consumed� it is placed in the occurred events queue of the related
signi�cant event of the object� Figure ��� explicitly shows the source and the
destination of the messages�

A guard handler maintains the current guard for the signi�cant events of
the activity and manages communications� When a task handler is ready to
make a transition� it attempts the corresponding event� Intuitively� an event
can happen only when its guard evaluates to true� If the guard for the at�
tempted event is true it is allowed right away� If it is false� it is rejected�
Otherwise� it is parked� Parking an event means defering its occurrence un�
til its guard simpli�es to true or false� When an event happens� messages
announcing its occurrence are sent to the guard handlers of other related
activities� Persistent queues are used to provide reliable message passing�
When an event announcement arrives� the receiving guard handler simpli�es
its guard to incorporate this information� If the guard becomes true� then the
appropriate parked event is enabled�

	� Task Handling in METUFlow

A task handler is created for each task instance� It acts as a bridge between
the task and its guard handler� The guard handler sends the information nec�
essary for the execution of the task� like the name of the task� parameters to
the task handler and the task handler sends the information about the status
of the task and changed values of the parameters to the guard handler� When
a task starts� its status becomes Executing� If it can terminate successfully�
then its status is changed to Committed or Done depending on whether it is
a transactional or a non�transactional task� In case the task fails� its status
becomes Aborted or Failed�

Task handler ��� is a CORBA object and has a generic interface which
contains the following methods to communicate with its associated guard
handler�

� Init
 This method is used for passing initial data such as name of the task
and initial parameters to the task handler�

� Start
 This method is called by the guard handler when the start guard
of the task evaluates to true� This causes the task handler to invoke the
actual task�

METUFlow ��

The task handlers for each di	erent type of task inherit from this inter�
face and provide overloading of these methods and
or further methods as
necessary as explained in the following�

� Transactional task handler
 This type of task handler is coded for the
transactional tasks� Even if a transactional task terminates successfully� its
task handler should wait for the commit or abort message from the guard
handler� Therefore� in addition to the common methods described above�
this type of task handler provides two more methods� Commit and Abort
to be called by the guard handler when a task is allowed to commit or
abort respectively�

� Non�transactional task handler
 This type of task handler handles
tasks which are of type either non�transactional or non�transactional with
checkpoint� The di	erence between non�transactional and non�transactional
with checkpoint is that in the latter in case of a failure the application is
rolled back to the latest checkpoint and not to the beginning� Since this
does not a	ect the communication between the task and task handler�
only one type of task handler is de�ned for both of them� Note that� non�
transactional tasks terminate without waiting for any con�rmation from
the guard handler� They only inform the task handler about the status
�Done or Failed��

� Two phase commit task handler
 This type of task handler is required
for two phase commit transactional tasks� The di	erence between this type
of task and transactional tasks is that� the former provides an additional
status message� namely Prepared� Thus� this type of task handler provides
a method called Prepare to be called by the transaction manager�

� User task handler
 This type of task handler is coded for the user tasks�
User tasks are handled by work item scheduler and worklist handler �see
Figure ����� The user task handler just stores the name of the task and the
other necessary information to the repository from where the work item
scheduler retrieves� The work item scheduler together with the worklist
handlers informs the user about the tasks that she
he is responsible for
and sends the status of the task to the user task handler �See Section ����

� Assignment task handler
 This task handler does not cause any task
to begin� but only a work�ow relevant data assignment is done within the
scope of a transaction�

In Work�ow Reference Model of the Work�ow Management Coalition
���� the task handlers are classi�ed according to having local or remote access�
This classi�cation is due to the assumption that the scheduler is centralized�
Since scheduling is handled in a distributed manner in METUFlow� there is
no need for such a classi�cation�

The tasks may de�ne their status in a way that the task handler can not
understand or the task may not understand the messages coming from the
task handler� Therefore� it becomes essential to interfere the source code of
existing tasks� If it is possible to make changes in the task� then additional

�� Asuman Dogac et al�

calls are added to the code of the task to convert the status information and
error messages so that task handler and task can understand each other� If
this is not possible� then the existing task is encapsulated by a code which
provides the required conversion�

{

 A new patient_id is generated for this patient

register_patient()

 TaskExecuting();

 /* This part of the code gets patient information from the user.

 Connect_to_Database();

 Insert_Into_Database(patient_info,status);
 if(status == True){
 ReadyToCommit();
 if(GetStatus() == Commit) {
 Commit();

 Return(patient_id);
 TaskCommitted();

 }
 TaskAborted();

}
}

 TaskAborted();

} else {

 } else {
 Abort();

 */

 Abort();

Fig� ���� An Example Task
Code

Task

Task

Handler

Guard

Handler

Commit(7) GetStatus(8)

TaskCommitted(9)Reply(10)

Start(1)

Reply(4)

IsCommitOk(6) ReadyToCommit(5)

Exec(2)

TaskExecuting(3)

Fig� ���� Communication among Guard Handler
 Task Handler and Task

In Figure ���� we provide the modi�ed code of the transactional task�
register patient� taken from the example given in Section �� to illustrate the
�rst strategy� The calls which are written in boldface are added to the original
code of the task� The meanings of these calls are as follows�

� TaskExecuting�� informs the task handler that it has started executing�
� ReadyToCommit�� informs the task handler that operation is termi�
nated successfully�

� TaskAborted�� informs the task handler that the �nal status is Abort�

METUFlow ��

� TaskCommitted�� informs the task handler that the �nal status is Com�
mit�

� GetStatus�� checks the status message coming from the task handler�

The communication mechanism among guard handler� task handler and
a task is provided in Figure ���� In the �gure� the labels of the arrows show
the message passing between the entities� The labels are numbered according
to the order in which the calls are made and the �gure describes the �ow of
messages for the scenario in which the task terminates successfully and its
commit guard evaluates to true� When the start guard of the task evaluates
to true� the guard handler of the task calls Start method of the task handler�
This causes the task handler to start execution of the task� When the task
starts executing� as the �rst operation� task handler is informed by calling
TaskExecuting call� The status of the task is sent to the guard handler
by the task handler in Reply method with the parameter Executing� Then
the normal �ow of the task begins� If patient information is written to the
database successfully� the task handler is sent ReadyToCommit call� The
task handler informs the guard handler that the task is ready to commit by
calling its IsCommitOk method� If the commit guard of the task evaluates
to true� the guard handler informs task handler about this situation by call�
ing its Commit method� Otherwise� Abort method is called� Task checks
whether the message sent is Abort or Commit by the GetStatus call� If task
handler sends Commit� then task commits actually and claims the �nal state
as Commit� In case of Abort message� task aborts and sends the �nal abort
status� When �nal status is claimed by the task� the task handler informs the
guard handler about the �nal status by calling Reply method again�

� Worklist Management in METUFlow

The worklist manager is a software component which manages the interaction
between work�ow participants and the scheduler�

In METUFlow� the worklists are distributed� that is� a worklist at a site
contains the work items to be accessed by the users at that site�

When a user activity is to be invoked by the scheduler� a user task han�
dler created for this purpose stores the request �work item� into a request list
within the scope of a transaction� Request list is a CORBA object and its
implementation in a particular site depends on the persistent storage avail�
able in that site� that is� this CORBA object is implemented on a DBMS
if it is available� otherwise it is implemented as a �le� Worklist manager�
as depicted in Figure ��� consists of two components� The �rst one� work
item scheduler� decides on the assignment of work items to the worklists of
the users in cooperation with the authorization service� The �rst version of
the authorization service implemented contains the de�nitions of roles and
their members� authorizations to execute tasks and constraints controlling

�� Asuman Dogac et al�

Worklist
Handler

Worklist
Handler

Worklist

Handler

Worklist
HandlerWorklist

Handler

Worklist
Handler

Work Item

Scheduler

Work Item
Scheduler

Work Item
Scheduler

Work Item
Scheduler

User Task
Handler

User Task

Handler

User Task
Handler

User Task

Handler

put
request/
get reply

put
request/
get reply

put
request/
get reply

put
request/
get reply

put
request/
get reply

:
:

:

:

:

Work Item
Scheduler

User Task

Handler

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 5

assign assign assign

assign
assign

worklist

retrieve
retrieve

retrieve

retrievereply
retrievereply

reply reply reply reply

Site 2 Site 3

retrieve

Site 1

requestreply
list list

put
replyrequest

get

retrieve

puts (gets) a work item into (from) request listput/get_request

put/get_reply puts (gets) reply from the user into (from) reply list

assign

reply

inserts work items into the worklists of the user
sends reply back (from worklist handler to work item scheduler)

retrives the worklist contents for the presentation to the user

Service
Authorization

Fig� ���� Worklist Manager in METUFlow

the execution of these authorizations� We plan to improve this service by
involving periodic� temporal� event based distributed constrained authoriza�
tions and authentication services� The work item scheduler is also responsi�
ble for putting the reply back into the reply list� again� within the scope of a
transaction� That is� the reply list is a persistent CORBA object whose imple�
mentation is realized through a DBMS or a �le depending on the capabilities
of the site concerned� The second component� worklist handler is responsible
for retrieving work items to be presented to the user for processing�

A point to be noted over here is the following� CORBA provides location
transparency� in other words the users need not be aware of the location of

METUFlow ��

the objects to be created� However� CORBA does provide mechanisms to
a	ect the object creation site although the speci�cs depends on the ORB at
hand� First by default� an object is created at the local site if it is possible�
Therefore� whenever there is a request to create a work item scheduler� it is
created at the same site with the user task handler� In order to be able to
create worklists at the same host with the involved user �or role�� a list is kept
which stores the association between the user�ids and host�ids� In METUFlow
lookup method of Orbix�s locator class ����� is used for this purpose�

Finally in order to provide access to the worklists through World�Wide�
Web we have chosen to implement them in Java which made it easier to
connect to a CORBA compliant ORB� namely Orbix through OrbixWeb�

�� History Management in METUFlow

Work�ow history management provides the mechanisms for storing and
querying the history of both ongoing and past processes� This serves two
purposes� First� during the execution of a work�ow� the need may arise for
looking up some piece of information in the process history� for example� to
�gure out who else has already been concerned with the work�ow at what
time in what role� and so on� This kind of information contributes to more
transparency� �exibility and overall work quality� Second� aggregating and
mining the histories of all work�ows over a longer time period forms the ba�
sis for analyzing and assessing the e�ciency� accuracy� and the timeliness of
the enterprise�s business processes� So� this information provides the feedback
for continuous business processes re�engineering� Given that� much of the his�
tory information relates to the time dimension in that it refers to turnaround
times� deadlines� delays� etc� over a long time horizon�

In consistence with its architecture� METUFlow history and work�ow
relevant data handling mechanism is based on CORBA� The history of each
activity instance is implemented as a CORBA object� To exploit the advan�
tages brought by the distributed execution of the work�ow scheduler� history
management should also be distributed� To make distributed history manage�
ment possible� the persistent store in which the history information is kept�
should also be distributed over the network�

The history of each activity instance is implemented as a CORBA object
at the same site at which the activity object itself is invoked� If a DBMS is
available at the concerned site� it is used as the persistent store� otherwise a
binary �le is used for this purpose� It is possible to have history objects cre�
ated at the same site where they are activated to prevent the communication
cost with the activity instance objects�

Each activity instance is responsible for its own history object and knows
the object identi�er of its parent activity instance� A child activity instance
invokes a method to pass the object identi�er of its own history object to its
parent object� A parent activity instance object establishes the links between

�� Asuman Dogac et al�

its own history object and its child�s history object� Note that in the even�
tual history tree of the process instance obtained this way objects are linked
through their object identi�ers according to the process tree�

In summary with a distributed history and work�ow relevant data han�
dling mechanism� availability and scalability aspects of the system are in�
creased�

When it comes to querying history both for monitoring and for data min�
ing purposes� having encapsulated these data as CORBA objects naturally
yields to using the Query Service Speci�cation of OMG�

The Query Service provides query operations on collection of objects� The
Query Service can be used to return collections of objects that may be�

� selected from source collections based on whether their member objects
satisfy a given predicate�

� produced by query evaluators based on the evaluation of a given predicate�
These query evaluators may manage implicit collections of objects�

A Query Evaluator with temporal dimension is being developed for this
purpose within the scope of the METUFlow project ����

�� OTS Based Transaction Manager

In METUFlow� distributed transaction management is realized through a
transaction manager that implements Object Transaction Service �OTS�
Speci�cation of OMG� OTS ���� OTS speci�cation describes a service that
supports �at and nested transactions in a distributed heterogeneous environ�
ment� It de�nes interfaces that allow multiple� distributed objects to cooper�
ate to provide atomicity of transactions� These interfaces enable the objects
either commit or rollback all the changes together in the presence of failure�

Figure ��� illustrates the major components and the interfaces de�ned
by OTS� In a typical scenario� a transactional client �transaction originator�
creates a transaction obtaining a Control Object from a Factory provided by
ORB� Transaction clients uses the Current pseudo�object to begin a transac�
tion� which becomes associated with the transaction originator�s thread� The
Current interface de�nes operations that allow a client of OTS to begin and
end transactions and to obtain information about the current transaction� A
simpli�ed version of Current interface is illustrated below�

interface Current �

void begin���

void commit���

void rollback���

Status get�status���

string get�transaction�name���

���

�

METUFlow ��

transaction originator recoverable server

(transmitted with request)

(associated with thread) (associated with thread)

Transaction Service

Factory

Control

Current

Coordinator
RecoveryCoordinator

SubtransactionAwareResource

Resource Current

Control

transaction
context

transaction
context

transaction
context

Terminator

Fig� 	��� The major components and interfaces of the OTS

ORB associates a Transaction Context with each Control object� A trans�
action context contains all the necessary information to control and to coor�
dinate transactions� Transaction context is either explicitly passed as a pa�
rameter of the requests� or implicitly propagated by ORB� among the related
transactional objects� The Control object is used in obtaining Terminator
and Coordinator objects� Transactional client uses the Terminator to abort
or to commit the transaction� Coordinator provides an interface for trans�
actional objects to participate in two�phase�commit protocol� Transactional
client sends requests to transactional objects� When a request is issued to
a transactional object the transaction context associated with the invoking
thread is automatically propagated to the thread executing the method of
target object� A transactional object is the one that supports transaction
primitives as de�ned by the standard� After the computations involved in
the transaction have been completed� the transactional client uses the Cur�
rent pseudo object to request that the changes be committed� OTS commits
the transaction using �PC protocol wherein a series of requests are issued
to the registered resources� Thus ORB provides the atomicity of distributed
transactions�

In addition to the above usage of OTS� in METUFlow OTS implemen�
tation� a method is added to the Coordinator object to handle xor parallel
block which requires one and only one task to commit� for the commitment
of the block�

�� Asuman Dogac et al�

�
� Correctness Issues in METUFlow

Since work�ows are long running activities� having the transactions to commit
within the scope of a work�ow instance is an accepted practice� Thus the data
modi�ed by these transactions becomes accessible to the rest of the world
which may cause inconsistencies� The problem is further complicated by the
transactions that are compensated� Yet many scenarios in the operation of a
work�ow system require the preservation of data consistency of at least some
data items�

It is possible to classify the data consistency problems involved into three
categories�

�� Data inconsistency problems involving a single site�
�� Data inconsistency problems involving more than one site�
�� Data inconsistency problems due to compensation�

As an example to the problems of �rst category consider an Order Pro�
cessing work�ow in a manufacturing enterprise� In the processing of the Or�
der Processing work�ow raw material stock is checked through a task to see
whether there is enough raw material in the stock to process the order� If not�
the missing raw materials are ordered from external vendors� Yet later in the
process when the actual manufacturing is to start for this work�ow instance
there might not be enough raw material in the stock to process this order� be�
cause a concurrently running instance of the same or other work�ows might
have updated the stock� Of course� executing all these tasks within the scope
of a transaction might have solved these problems but work�ow systems are
there to prevent the ine�ciency of long running transactions�

An example to the data inconsistency problems involving more than one
site is as follows� Consider theWithdraw�Deposit work�ow of a bank involving
two branches as shown in Figure ����� Withdraw task withdraws the given
amount of money from an account at the �rst branch� and the Deposit adds
this amount to another account at the second branch� To preserve data con�
sistency� no other task accessing the same account in any of the involved
branches should go in between these two tasks� For example� consider an Au�
dit work�ow which checks the balance of these accounts� If Withdraw�Deposit
tasks and tasks of the Audit work�ow are interleaved incorrectly as depicted
in Figure ����� Audit misses the money being transferred between the two
accounts�

As indicated in the literature ��� ��� early exposure of uncommitted data
is essential in the realm of long�duration and nested transactions such as
work�ows� Since the tasks of a work�ow are the grain of interleaving� and in�
termediate results are exposed� undo operations can no longer use the before�
images� In case of failures� compensating tasks may have to be used to seman�
tically undo the e	ects of committed tasks� The third type of problem occurs
when a committed task after disclosing its updates to the outside world is

METUFlow ��

compensated� Tasks can be a	ected by the data disclosed by a previously
committed task� in other words� their computations can be invalidated after
the compensation of a task that they depend on�

In the following sections the solutions brought to these problems in
METUFlow will be described�

Withdraw Deposit Report

Transfer

Site

w (log)(log)w
1322

3

(acc1)w
211

(acc1)r
212

r
12

(acc2)r (acc2)w
11

(acc1)r

SiteSite 2

11 12
(acc2)

1

TotalBal Report

2

Check Check Sum

1

11 12 13
211 212 213

21 22

Audit

Fig� �
��� Concurrency control problem of work
ows at multiple sites

��
� Concurrency Control in METUFlow

Data consistency can be violated by improper interleaving of concurrently
executing work�ows as discussed in the previous section� Also� such incon�
sistencies can occur due to improper interleaving of concurrently executing
work�ows and local transactions� Such interleavings must be prevented to
ensure data consistency in WFMSs� In this section we introduce the
sphere
of isolation
 concept for the correctness of concurrently executing work�ows�
In achieving this goal we aim at increasing concurrency� Our starting point
is to exploit the available semantics in work�ow speci�cation� How this se�
mantic knowledge is extracted and usage of this knowledge to preserve data
consistency are provided in the following�

��
�
� Spheres of Isolation
 We de�ne a sphere of isolation to be the set
of tasks that have data��ow and also serial control��ow dependencies among
them� We claim that the work�ow correctness can be provided by identifying
the spheres of isolation in a work�ow system automatically from the data

�� Asuman Dogac et al�

and serial control��ow dependency information obtained from the work�ow
speci�cation�

If at least one of the output parameters of a task is mapped to an input
parameter of the second task� we say that there is a data��ow dependency be�
tween these two tasks� There is a serial control��ow dependency between two
tasks� if one of them is begin on commit dependent on the other one �See Sec�
tion ����� i�e�� �rst task can begin only after the commitment of second task�
Two tasks belong to same sphere of isolation �denoted as �j

i � which means
jth sphere of ith work�ow� if there are data��ow and serial control��ow depen�
dency between them� For example� the task checking raw material stock and
stock update task in the manufacturing example belong to the same sphere
of isolation� In our banking example depicted in Figure ����� Withdraw��
and Deposit�� tasks belong to the same sphere of isolation� Yet since there is
no data��ow dependency between Report�� and other two� Report�� belongs
to a di	erent sphere of isolation� The complete list of spheres of isolation for
Figure ���� is as follows� ��

� � fWithdraw��� Deposit��g� �
�
� � fReport��g�

��
� � fCheck���� Check���� Sum���g� �

�
� � fReport��g�

The point we want to make over here is the following� Since isolation of a
whole work�ow execution is unacceptable because of performance reasons� we
want to discover smaller units of isolation� Since individual tasks of a work�ow
are isolated by local Resource Managers� concurrency controllers� our main
concern is to observe data dependencies between these individual tasks and
preserve these dependencies when required� Since we consider individual tasks
as black boxes the only way of observing data dependencies between them
is to check the serial control��ow and data��ow dependencies between them�
Since these dependencies are available at design time� spheres of isolation can
be determined automatically� Our notion of work�ow correctness is based on
the isolation of these spheres� i�e�� if the tasks of a sphere of isolation execute
at a single site� they are executed within the scope of a single transaction or
if they execute at multiple sites their serialization order must be compatible
at these sites� Note that� tasks which belong to di	erent spheres of isolation
may have incompatible serialization orders at multiple sites without violating
the work�ow correctness�

For example� since Withdraw�� and Deposit�� in Figure ���� belong to
the same sphere of isolation their serialization order must be compatible
at every site that they have executed� that is� Site� and Site�� So� either
Withdraw�� must be serialized after Check��� at Site� or Deposit�� must be
serialized before Check��� at Site�� Note that Report tasks can be serialized
in any order� since they do not a	ect the correct execution of other tasks� So�
for example Report�� should not necessarily have a consistent serialization
order with Wihdraw�� and Deposit�� for the correctness�

��
�
� A Correctness Theory for Work�ows
 A formal presentation of
sphere of isolation and a correctness theory developed to express the ideas
introduced in the previous section more precisely is given in ���� Note that the

METUFlow ��

theory introduced in ��� is motivated by the theoretical framework provided
in ��� for nested transactions in multidatabases�

In this theory� an execution history of work�ows is modelled by assuming
an imaginary root �OMNI� for all submitted work�ows� Execution history of
work�ows is a tree on tasks and� is a irre�exive and antisymmetric relation
on the nodes of the tree� Actually� � is the ordering requirements on the leaf
nodes due to execution order of con�icting data manipulation operations� Or�
dering imposed by leaf nodes are delegated to upper nodes in the hierarchy
using the following axioms for any tasks ti and tj �

i
 transitivity� if ti � tj and tj � tk then ti � tk
ii
 delegation� if ti � tj and

a
 if parent�tj� �
 ancestors�ti� then ti � parent�tj�
b
 if parent�ti� �
 ancestors�tj� then parent�ti�� tj �

Within this theoretical framework� the correctness of a sphere of isolation
can be checked and enforced by keeping its tasks under the same parent
whereas unrelated parts of the work�ow can be executed freely by making
them the children of independent parents�

1
1

1
1

1
2

1
2

2
1 2

1

2
2

2
2

Report
22

π

Sphere

12 (acc2)r (acc2)w
12 212r (acc2)

Withdraw Report

Site

w (log)(log)w
1322

3

Check Check Sum11 12 13 211 212 213

OMNI

π
π

(acc1)w 211(acc1)r11r

SiteSite 2

11

1

(acc1)

Deposit

Sphere Sphere Sphereπ

Fig� �
��� Example Execution History

For example� consider the execution history in Figure ���� as a continu�
ation of the example in Figure ����� Spheres of isolation are depicted within
the dotted rectangles in the Figure ����� Parents of ��

� and �
�
� are di	erenti�

ated and a virtual parent for the elements of ��
� is created and it is denoted as

�� Asuman Dogac et al�

Sphere��� Similarly� Sphere
�
� is created for the elements of ��

� and the parent
of the tasks of ��

� is renamed as Sphere
�
� and the parent of the tasks of �

�
� is

renamed as Sphere��� Since Withdraw�� and Check��� have issued con�ict�
ing data manipulation operations on acc� they are ordered asWithdraw�� �
Check��� at Site�� Also Deposit�� and Check��� are ordered as Deposit�� �
Check���� Since� Withdraw�� and Check��� are ordered as Withdraw�� �
Check����Withdraw�� and Sphere

�
� �which is parent�Check����� are ordered

as Withdraw�� � Sphere�� �from Axiom ii�a above�� Some of the delegated
orderings are not shown in Figure ���� for the sake of simplicity� By apply�
ing the delegation axiom repeatedly� the following order is obtained between
di	erent spheres of isolation� fSphere�� � Sphere��� Sphere

�
� � Sphere��g�

This execution is serializable and correct from the application point of view�
Observe that� since Report�� belongs to a di	erent sphere of isolation ���

� ��
its inconsistent serialization order with Withdraw�� and Deposit�� does not
a	ect the correct execution of the work�ow�

��
�
� Implementation Issues
 As can be seen from the discussion pre�
sented above� the spheres of isolation in a work�ow can be identi�ed and we
claim that correctness measures can be applied on the basis of spheres of
isolation� In ��� we present Nested Tickets �NT� technique to provide for the
correctness of concurrently executing nested tasks of work�ow systems� based
on spheres of isolation� The main idea of NT technique is to give tickets to
spheres and tasks� The NT technique makes the execution order of all tasks
of a sphere of isolation to be consistent at all related sites� In other words�
the consistency of serialization order of the tasks of a sphere of isolation is
provided by guaranteeing them to be serialized in the order of their ticket
numbers�

��
� Future Considerations for Concurrency Control in
METUFlow

Currently� we are in the process of developing a more e�cient correctness
notion for work�ows exploiting work�ow and task semantics in terms of se�
mantic dependencies between tasks ���� The concurrency control mechanism
based on this semantic information will guarantee that only the task inter�
leavings that preserve the correctness are allowed�

Another issue we are currently addressing is to bound the e	ects of com�
pensation on the tasks that are a	ected by accessing data which is exter�
nalized by the compensated tasks ���� Our primary goal is to analyze the
implications of the compensation on the correctness of concurrent executions
using task and work�ow semantics and to provide correct executions with
respect to compensation� We plan to present the user a mechanism with a
�exibility of isolation levels that should be respected very much like the iso�
lation levels of SQL���� Hence critical tasks will have chance to choose not
reading subject to compensation data�

METUFlow ��

��� Conclusions

Currently the �rst prototype of METUFlow is operational� The system at�
tempted to bring solutions to the following problems of the work�ow systems�

�� Scalability and adaptibility through distributed scheduling� history and
worklist management�

�� Handling of invoked applications on distributed heterogenous environ�
ments through CORBA�

�� Supporting mobile users through the Java based Web interfaces�

With the future versions of METUFlow� we plan to attempt the following
problems�

�� Deadlock and reachability analysis of work�ow speci�cations ����
�� Handling dynamic changes within work�ow speci�cation which boils

down to changing guard expression of events dynamically in the system�
�� We also aim at an adaptable work�ow system that will incorporate the

functionality and therefore complexity only when it is actually needed�
The notion of adaptability implies that the engine will run in di	erent
platforms ranging from a small set of PCs for minor administration tasks�
to clusters of high end workstations connected through a wide area net�
work for enterprise wide system�

Index

ACTA formalism �
 �
� dependencies �
 �

block �
� semantics �
 ���
� types �
block structured language �

compensation �
 �
 ��
 ��
CORBA �
 ��
 ��
 ��
 ��
 ��
� location transparency ��
� Orbix ��
� � OrbixWeb ��
� Query Service ��

delegation axiom ��

guard �
� expression �
� generation ����
� handler �����

METUFlow �
� architecture ��

Nested Tickets technique ��

Object Transaction Service ��
 ��
� Current interface ��
OTS see Object Transaction Service

sphere of isolation �����

task handler ��
� methods ��
� types ��

��

