
History Management in Work�ow Systems �

Pinar Koksal Sena Arpinar Asuman Dogac
Software Research and Development Center

Dept� of Computer Eng� Middle East Technical University
����� Ankara Turkiye

fpinar� nural� asumang�srdc�metu�edu�tr

Abstract� A work�ow history manager maintains the information es�
sential for work�ow monitoring and data mining as well as for recovery
and authorization purposes�

Certain characteristics of work�ow systems like the necessity to run
these systems on heterogeneous� autonomous and distributed environ�
ments and the nature of data� prevent history management in work�ows
to be handled by the classical data management techniques like dis�
tributed DBMSs�

In this paper� we describe history management� i�e�� the structure of
the history and querying of the history� in a fully distributed work�ow
architecture realized in conformance with Object Management Architec�
ture �OMA� of OMG� We describe the structure of the history objects
determined according to the nature of the data and the processing needs�
and the possible query processing strategies on these objects using the
Object Query Service of OMG� We then introduce a cost model and
discuss the optimization issues in this environment�

� Introduction

A work�ow system can be de�ned as a collection of processing steps �also termed as tasks
or activities� organized to accomplish some business process� A task may represent a
manual operation by a human or a computerizable task to be invoked� Computerizable
tasks may vary from legacy applications to programs to control instrumentation�

Work�ow history management provides the mechanisms for storing and querying
the history of both ongoing and past processes for the following purposes�

�Monitoring purposes	 During the execution of a work�ow� the need may arise for
looking up some piece of information in the process history� for example� to �gure out
who else has already been concerned with the work�ow at what time in what role� or
to monitor the current states of the tasks of an executing process instance �	
�

�Business Process Reengineering purposes	 Aggregating and mining the histories of
all work�ows over a longer time period form the basis for analyzing and assessing the
e�ciency� accuracy and the timeliness of the enterprise�s business processes �	
�

�Recovery purposes	 If there are executing process instances on a site when the site
fails� history is used to recover the information required to continue their executions�

�This work is being supported by the European Commission� Project Number� INCO�DC �������

by International Bureau Research Center Julich of Germany� by Middle East Technical University�

Project Number� AFP����	�
	�
	� and by the Scienti�c and Technical Research Council of Turkey�

Project Number� 
��E	��




�Authorization purposes	 The history information of past and present processes can
be used in scheduling the user tasks by the authorization service� For example� it may
be necessary to assign a task to a user who did the task previously�

Since work�ows are activities involving the coordinated execution of multiple tasks
performed by di
erent processing entities� mostly in distributed heterogeneous envi�
ronments� a distributed work�ow scheduler architecture is essential� And in order to
fully exploit the advantages brought by the distributed scheduling� history manage�
ment� work�ow relevant data management and the worklist management should also
be handled in a distributed manner� Distributed execution necessitates the handling
of interoperability problem among heterogeneous resources� The interoperability of
applications on heterogeneous platforms can be handled by using CORBA ��
 as the
communication infrastructure� The work�ow history can then be implemented where
the history of each activity instance is a CORBA object� In fact� this approach has
been implemented within the scope of METUFlow project ��
�

In this paper� the querying of work�ow history is addressed� Since history infor�
mation is kept in distributed CORBA objects� the problem converges to querying dis�
tributed objects and optimization of query processing� For querying the history objects�
Object Query Service �OQS� de�ned by OMG ��
 is used�

The history management for work�ow systems has not been extensively studied in
the literature� In the ConTract model ��
� the set of private data de�ning an application
speci�c computation state is called Context and is preserved for forward recovery� The
ConTract manager tries to overcome resource failures and re�instantiates an interrupted
ConTract by restoring the recent step consistent state and then continues its execution
according to the speci�ed script� In ��
� two approaches are proposed� The �rst approach
aims to enrich an audit trail� and the second one takes the viewpoint that a work�ow
log is a special kind of temporal database�

The paper is organized as follows� Object Query Service is described brie�y in
Section �� In Section �� work�ow history structure is explained� Di
erent querying
strategies of the work�ow history are given in Section �� Optimization of these queries
is discussed in Section �� Comparison of costs of executing queries using di
erent
strategies is provided in Section ��

� Object Query Service

The Object Query Service� de�ned by OMG ��
� provides operations of selection� inser�
tion� updating and deletion on collections of objects�

The Query Service �QS� provides a framework consisting of some interfaces to deal
with the preparation and execution of a query� These are QueryEvaluator� QueryMan�
ager� Collection� Query and QueryableCollection� QueryEvaluator �QE� executes the
query using the query language user speci�es� When a user executes a query� the ser�
vice returns a collection of objects that satisfy the search criteria the user speci�es via
a select operation� Collection de�nes the operations that let the user add� replace�
retrieve and remove members of a collection� The details can be found in ��
�

� Work�ow History Structure

Work�ow history is managed by using CORBA to support the network and location
transparency� History of each process and task instance is a di
erent CORBA object�



invoked by the work�ow scheduler in case of initialization� start� abort and commit of
an activity which is a process or a task�

The process and task history objects should store the name of the process �task��
start� abort and commit time information� the object identi�ers of its tasks and sub�
processes� and the object identi�ers and version numbers of the data used as input and
output parameters� Task history objects also store the user name and the role name�

The persistency of history objects are provided by mapping them via storage wrap�
pers to a database or to other available data repositories� PROCESS and TASK ta�
bles store the information about processes and tasks respectively� additional PRO

CESS CHILD table keeps the children of a process� and ACTIVITY DATA table keeps
the parameter information of process and task instances�

� Querying the Work�ow History

A client of a work�ow history can be a work�ow administrator� the authorization service�
or the work�ow scheduler� The de�nition of the history is given in ODL� the Object
De�nition Language of ODMG ��
� Clients can query the history according to this
ODL de�nition using OQL ��
� standard query language of ODMG� An OQL query is
evaluated using the Object Query Service�

The characteristics of the queries issued against the history are as follows�
� The queries are evaluated on distributed CORBA objects�
� Any history information can be at any of the data repositories� Therefore� all the

repositories should be queried�
� Because the history of a work�ow can contain not only the information of the

current process instances� but also that of past instances� the size of the data repositories
may be very large�

� Most of the queries either �nd the tasks of a given process or retrieve the informa�
tion on given tasks� To retrieve the information of tasks of a process instance� �rst task
identi�ers of the process are retrieved� then the data repositories are queried with all
these task identi�ers� since process and task information may stored in di
erent sites�

In the following� we explain basic processing strategies through an example� Later
in Section �� we provide a cost model to determine the most e�cient way of executing
these queries�

Example� Assume that there is a process p� de�ned as�

PROCESS p� �

T� �in i� out j��

T� �in j� out k��

AND�PARALLEL �

T	 ���

T
 ��� �

T� �in k� out m�� �

In this process de�nition tasks T� and T� are executed serially and then tasks T�
and T� are started in parallel within the scope of the AND PARALLEL block� T� is
another task in this process to be executed serially� More details about the speci�cation
language are given in ��
�

The following is an example OQL query against the instances of this process de��
nition�

Query	 Find the active tasks of the instances of process p�� The query written in
OQL is� �select t�name from process p� task t where p�name � 
p�
 and t in p�children
and t�state � 
EXECUTING
�� where children in the where clause are a set of object



identi�ers of the activities� which are subprocesses or tasks� that a process instance
owns� Because the history is distributed� the detailed task information can be at any
of the sites� Therefore� to answer such a query� two passes on the data repositories are
needed� the �rst pass to �nd the object identi�ers of the activities of process instances
and the second pass to get the detailed information on these tasks�

If we assume that there are ns sites that the history objects are stored� then there
should be ns history repositories� In addition� there can be many instances of the
process p� dispersed along these sites� To answer this kind of query� ns sources should
be queried using Object Query Service�

There are several strategies to evaluate this kind of query� Note that most of the
queries against work�ow history are in this form�

Strategy �� In the �rst pass� ns query evaluators �QE� should retrieve the chil�
dren of the process �p�� by performing join operation between PROCESS and PRO

CESS CHILD tables� Then a collection of task identi�ers is retrieved from each repos�
itory� Each QE should send its collection to the other ns
� QEs so that each of the ns
QEs contains the whole set of task identi�ers�

In the second pass� using the collection containing the set of task ids of the process
instances� tasks coll� the information of tasks is retrieved by sending as many select
queries as the number of task ids in the collection of tasks coll to each of the repositories
since the task information can be at any of the data repository� After all the subresults
are obtained from the QEs� a union of these subresults gives the �nal result�

Strategy �� The only di
erence between this strategy and the previous one is
that� after ns QEs have retrieved the task identi�ers from the repositories� they do not
send their collections to the other ns
� QEs� instead all the collections of the QEs are
collected at one collection� and then complete collection of the task identi�ers are sent
back again to the ns QEs� The rest of the execution is the same as Strategy ��

Strategy �� In this strategy� again there are two passes� First pass is same as
previous strategies� Before the second pass starts� we assign a threshold value to each
of the task identi�ers in the collections and set this value to one� The second pass
starts for each of these collections in parallel in which the detailed task information
is retrieved from the native systems� These retrievals do not follow a speci�c order of
task identi�ers� but are done randomly� If a task information is found in a repository�
this site informs all the other sites so that task is deleted from all of the collections�
If the task information is not found in a repository� then that task is deleted from the
collection of this site and threshold value of that task is increased by one in all of the
other collections� The reason why we increase the threshold in other sites is that the
possibility of �nding detailed information about the task in the other repositories has
increased� When all the threshold values are no longer equal to one in a collection� the
task whose threshold value is the highest is given higher priority in the retrieval�

Strategy �� In this strategy� while child identi�ers of a process are retrieved from
repositories into a collection� all the task information in the underlying repositories are
retrieved into another collection concurrently� Afterwards� these two collections �task
identi�ers and task information� are joined explicitly in a query evaluator��

If the process is nested� i�e�� it contains a subprocess� then these strategies become
more complex� More passes are necessary to the data repositories to obtain information
on the activities in various nesting levels�



� Optimization Issues in Query Processing

Our primary aim is to minimize the cost of execution of the queries on work�ow history�
In this section� various strategies� given in the previous section� are analyzed in detail
and cost functions are derived for each strategy�

We use the following parameters in the cost functions�
� Communication cost� �CC 	 Cost of sending a unit between QEs�
� Appearance cost� �AC 	 Time required to retrieve the result from DBMSs�
� Cost of explicit join operation� ��� 	 The cost of join operation� if the join is

performed at the QE level� not at the database level�
� ns is the number of sites on which objects are alive�
� k is the nesting level� Top process is at the nesting level �� the subprocesses that

are called by the top level process are at level �� and so on�
� nci� is the total number of children of the process instances at nesting level i�
� nti� is the total number of task identi�ers of the tasks of the process instances at

nesting level i�
� nspi� is the total number of subprocess identi�ers of the subprocesses of the process

instances at nesting level i�
The cost analysis of executing queries� according to the given strategies in the pre�

vious section� is given in the following�
Strategies � and �� In these strategies not only task identi�ers� but also the

subprocess instances are sent to all sites� The task identi�ers of the subprocess instances
are also gathered recursively�

�� First ns number of QEs are created and the process information is sent to these
QEs� with the communication cost �CC �

�� Since the total number of children of the process instances is nc� and the num�
ber of sites that objects are alive is ns� the number of child instances at one site is
nc��ns on the average� Therefore the cost of retrieving child ids information becomes
�nc��ns� �AC � At this point ns QEs have the collections of child ids of their sites�

�� The ns QEs should have nc� child identi�ers� This can be achieved in two ways�
Either each site sends its collection of child identi�ers to the other ns
� QEs as in
Strategy � with the cost of nc���CC � or the collection of child identi�ers of each of the
sites is collected in a single collection and then it is sent to ns QEs as in Strategy � with
the cost of ��nc���CC � The one with the minimum cost will be chosen among these two
possibilities in the execution of the query as minfnc���CC� � � nc���CCg� According to
this result� we can conclude that Strategy � performs better than Strategy � since this
item is the only di
erence between these two strategies� At this point� ns QEs have all
the nc� child identi�ers�

�� The collection of nc� child identi�ers contains the object identi�ers of subprocess
instances and the object identi�ers of task instances of the process� While child iden�
ti�ers of the subprocesses are being retrieved from the sites� task information can also
be retrieved at the same time� If there is totally nc� number of children of these sub�
processes� then the cost of retrieving child identi�ers is �nc��ns� �AC � To retrieve the
task information each site creates nt� QEs� If the repository allows parallel execution of
these nt select queries then the cost of this operation is it �AC � as is the case of most of
the DBMSs� However� if the repository does not allow parallelism as in �les� then the
cost becomes� nt��AC� Therefore� we can generalize these two cost functions as� if the
probability of a repository of executing in parallel is pp� pp��AC���
pp���nt �AC�� At
this point� ns QEs contain the task information of the top level process and the child



identi�ers of the subprocesses at the corresponding sites�
�� For the child identi�ers of the subprocesses� items � and � should be repeated

recursively until there is no subprocess identi�ers left in the collection of child identi�ers�
If we generalize this recursive operation� we obtain the following cost function� ci �
nci ��CC �maxf�nci���ns��AC � ci��� pp ��AC ���� pp��nti ��AC�g where ���i��k��
and ck � nck��CC � pp��AC � ��
pp��ntk��CC��

	� After all the task information is retrieved� the collections of the tasks of each
nesting level will be combined� The cost of this operation is �nt��nt������ntk��CC �

The general cost formula of this strategy is as follows� �Sch��� � �CC � �nc��ns��AC

� c� �
P

j��
k �ntj �CC��

Strategy �� which assigns threshold values to the child identi�ers�
�� The cost of sending process information to the ns QEs is �CC �
�� The cost of retrieving child identi�ers information is �nc��ns� �AC �
�� The cost of sending child identi�ers of QEs to other QEs is nc���CC�
�� The child identi�ers of the subprocesses are gathered by executing item � and �

recursively upto the kth nesting level� This can be generalized as
P

i��
k ��nci�ns� �AC

� nci � �CC��
�� Retrieving task information from data repositories can be done in parallel

with item �� If we assume that nti�ns task information is at one repository� then
the cost of retrieving task information recursively becomes�

P
i��

k �pp��AC � ���
pp��nti�ns��AC � nti��CC��

	� At this point� each QE has nt�ns task information� To give the result of the
query to the user� they are collected at one QE with the cost of� nt �CC �

The general cost formula of this strategy is� �Sch� � �CC � �nc�	ns��AC � nc� �CC �
P

i��
k�maxf�nci	ns��AC �nci��CC � pp��AC � �
�pp��nti��	ns��AC � nti����CC g � pp��AC

� �
�pp��ntk	ns��AC � ntk��CC � nt �CC �

Strategy �� In this strategy� all the task identi�ers of the subprocesses are collected
and then they are joined with the TASK table at the QE level explicitly� The execution
cost of this strategy is given below�

�� The cost of sending process info� to the ns QEs is �CC �
�� The cost of retrieving child ids information from the sites is �nc��ns� �AC �
�� Then� the collections of child identi�ers are combined at a single collection which

contains both the subprocess identi�ers and the task identi�ers of the process instances�
The cost of this operation is nc� �CC �

�� To retrieve the child ids of the subprocesses� ns data repositories should be
queried again� First� the collection of subprocess ids are sent to ns QEs with the cost
of nsp���CC � Then� they are queried with the cost of �nc��ns� �AC �

�� The items � and � are repeated recursively until there is no subprocess iden�
ti�ers in any of the collection of child identi�ers� This can be generalized as�

P
i��

k

�nspi��CC��nci�ns��AC��nci�ns��CC�� At this point all the task identi�ers of all the
subprocesses are gathered in k collections�

	� The k collections of task identi�ers are gathered in one collection to join with
the cost of� nt �CC where nt is the total number of task identi�ers of all subprocesses�


� While retrieving the task identi�ers of the subprocesses� the TASK table can be
read sequentially at the same time from ns data repositories� If the number of blocks
of TASK table of one repository is b on the average� then the cost becomes b�ebt�

�� Then� this information should be gathered at one QE� If the cardinality of a table
is jTj on the average� then the cost of this operation is� ns jTj �CC � In fact� retrieving
task information from repositories �items � and ��� can be executed in parallel with the



retrieval of task identi�ers of process instances �items � to ��� Therefore� in the general
cost formula� the maximum of these costs should be considered�

�� Join operation should be performed between the collection of task identi�ers
of process instances at one QE� and the collection of task information at another QE�
Di
erent join strategies can be considered at this step� For the time being� cost of this
operation is taken as� ����

The general formula of this strategy becomes�
�Sch� � maxf�CC � �nc��ns��AC �

Pk
i���nspi � �CC � �nci�ns��AC � �nci�ns��CC� �

nt � �CC � b � ebt� ns � jT j � �CCg� ���

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 5 7 10 12 16 19 22 25 28

Number of Sites (ns)

C
os

t

Strategy 1
Strategy 3

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 120

Communication Cost 

C
os

t

Strategy 1
Strategy 3

0

50000

100000

150000

200000

250000

300000

350000

10 15 20 150 300 700

Number of Task Objects

C
os

t

Strategy 1
Strategy 3
Strategy 4

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1 2 3 4 5 6 7 8 9

Level of Process Nesting

C
os

t

Strategy 1
Strategy 3

(c)

(a) (b)

(d)
Figure 
� Execution Costs

	 Comparison of Strategies

The execution costs of the di
erent query processing techniques given in the previous
section� are compared by considering the following metrics� �� number of sites involved�
�� number of nesting levels in a process� �� communication cost� �� number of task
objects in data repositories� For each of these criterion� we calculate the execution
costs according to the formulas given in Section �� In each calculation� the parameters
involved are randomly chosen with di
erent variances for a total of �� test cases and
the results are averaged�

These formulas are plotted into the graphs given in Figure �� Since Strategy �
has a high communication overhead� for small number of sites� up to ��� this strategy
performs better as seen in Figure �a� However as the number of sites increases� Strategy



� produces lower execution cost� This implies that the high execution cost of Strategy
� is remedied when the number of sites increases�

Strategy � performs the necessary join operations at the Query Evaluators which do
not have index structures to help with this operation� Therefore Strategy � performs so
poorly that we have removed it from Figures �a� b� c so that the performance di
erence
of the other techniques can be more clearly seen in the �gures�

Figure �b demonstrates the performance of the strategies as a function of the number
of nesting levels in a process� and Strategy � performs the best� Since the communication
between sites increases with process nesting� Strategy � performs poorer than Strategy
� due to this communication overhead�

Figure �c demonstrates how the variances in the communication cost e
ects the cost
of strategies� For low communication cost� Strategy � performs better than Strategy
�� Unlike in Strategy �� in Strategy � the communication cost is dominant rather that
appearance cost� This explains the better performance of Strategy � over Strategy �
for low communication overhead�

When the number of task objects are varied as shown in Figure �d� Strategy �
performs the best� Note that we assumed that indices are available in the underlying
repositories for retrieving task objects and therefore Strategy � and Strategy � use these
indices and thus their appearance time is not e
ected by the number of task objects�
However for Strategy �� since a Query Evaluator performs the join operation and indices
are not available at this level� the cost gets higher�

In evaluating a query the History Manager considers these strategies to �nd out a
cost e
ective plan� However since Strategy � and � consistently perform worse than
Strategy � and �� they are not taken into consideration� Details of this work is provided
in ��
 and a shorter version of this paper can be found in ��
�

References

�

 The Object Management Architecture Guide� Version ���� OMG Pubs� 
����

��
 R� Cattell� The Object Database Standard� ODMG���� Release ���� Morgan Kaufmann�
San Francisco� 
����

��
 Dogac� A�� Gokkoca� E�� Arpinar� S�� Koksal� P�� Cingil� I�� Arpinar� B�� Tatbul� N��
Karagoz� P�� Halici� U�� and Altinel� M� Design and implementation of a distributed
work�ow management system� Metu�ow� Proc� of NATO�ASI on Work	ow Management
Systems and Interoperability� pages ������ August 
����

��
 O� M� Group� The common object services speci�cation� 
�OMG Document Number
���
�
�� January 
����

��
 Koksal� P�� Arpinar� S�� and Dogac� A� Work�ow history management� Middle East
Technical University� Software Research and Development Center� Technical Report� �
��
January 
����

��
 Koksal� P�� Arpinar� S�� and Dogac� A� Work�ow history management� ACM Sigmod
Record� ���
�� March 
����

��
 Wachter� H� and Reuter� A� The contract model� Database Transaction Models for Ad�
vanced Applications� Morgan Kaufmann Pub�� 
����

��
 G� Weikum� Work�ow monitoring� Queries on logs or temporal databases� Position paper
in HPTS
��� 
����

��
 G� Weikum� Personal Communication� 
����


