
Building Interoperable Databases on Distributed Object

Management Platforms

Asuman Dogac Cevdet Dengi M� Tamer �Ozsu

July �� ����

A common characteristic of today�s information systems is the distribution of data among a number of
autonomous and heterogeneous repositories� Increasingly� these repositories are database management sys�
tems �DBMS�� but there is still a very large volume of data that is stored in �le systems� spreadsheets and
others� A fundamental challenge in building next generation information systems is to provide interoperabil�
ity among these autonomous and potentially heterogeneous repositories� The commercial state�of�the�art in
addressing the interoperability of DBMSs is to build gateways� This approach is quite restricted and provides
only a partial solution� None of these systems properly deal with semantic or structural heterogeneity of the
stored data� An alternative approach to achieving interoperability among DBMSs is the multidatabase ap�
proach �		
� A multidatabase system resides unabtrusively on top of existing database systems and presents a
single database illusion to its users� In particular� a multidatabase system maintains a single global database
schema against which its users issue queries and updates� It is suggested that this is the approach that
should be preferred over gateways ��
� One restriction of multidatabase systems has been that they cannot
handle repositories which do not have DBMS capabilities� The introduction of object�oriented technology
into data management ��
 has lifted this restriction� Object�orientation� with its encapsulation and abstrac�
tion capabilities� enable the development of wrappers which encapsulate a particular repository and provide
a common DBMS�like interface to the rest of the system� The components of the interoperable system may
be DBMSs� other types of repositories or legacy systems �	
�

Fundamentally� interoperability of systems does not imply distribution� However� in practice� the systems
that interoperate are usually distributed� A common and current example is the interoperation among data
repositories on the World Wide Web� In such a distributed environment� capabilities and functionality of
the distributed object management �
 platform have to be taken into account in designing the architecture
of multidatabase systems�

This article discusses the role of distributed object computing platforms� in particular Object Man�
agement Group�s �OMG� Object Management Architecture �OMA� �	�
 in providing an interoperability
platform� We report our experiences in developing a distributed multidatabase system over such a plat�
form�

Overview of OMA

Two new technologies� namely object oriented programming and distributed computing� have emerged in
the last decade and in�uenced contemporary software to a great extent� Powerful workstations and PCs con�
nected with high�speed networks and client�server software running on this distributed hardware is a reliable
and relatively cheap alternative to centralized� mainframe based architectures� On the other hand object
oriented technology dramatically reduces the complexity in software design and allows software reusability�
Early client�server architectures such as Remote Procedure Call �RPC� do not have an object oriented model�
A client needs to know how to access a service and also the location of the service� A client code must be
changed whenever the client wants to use new services� The convergence of these two technologies� resulting
in distributed object systems �DOMs� �
� is a natural step forward� The true bene�ts of distributed client�
server computing can be realized by DOMs which permit the development of component software from which
complex applications can be developed� Today� commercially available distributed systems support di�erent
levels of object�orientation� The RPC mechanism provided in Distributed Computing Environment �DCE�

	



of the Open Software Foundation �OSF� supports encapsulation at the granularity of an individual server�
A server accepts only the operations its interface de�nes� Yet DCE�s RPC does not support abstraction�
which is the ability to group associated entities according to common properties and polymorphism which
is the ability of abstractions to overlap and intersect ��
�

OMG�s OMA is a promising attempt for a standard architecture that joins distributed computing and
object�oriented programming technologies� OMA de�nes a Reference Model identifying and characterizing
the components� interfaces� and protocols that compose a distributed object architecture� The OMA object
model supports encapsulation� abstraction and polymorphism� The reference model has four basic com�
ponents which are the Common Object Request Broker �CORBA� ��
� Common Object Services �COSS��
Common Facilities and Application Objects� CORBA is a middleware which enables distributed objects to
operate on each other� COSS is a complementary standard for integrating distributed objects� CORBA and
COSS together provide the basic infrastructure that can be used to provide database interoperability� They
themselves� however� are not su�cient to provide multidatabase functionality�

It should be noted that Microsoft has a competing DOM architecture called Distributed Component
Object Model �DCOM�� DCOM and CORBA are the major players in the market today and there is
ongoing work to provide the interoperability between these platforms�

CORBA

The key communication mechanism of OMA is CORBA where objects communicate with other objects via
an ORB which provides brokering services between the clients and the servers� Brokering involves target
object location� message delivery� and method binding� In this model� clients send requests to the ORB
asking for certain services to be performed by whichever server can ful�ll those needs� ORB �nds the server�
passes it the message from the client� receives the result which it then returns to the client�

In CORBA only the ORB knows about the implementation details and actual locations of the compo�
nents in the system� Clients and servers only know the interfaces of the components� The only means of
communication is the requests and their responses� In this way a distributed� heterogeneous environment
becomes virtually local and homogeneous to the client� The changes in object implementation� or in object
relocation has no e�ect on the clients� This reduces the complexity of client code dramatically and allows
clients to discover new types of objects as they are added to the system and use them in a plug�and�play
fashion without any change in the client code�

All a CORBA client knows about the target object is its object reference and its interface� An object
reference should belong to an existing object which is generally created by an object factory� An object
factory is itself a CORBA object� Clients may store the object references coming from an object factory
themselves or may �nd them using the Naming Services� The interface determines the valid operations that
can be performed on a particular object� Interfaces are de�ned using Interface De�nition Language �IDL��
An IDL interface declares a set of client accessible operations� exceptions� and typed attributes� IDL resem�
bles a declarative subset of C�� but it is not a programming language� making ORB object development
implementation language independent� To use or implement an interface� the interface must be translated�
or mapped� into corresponding elements of a particular programming language� This means that an imple�
mentor will work with two di�erent models� the �ORB� model when designing services and applications
using IDL� and the implementation language model �C � C��� Java or Smalltalk� when implementing those
ORB objects� Java mapping has a special importance since it allows Java scripts running on Web browsers
access CORBA objects directly� IONA�s OrbixWeb� SUNSoft�s Joe� Visigenic�s Visibroker and ORBeline�s
BlackWidow are examples of Java mappings�

Object implementations access most of the services provided by the ORB via object adapters� each
of which is an interface to the ORB allowing the ORB to locate� activate and invoke operations on an
ORB object� Until recently� only the Basic Object Adapter �BOA� was de�ned and had to be provided
by all commercial ORBs� BOA was designed to be used with most of the object implementations and
provides for generation and interpretation of object references� method invocation� registration� activation
and deactivation of object implementations� selection of proper object implementation for a given object
reference� and authentication� Recently� OMG s released a standard as an alternative to BOA� This standard�
called the Persistent Object Adapter �POA�� provides ORB portability� In the future OMG is expected to
publish another standard for object DBMSs� Since ODBMSs provide some �ORB�like� services such as

�



object reference generation and management� this adapter will be tuned to integrate ODBMSs with ORB
distribution and communication� Library object adapter will be tuned for implementations resident in the
client�s process space�

OMG does not place any restriction on how ORBs are implemented� In most ORB implementations
already existing IPC �Inter�Process Communication� methods such as UNIX socket libraries� shared memory
and multi�thread libraries are used to achieve actual communication among clients� servers and the ORB�
Yet� an ORB can be as simple as a library that supports communication among objects and their clients
that actually resides in the same process space�

Common Object Services

The interfaces in OMA are categorized into three main groups� Interfaces of Object Services� interfaces
of Common Facilities� and interfaces of Application Objects� Object Services provide the main functions
for implementing basic object functionality using ORB� Each object service has a well de�ned interface
de�nition and functional semantics that is orthogonal to other services� This orthogonality allows objects
to use several object services at the same time without any confusion� For example� a �le object that has
transaction capabilities may use standard Transaction Service interface or a part of it�

It should be noted that it is not mandatory for objects to provide any of these interfaces� Yet� these
standard interfaces provide �plug�and�play� reusability to objects� As an example� a client can move any
object that supports Lifecycle Services by using the standard interface� If the object does not support the
standard Lifecycle Services then the user needs to know �move semantics� for the object and its corresponding
interface�

These services are at di�erent phases of development� Standards on some important Common Object
Services such as Naming� Lifecycle� Transaction� Trader� Security and Event Services are available� For
others� requests for proposals have been released� but no standards are yet established� There are a few for
which the request for proposals have yet to be released�

Common Facilities

Common facilities consist of components that provide services which are useful for the development of
application objects in a CORBA environment� Two classes of facilities have been identi�ed� Horizontal
facilities consist of those facilities that are used by all �or many� application objects� Examples of these
facilities include user interfaces� systems management and task management� Vertical facilities� on the other
hand� are specialized components for selected application domains� such as the health care� transportation�
manufacturing� electronic commerce or the telecommunications sector�

Implementing a Multidatabase System on CORBA

In a multidatabase system implementation� the main problem is the heterogeneity which basically exists at
four levels� platform level� communication level� database system level and the semantic level� Database
systems reside on di�erent hardware and operating systems and use di�erent communication protocols�
CORBA provides implementation transparency which allows a client to access an object through its interface
de�ned in IDL� independent of the hardware and software environment in which the object resides� This
solves the platform heterogeneity problem� On the other hand CORBA provides location transparency which
allows clients to access objects using their object identi�ers independent of their location and communication
protocols between the client and the object� This property of CORBA solves the communication level
heterogeneity problem� The third level of heterogeneity is among the database management systems based
on di�erent data models and query languages� Finally� semantic con�icts are likely to be present among
independently designed databases� This includes schema con�icts and data con�icts� The last two levels
of heterogeneity in multidatabases on a DOM platform can be handled by developing a global layer which
includes a global query manager� a global transaction manager and a schema integrator� Note that� schema
integration is a hard problem that still requires further research�

Since CORBA provides an object�oriented framework for interoperability� implementing a multidatabase
system on top of a distributed object management architecture like CORBA requires the de�nition of objects

�



in IDL and providing their implementations� A fundamental design question� therefore� is the granularity of
these objects� In registering a DBMS to CORBA� a row in a relational DBMS� an object in an ODBMS� a
group of objects or a whole database can be an individual CORBA object� CORBA would accept all of these
de�nitions� When �ne granularity objects� like tables� are registered as objects� all the DBMS functionalities
to process these tables� like querying� transactional control� etc�� must be supported by the multidatabase
system itself� However� when an entire relational DBMS� for example� is registered as an object� all the
DBMS functionality needed to process these tables are left to that DBMS�

Another consideration regarding granularity has to do with the capabilities of the particular ORB that
is used� In case of ORBs that only support BOA� each insertion and deletion of classes necessitates recompi�
lation of the IDL code and rebuilding of the server� Thus� if the object granularity is �ne� these ORBs incur
signi�cant overhead� If an ODBMS adapter is available� exporting �ne granularity objects of ODBMSs will
be more convenient since such an adapter relieves the overhead on the ORB by working in cooperation with
the ODBMS to handle the objects it owns�

Yet another possible solution to this problem is to use dynamic server�skeleton interface� Although this
interface is originally designed for inter�ORB interoperability� it prevents recompilation of the code and
rebuilding of the server when used for dynamically adding new object types to the server side�

A second issue that needs to be addressed is the de�nition of the interfaces for database objects� Most
commercial DBMSs support the basic transaction and query primitives either through their Call Level
Interface �CLI� library routines or through their XA Interface library routines� This property makes it
possible to de�ne a generic database object interface through CORBA IDL to represent all the underlying
DBMSs� CORBA allows multiple implementations of an interface� Hence it is possible to encapsulate each
of the local DBMSs by providing a di�erent implementation of the generic database object�

CORBA provides three alternatives for associating a client request with a server method� one interface to
one implementation� one interface to one of many implementations and one interface to multiple implemen�
tations� If there exists only one implementation of an interface� all of the requests should be directed to a
server that supports this single implementation� If there are more then one implementations of an interface�
ORB can direct the requests to a server that supports any one of the existing implementations� In both
cases� implementations handle all operations de�ned in the interface and after implementation selection�
ORB always uses the same implementation for requests to a particular object� If each implementation of
an interface does not handle all of the operations de�ned in the interface� that is� if each implementation
provides only a part of the interface� the third method is used for associating a client request with a server
method� In this case� ORB directs the requests to a server that support an implementation of the interface
which handles the invoked operation� Since DBMSs that are registered to CORBA provide basic transaction
management and query primitives for all of the operations that the interface de�nition speci�es� the second
alternative is usually su�cient�

CORBA de�nes three call modes� namely� synchronous� deferred synchronous� and one�way� In the
synchronous mode� client waits for the completion of the requested operation� Synchronous mode can be
restrictive for clients who issue operations that can be executed in parallel with multiple objects� In deferred
synchronous mode� the client continues its execution after server selection and keeps on polling the server
to get the results until the operation is completed� In one�way operation a client sends a request without
any intention of getting a result� CORBA does not support asynchronous mode since the only way of
communication is by a request� This implies that if a client is to receive asynchronous messages� it should
also act as a server that implements an object that can receive requests� In other words� asynchronous mode
of operation can be achieved between two CORBA objects sending one�way requests to each other� The
only disadvantage of this peer�to�peer approach is the increased complexity of the client code� For objects
of a multidatabase system synchronous call mode is generally su�cient� Deferred synchronous mode or
peer�to�peer approach should be used when parallel execution is necessary� For example� in order to provide
parallelism in query execution� the global query manager of a multidatabase should not wait for the query
to complete after submitting it to a local DBMS by invoking the SendQuery method� Therefore SendQuery
method should not be invoked using synchronous mode�

Another decision to be made is the invocation style for objects� CORBA allows both dynamic and stub�
style invocation of the interfaces by the client� In stub�style interface invocation� the client uses generated
code templates �stubs� that cannot be changed at run time� In dynamic invocation� on the other hand�
the client de�nes and builds requests as it runs� When registering database objects� the stub�style interface

�



ORB

Object
Adapter

Server

Object Implementation

Database Client

DB object

reference to

An object

Client

O
peration

Skeleton

A

Database Server

Stub

DBMS

InterfaceMethod
DBMS

Local

Figure 	� Invoking an operation to a Database Object instance through ORB

invocation is generally su�cient because all the objects are known and the interface of these database objects
are not likely to change over time� Figure 	 illustrates invoking an operation on a database object instance�

When registering objects to CORBA� it is necessary to specify an activation policy for the implementation
of each kind of object� This policy identi�es how each implementation gets started� An implementation may
support shared� unshared� server�per�method or persistent activation policies� While a server that uses
shared activation policy can support more than one object� a server that uses unshared activation policy
can support only one object at a time for an implementation� In server�per�method activation policy� a new
server is used for each method invocation� Persistent activation policy is very similar to shared activation
policy� except the server is never started automatically� Some of the objects in a multidatabase system
need to be active concurrently� This can be achieved either by using threads on a server that uses shared
activation policy or by using separate servers activated in the unshared mode for each object� Otherwise
since a server can give service for one object at a time� other client requests to the objects owned by the
same server should wait for the current request to complete� Furthermore all of the requests to an object
must be serviced by the same server if the server keeps transient data for the object through its life cycle�
For example� if a global transaction manager is activated in shared mode� it would be necessary to preserve
the transaction contexts in di�erent threads� However if global transaction manager is activated in unshared
mode� the same functionality can be obtained with a simpler implementation at the cost of having one
process for each active transaction� For certain objects in a multidatabase system� such as object factory�
parallel execution is not necessary� These objects serve their clients for a short duration of time and thus
do not create a bottleneck in the system� Therefore� there is no need to create a server for each activation
which implies shared activation policy�

CORBA handles the heterogeneity at the platform and communication layers by providing an interop�
erability infrastructure� Thus� a multidatabase system design on CORBA focuses on the upper layers of
the system such as schema integration� global query processing and global transaction management� It is
clear that this reduces complexity in design and implementation of a multidatabase system dramatically�
CORBA provides two more advantages in this respect� Using CORBA as a middleware� a multidatabase
system becomes an integrated part of a broad range of distributed object systems that not only contain
DBMSs� but also many objects of di�erent kinds such as �le systems� spreadsheets� work�ow systems and
legacy systems� Another advantage comes from the fact that CORBA is a standard� Therefore� the code
will be portable among ORB implementations from di�erent vendors� With CORBA ���� interoperability
among foreign ORBs has become possible�

Using CORBA as the infrastructure a�ects the upper layers of a multidatabase system since CORBA
and COSS together provide basic database functionality to manage distributed objects� The most impor�
tant database related services included in COSS are the Object Transaction Services� Backup and Recovery
Services� Concurrency Services� and the Query Services� If these services are available in the particular
ORB that is used� it is possible to develop the global layers of multidatabase system on CORBA mainly by
implementing the standard interfaces of these services for the involved objects� For example� by using an
Object Transaction Service� implementing a global transaction manager occurs by implementing the inter�
faces de�ned in the Object Transaction Service speci�cation for the involved DBMSs� It is also anticipated
that the future commercial DBMSs will themselves support these interfaces� Object services that provide

�



database management system functionality are brie�y summarized in the following�
Object Transaction Service �OTS� speci�cation describes a service that supports �at and nested trans�

actions in a distributed heterogeneous environment based on the OMG CORBA architecture� OTS de�nes
interfaces that allow multiple� distributed objects to cooperate to provide atomicity of transactions� These
interfaces enable the objects to either commit all changes together or to rollback all changes together� in the
presence of failures� In order to achieve this goal� OMG has de�ned some roles such as transactional client�
transactional object� recoverable object� and transaction context� In a typical scenario� a transactional client
initiates a transaction obtaining a Control object from a Factory provided by ORB� ORB associates a Trans�
action Context with each Control object� A transaction context contains all the necessary information to
control and to coordinate a transaction� Transaction contexts are either explicitly passed as a parameter of
the requests� or implicitly propagated by ORB� among the related transactional objects� The Control object
is used in obtaining Terminator and Coordinator objects� Transactional client uses the Terminator to abort
or to commit the transaction� Coordinator provides an interface for transactional objects to participate in
two�phase�commit protocol� Transactional client sends requests to transactional objects� A transactional
object is the one that supports transaction primitives as de�ned by the standard� If a transactional object
has a resource that needs to be recovered in case of failures� it is called a recoverable object� Recoverable ob�
jects register a Resource object to the ORB using the Coordinator object� ORB interacts with the Resource
object to either commit or to abort the changes in the Resource object� Thus ORB provides the atomic�
ity of distributed transactions� It is anticipated that commercial DBMSs will implement the OTS�de�ned
interfaces in the future�

The Concurrency Control service �CCS� enables multiple clients to coordinate their access to shared
resources� Coordinating access to a resource means that when multiple� concurrent clients access a single
resource� any con�icting actions by the clients are reconciled so that the resource remains in a consistent
state� The CCS does not de�ne what a resource is� It is up to the clients of the CCS to de�ne resources
and to properly identify potentially con�icting uses of these resources� In a typical use� an object would
be a resource and the object implementation would use the CCS to coordinate concurrent access to the
object by multiple clients� The Concurrency Control service has been designed as a service that can be
used in conjunction with the OMG�s Object Transaction Service to coordinate the activities of concurrent
transactions� CCS coordinates concurrent use of a resource using locks� The lock modes de�ned are Intention
Read� Read� Upgrade� Intention Write and Write� A client can hold multiple locks on the same resource
simultaneously� A collection of locks associated with a single resource is termed as a lock set� Typically� if
an object is a resource� the object would internally create and retain a lock set� To manage the release of
locks held by a transaction� the CCS de�nes a lock coordinator� Being able to retain multiple locks on a
resource facilitates the use of locks with nested transactions� Thus� a child transaction can acquire a lock
on a resource locked by its parent and then drop that lock without causing its parent to lose its lock� This
approach is functionally equivalent to �delegation of locks� for nested transactions but supports simpler
interfaces�

The Object Query Service �OQS� provides query operation on collections of objects� The queries are
predicate�based and may return collections of objects� Although queries may be speci�ed using object
derivatives of SQL or other styles of object query languages� in order to provide query interoperability
among the widest variety of query systems� an OQS provider must support either SQL Query or OQL�
Objects may participate in the OQS in two ways� The simplest involves any CORBA object� The Query
Evaluator is then responsible for evaluating the query predicate and performing all query operations by
invoking operations directly on that object through its published IDL interfaces� This mechanism provides
generality but no optimization� In the second approach� objects participate as members of a collection and
the collection supports a speci�c query interface which passes the query predicate to the collection� Thus�
it becomes possible to exploit the internal optimization mechanism of the collection�

Among other database related common object services Object Persistence Service provides a way to ensure
persistence of an object regardless of the lifetime of the client applications and of the object implementation�
Security Services provides authentication� encryption and audit mechanisms that can be used to provide
security in the system� Backup�Restore Service provides a recovery mechanism to restore the objects to
their previous states after a system crash or a user error� Finally we note that the basic object services
provide much of the functionality of a componentized DBMS� including both Object DBMS and Relational
DBMS functionality� However� most of these services are not available in the CORBA compliant products

�



in the market today�

select

from

where e.no = 10 ;

salary, addr

Employee e

no
name
salary
addr

Employee

no
name 
sal

Oracle7:emp1

addr
name
num
Sybase:emp2

mapping

def_ext
select

from
where

select
from

e_emp
e1.*, e2.*

e1, e2

no
e1.no, e2.num

e1.no = e2.num

e1, e2
salary e1.sal

as

as

as

{

;

;
;

interface
extent
key

e_emp
no

}

;
;

}

addr

attribute string < 

attribute string <
attribute float

attribute short

{

no

salary

;

def_att

def_att

def_att ;e2.addras

Employee

Employee
origin Oracle7:emp1 e1, Sybase:emp2 e2 ;

>

>20 name

40 addr

;

;
;

Schema

Global SQL Query

ODL definition

Figure �� ODL and SQL example

MIND Experience

MIND �METU Interoperable DBMS� ��
 is a multidatabase system that is implemented at the Software R�D
Center of Middle East Technical University �METU� in cooperation with Laboratory for Database Systems
Research of University of Alberta�� MIND components are designed as CORBA objects communicating with
each other through an ORB� The CORBA implementation used in MIND is DEC�s ObjectBroker�

In MIND� local DBMSs to be integrated are encapsulated in a generic database object� MIND de�nes the
interface of a generic database object in CORBA IDL and provides multiple implementations� one for each
of the local DBMSs� which are called Local Database Agents �LDA�� Currently supported systems include
Oracle��� Sybase�� Adabas D� and MOOD �METU Object�Oriented Database System�� LDA objects are
responsible for maintaining export schemas provided by the local DBMSs represented in the canonical data
model� translating the queries received in the global query language to the local query language� and providing
an interface to the local DBMSs� This layer provides a virtually homogeneous set of database objects� The
global layer of MIND� which contains a global transaction manager� a global query processor and a schema
integrator� is developed on top of this layer� Global Transaction Manager �GTM� component of MIND
is responsible from the management of global� distributed transactions� It keeps track of sub�transactions�
handles global commit or global abort using �PC protocol over LDA objects and detects global deadlocks� In
this respect� it acts as a mini TP monitor� At the time MIND was being implemented� OTS was not available
and therefore� the distributed transaction mechanism in MIND does not comply with OTS� However� it is
quite trivial to replace MIND�s built�in transaction mechanism with an OTS implementation� Global Query
Manager �GQM� component of MIND is responsible for parsing and decomposing the queries according to
the information obtained from Schema Integration Service as well as for optimization of the global queries�
After a global query is decomposed� the global sub�queries are sent to the involved LDA objects� MIND
query optimization addresses the optimization of post�processing queries that combine results returned by
the LDA objects� A dynamic query optimization scheme is developed which bene�ts from the location
transparency provided by the DOM platform� The query optimization is performed at run�time by Query

�A prototype of the system is publically available at �ftp���srdc�metu�edu�tr�pub�mind�source���
�Oracle� is a trademark of Oracle Corp�
�Sybase is a trademark of Sybase Corp�
�Adabas D is a trademark of Software AG Corp�

�



Global
Database Agent

(GDA)

Agent
(LDA)

Local
Database

Agent
(LDA)

Local
Database

Agent
(LDA)

Local
Database

Agent
(LDA)

Local
Database

(QP)(QP)

Multidatabase
Administrator

Factory

Schema 

(SI)
IntegrationService

Local DBMSLocal DBMS Local DBMS Local DBMS

Client

Query Processor Query Processor

Figure �� An Overview of MIND Architecture

Processor �QP� objects� GQM may use as many of QP objects running in parallel as necessary� GQM uses a
decision mechanism based on statistical inferencing to �nd out the execution order of sub�queries ��
� Since
this scheme does not need the estimation of execution time of the involved global sub�queries �appearance
times�� it avoids the uncertainty problems of cost based query optimization schemes�

Schema Integration Service holds the global schema information� The integration of export schemas
is currently performed by using an object de�nition language �ODL� which is based on OMG�s interface
de�nition language� The multidatabase administrator �DBA� builds the integrated schema as a view over
export schemas� The functionalities of ODL allow selection and restructuring of schema elements from
existing local schemas� MIND provides its users a common data model and a single global query language
based on SQL� Figure � provides a simple example of ODL de�nition which integrates export schemas from
two di�erent DBMSs� A simple global query example is also given in Figure ��

Figure � shows the major components of MIND architecture and their interactions� The direction of
the arrows are from a requester to a CORBA object providing the related service� Note that� all the
communication is handled by the ORB� A typical MIND client knows only the interface de�nitions of Global
Database Agent� Factory� and Schema Integration Service objects� A client �nds the Object Reference of
the Factory using Naming Service provided by ORB� Then she requests a GDA object to be created from
the Factory� GDA encapsulates the Global Transaction Manager and Global Query Manager in a CORBA
object as depicted in Figure �� The client may also query the names of available resources from the Schema
Integration Service whose object reference is available through the Naming Service�

Since the CORBA implementation used supports only C mapping� mapping between CORBA objects and
the C�� objects that actually implement the system is not transparent� This makes MIND implementation
more complex� Support for C�� mapping would have reduced the complexity signi�cantly�

MIND has a Tcl�Tk based GUI and a simple CGI �Common Gateway Interface� based Web interface�
A more sophisticated Web access could be achieved using Java scripts if the CORBA implementation used
supported Java mapping�

Our experience with MIND project has shown that CORBA o�ers a very useful methodology and a mid�
dleware to design and implement distributed object systems� To clarify the advantage of using CORBA in a
multidatabase implementation� assume that CORBA is not available and we only have a client�server archi�

�



Cursor Impl.

Decomposer

Query Processor Interface

Transaction Global
Global

Manager Query Manager

Factory Interface

Server Skeleton Schema Integration
Service Interface

Figure �� Global Database Agent

tecture and TCP�IP as the infrastructure� In such such a case� implementing a distributed object�oriented
architecture would require implementing the ORB�like functionality �rst� Since this requires tremendous
amount of design and coding e�ort� it is di�cult to justify the cost for one speci�c multidatabase system�
A simpler and conventional architecture would be to design and implement local� communication and inter�
operable layers monolithically� In such a system� the local layer would provide access to di�erent DBMSs�
The communication layer would provide all necessary services for remote database access� The interoperable
layer would contain global query processor� global transaction manager and a schema integrator� Note that�
in such an architecture� the implementor would have to write code to resolve addresses� Although the mono�
lithic design approach may reduce the implementation e�ort compared to the previous case� it will be di�cult
to maintain and extent the system� It is possible to move this architecture in the object�oriented direction
again by providing the necessary code� Yet� such a system would su�er from interoperability problems with
other information systems due to the lack of a standard�

CORBA is becoming a well accepted technology as predicted in �	�
� The performance of a middleware�
in fact� is dependent on the support from underlying layers such as operating systems and communication
networks� The CORBA speci�cation� itself� does not address the issues like the implementation of protocols
that will determine scalability� Thus� CORBA compliant ORB implementations should solve these problems
within their architectures�

The following information is presented to provide an idea on programmer productivity in developing code
using a CORBA compliant ORB� Producing the �rst prototype of MIND required �� man�months� Of this� �
man�months were devoted to acquiring CORBA knowledge through registering the �rst DBMS to CORBA�
Registering other DBMSs is performed in negligible amount of time both due to experience gained� and due
to reusable code already generated� The rest of the time is spent in developing the global layer�

References

�	
 Brodie� M�� Stonebreaker� M� Migrating Legacy Systems� Morgan Kaufmann Publishers Inc�� 	��

��
 The Common Object Request Broker� Architecture and Speci�cation� OMG Document Number ��	�����
December 	��

��
 Dogac� A�� �Ozsu� M�T�� Biliris� A� and Sellis T� �editors� Advances in Object�Oriented Database Systems�

Springer�Verlag� 	��





��
 Dogac� A�� Halici� U�� Kilic� E��� Ozhan� G�� Ozcan� F�� Nural� S�� Dengi� C�� Mancuhan� S�� Arpinar�
B�� Koksal� P�� Evrendilek� C� METU Interoperable Database System� Demo Description� In Proc� of

ACM Sigmod Intl� Conf� on Management of Data� Montreal� June 	��

��
 W� Kim �editor�� Modern Database Systems� ACM Press�Addison�Wesley� 	��

��
 Mowbray� T�J�� Zahavi� R�� The Essential Distributed Objects Survival Guide� John Wiley � Sons� 	��

��
 Nicol� J�R�� Wilkes� C�T�� Manola� F�A� Object Orientation in Heterogeneous Distributed Computing
Systems� IEEE Computer ��� �� �June 	��� ������

��
 Ozcan� F�� Nural� S�� Koksal� P�� Evrendilek� C�� Dogac� A� Dynamic Query Optimization on a Dis�
tributed Object Management Platform� In Proc� of Fifth International Conference on Information and

Knowledge Management� Maryland� USA� November 	��

�
 �Ozsu� M�T�� Dayal� U�� Valduriez� P� Distributed Object Management� Morgan Kaufmann� 	��

�	�
 Pancake� C�M� The Promise and the Cost of Object Technology� A Five Year Forecast� Commun� ACM�

�	� 
�� �Oct� 	��� �����

�		
 Sheth A� and Larson� J� Federated Database Systems� ACM Computing Surveys� ��� �� �Sep� 	���
	�������

�	�
 Soley R�M� �ed��� Stone C�M� Object Management Architecture Guide� Third Edition� John Wiley �
Sons� 	��

About the Authors

Asuman Dogac is a professor of Computer Engineering and the director of Software Research and Devel�
opment Center at the Middle East Technical University� Ankara� Turkey�
e�mail� asuman�srdc�metu�edu�tr� http���www�srdc�metu�edu�tr� asuman�

Cevdet Dengi is the R�D Director of Bilgi Yonetim Sistemleri� A� S�� Turkey�
e�mail� dengi�bys�com�tr� http���www�bys�com�tr� dengi�

M� Tamer �Ozsu is a professor at the Department of Computing Science and the director of Laboratory
for Database Systems Research at the University of Alberta�
e�mail� ozsu�cs�ualberta�ca� http���www�cs�ualberta�ca� ozsu�

This work is partially being supported by the Middle East Technical University� the Graduate School of Natural and Applied Sciences�

Project Number� AFP��	�
	�
��
�� and by the Scienti�c and Technical Research Council of Turkey Project No� EEEAG�Yazilim�

	�


