Workflow History Management *

Pinar Koksal

Sena Nural Arpinar

Asuman Dogac

Software Research and Development Center
Department of Computer Engineering
Middle East Technical University (METU)
06531 Ankara Turkiye
{pinar, nural, asuman } @srdc.metu.edu.tr

Abstract

A workflow history manager maintains the information
essential for workflow monitoring and data mining as well
as for recovery and authorization purposes.

Certain characteristics of workflow systems like the neces-
sity to run these systems on heterogeneous, autonomous and
distributed environments and the nature of data, prevent
history management in workflows to be handled by the clas-
sical data management techniques like distributed DBMSs.
We further demonstrate that multi-database query process-
ing techniques are also not appropriate for the problem at
hand.

In this paper, we describe history management, i.e., the
structure of the history and querying of the history, in a fully
distributed workflow architecture realized in conformance
with Object Management Architecture (OMA) of OMG. By
fully distributed architecture we mean that the scheduler of
the workflow system is distributed and in accordance with
this, the history objects related with activities are stored
on data repositories (like DBMSs, files) available at the
sites involved. We describe the structure of the history
objects determined according to the nature of the data
and the processing needs, and the possible query processing
strategies on these objects using the Object Query Service
of OMG. We then present the comparison of these strategies
according to a cost model developed.

1 Introduction

A workflow system can be defined as a collection of
processing steps (also termed as tasks or activities)
organized to accomplish some business process. A task
may represent a manual operation by a human or a
computerizable task to be invoked. Computerizable
tasks may vary from legacy applications to programs to
control instrumentation. In addition to the collection
of tasks, a workflow defines the order of task invocation
or condition(s) under which tasks must be invoked (i.e.
control-flow) and data-flow between these tasks.

This work is being supported by Middle East Technical Uni-
versity, Project Number: AFP-97-07.02.08 and by the Scien-
tific and Technical Research Council of Turkey, Project Number:
EEEAG-Yazilim 5.

Applications running a long period of time may need
to remember their history and execution path. An
example case occurs when the decision about what to
do next depends on previous computation steps. Hence,
there must be a way to reference the history as well as
the local state produced in the past.

Workflow history management provides the mecha-
nisms for storing and querying the history of both on-
going and past processes for the following purposes:

e Monitoring purposes: During the execution of a
workflow, the need may arise for looking up some
piece of information in the process history, for
example, to figure out who else has already been
concerned with the workflow at what time in
what role, or to monitor the current states of the
tasks of an executing process instance when the
administrator should make an interruption to the
normal execution of the process instance. The
ability of the workflow system to reveal such kind
of information contributes to more transparency,
flexibility and overall work quality [Weikum 96].

e Business Process Reengineering purposes: Aggregat-
ing and mining the histories of all workflows over a
longer time period form the basis for analyzing and
assessing the efficiency, accuracy and the timeliness
of the enterprise’s business processes. Therefore,
this information provides the feedback for contin-
uous business processes re-engineering [Weikum 96].

e Recovery purposes: If there are executing process
instances or tasks on a site when the site fails,
history is used to recover the necessary information
required to continue their executions.

o Authorization purposes: The history information of
past and present processes can be used in scheduling
the user tasks by the authorization service. For
example, it may be necessary to assign a task to
a user who did the task previously, or it should not
be assigned to a user if s/he did the task previously,

but responded too late, or could not finish the task
properly.

Since workflows are activities involving the coordi-
nated execution of multiple tasks performed by different
processing entities, mostly in distributed heterogeneous
environments, a distributed workflow scheduler archi-
tecture is essential. Further advantages of such an archi-
tecture are failure resiliency and increased performance
since a centralized scheduler is a potential bottleneck.
And in order to fully exploit the advantages brought by
the distributed scheduling, history management, work-
flow relevant data management and the worklist man-
agement should also be handled in a distributed manner.

Distributed execution necessitates the handling of in-
teroperability problem among heterogeneous resources.
The interoperability of applications on heterogeneous
platforms can be handled by using CORBA [OMG 92]
as the communication infrastructure. The workflow his-
tory can then be implemented where the history of each
activity instance is a CORBA object at the same site
where the activity itself is invoked. This prevents the
communication cost between the activity object and its
history. In fact, this approach has been implemented
within the scope of METUFlow project [Dogac 97]. In
METUFlow, history objects are implemented on top of
a DBMS if there is one at the related site, otherwise files
are used. For the time being, IDL interfaces of Sybase
and Oracle DBMSs, and files are implemented.

In this paper, the querying of workflow history
is addressed. Since history information is kept in
distributed CORBA objects, the problem converges to
querying distributed objects and optimization of query
processing. For querying the history objects, Object
Query Service (OQS) defined by OMG ([OMG 94)]) is
used.

The history management for workflow systems has
not been extensively studied in the literature. In the
ConTract model [Wich 92], the set of private data
defining an application specific computation state is
called Contezt and is preserved for forward recovery.

In [Weikum 95], two approaches, namely an audit
trail approach and a special kind of temporal database
management system, are proposed and compared.

The paper is organized as follows: Object Query
Service of OMG is described in Section 2. In Section
3, workflow history structure is explained. Different
querying strategies of the workflow history are given
in Section 4. Finally, comparison of costs of executing
queries using different strategies is provided in Section
3.

2 Object Query Service

The Object Query Service, defined by OMG [OMG 94],
provides operations of selection, insertion, updating and
deletion on collections of objects.

By using a very general model and by using predicates
to deal with queries, the Query Service is designed to be
independent of any specific query language. However,
in order to provide query interoperability among variety
of query systems and to provide object-level query
interoperability, a Query Service supports either SQL
or OQL.

The Query Service (QS) provides a framework con-
sisting of some interfaces to deal with the preparation
and execution of a query. These are QueryEvaluator,
QueryManager, Collection, Query and QueryableCol-
lection.

QueryEvaluator defines an operation to evaluate
a query. This operation executes the query using the
query language user specifies. A database system is
an example of a QueryEvaluator object; it manages an
implicit collection of persistent objects.

When a user executes a query, the service returns a
collection of objects that satisfy the search criteria the
user specifies via a select operation. The QS treats the
collection itself as an object. Collection defines the
operations that let the user add, replace, retrieve and
remove members of a collection.

For collections to serve as both the result of a query
and as a scope for another query, these collections
must themselves be QueryEvaluators. Such collections
are called QueryableCollections. They support
both the Query Evaluator and Collection interfaces.
This accomplishes the nesting by passing the query
evaluation on to a lower level. Such nesting may
continue to an arbitrary number of levels without any
limit.

Since queries can be complex and resource-demanding,
there are numerous circumstances under which one
would like to use graphical means to construct a query,
save a query and re-execute it later on, etc. Query Ser-
vice provides the preceding capabilities and extensions
through the use of Query objects.

QueryManager is a more powerful form of QueryE-
valuator. It also lets user create a Query object.

3 Workflow History Structure

Workflow history can be managed by using CORBA to
support the network and location transparency. History
of each process and task instance can be a different
CORBA object, invoked by the workflow scheduler in
case of initialization, start, abort and commit of an
activity which is a process or a task.

A process history object should store the name of the

.

process, start, abort and commit time information, the
object identifiers of its tasks and subprocesses, and the
object identifiers and version numbers of the data used
as input and output parameters as shown in Figure 1.
History of subprocess objects are kept in exactly the
same way.

Similarly, task history objects store the name of the
task, start, abort and commit time information, the
object identifiers and versions of the input and output
parameters, the user name and role name if the task is
a user task. Task history object is also shown in Figure
1. To manage process and task history objects’ data,
methods are provided in their interfaces defined in IDL
as given in Appendix A.

The persistency of history objects are provided by
mapping them via storage wrappers to a database
or to other available data repositories. In case a
relational database is used as a data repository, the
object model should be mapped to the relational
one. To handle set type attributes in a relational
database, an additional table is used as in Figure
2. PROCESS table stores the information about
processes; TASK table stores the information about
tasks; additional PROCESS_CHILD table keeps the
children of a process namely children which can be tasks
and/or subprocesses shown as a set type member of the
Process object; and ACTIVITY_DATA table keeps the
parameter information of process and task instances. It
should be noted that Workflow Relevant Data (wrd) are
also implemented as versioned and persistent CORBA
objects [Koksal 98].

Since the interface of the file repository is imple-
mented to support relational operations, the operations
performed on queries for relational databases are also
applicable to the files.

4 Querying the Workflow History

A client of a workflow history can be a workflow
administrator to monitor the process instances, or
authorization service to authorize the users of the
system according to their workloads and their previous
experiences, or the workflow scheduler for recovery
purposes. The definition of the history in ODL, the
Object Definition Language of ODMG [ODMG 93]
is given in Appendix B. Clients can query the
history according to this ODL definition using OQL
[ODMG 93], standard query language of ODMG. An
OQL query is evaluated using the Object Query Service.

The common characteristics of the queries issued
against the workflow history are as follows:

e The queries are evaluated on distributed CORBA
objects.

e Any history information can be at any of the data
repositories. Therefore, all the repositories should
be queried.

e Because the history of a workflow can contain
not only the information of the current process
instances, but also that of past instances, the size
of the data repositories may be very large.

e Most of the queries either find the tasks of a given
process or retrieve the information on given tasks.
To retrieve the information of tasks of a process
instance, first task identifiers of the process are
retrieved, then the data repositories are queried
with all these task identifiers, since process and task
information can be stored in different tables. This
requires as many SELECT queries as the number of
task identifiers to be sent to each repository.

It should be noted that the problem at hand is
quite different than the processing and the optimization
on Multidatabase Management Systems (MDBMS). In
MDBMSs, a query decomposition process is required,
since there is a global schema. On the other hand,
in a workflow history, all the schemas are the same
at each repository. Therefore there is no need for a
query decomposition process. In MDBMSs, much work
has focused on the optimization of join operations re-
quired at global schema level ([Ozcan 96], [Evren 97])
since join operation is expensive. However, in querying
the workflow history structure as presented in this pa-
per, join operation is performed by first getting child
identifiers of process instances in the first pass, and
then querying TASK table with SELECT queries in the
second pass. Therefore, in workflow history manage-
ment a large number of query evaluators communicate
with each other and a large number of SELECT queries
are sent to each of the repositories which constitute the
dominating cost. Hence, the work on workflow history
query optimization should focus on the optimization of
these aspects.

In the following, we explain basic processing strate-
gies through an example. A detailed treatment of the
subject is given in [Koksal 98].

Example: Assume that there is a process pI defined
as:

PROCESS pl {
T1 (in i, out j);
T2 (in j, out k);
AND_PARALLEL {
T3 O3
T4 O;
}
T5 (in k, out m);

Process History Object

name

starttime = of i
aborttime of {par_i
" par_name
committime -
version_no}
parameters

childs
deadline

set of { activity_id
act_name
act_type}

Task History Object

name
starttime
aborttime

set of {par_id
par_name
version_no}

deadline

username
rolename

Figure 1: History objects

PROCESS

| id |name |starttime | aborttime| committime| deadline| state |

PROCESS_CHILD
|proc_id |act_id |ect_type |

TASK

ACTIVITY_DATA

|act_id |wrd_id |ver_n0 |

|id| name |starttime |aborttime| committime| deadlin&{ usernam% rolenamel state|

Figure 2: History tables in a relational database

In this process definition tasks T1 and T2 are
executed serially and then tasks T3 and T4 are started
in parallel within the scope of an AND_PARALLEL
block. The block terminates successfully if both of
the tasks T3 and T4 terminate successfully; otherwise
the block is aborted and the committed tasks are
compensated. T) is another task in this process to be
executed serially. More details about the specification
language are given in [Dogac 97].

The following is an example OQL query against the
instances of this process definition:

Query: Find the active tasks of the instances of
process pl.

select t.name
from process p, task t
where p.name = ’pl’ and
t in p.children and
t.state = ’EXECUTING’;

where children in the where clause are a set of object
identifiers of the activities, which are subprocesses or
tasks, that a process instance owns. Because the history
is distributed, the detailed task information can be at
any of the sites. Therefore, to answer such a query,
two passes on the data repositories are needed, the first
pass to find the object identifiers of the activities of
process instances and the second pass to get the detailed

information on these tasks.

If we assume that there are ns sites that the history
objects are stored, then there should be ns persistent
history objects. In addition, there can be many
instances of the process pI dispersed along these sites.
To answer this query, ns sources should be queried using
Object Query Service. If we assume that nsis 3 where
the history objects are stored in an Oracle DBMS, a
Sybase DBMS and a plain text file, then two Query
Evaluators (QE) are created to use the native query
facilities of two relational databases and one evaluator
to get the information from the file.

There are several strategies to evaluate this kind of
query. Note that most of the queries against workflow
history are in this form.

e Strategy 1. In the first pass, ns query evaluators
evaluate the following OQL query on the persistent
stores:

select children
from process
where name = ’pl’;

If any one of the persistent stores is a relational
DBMS, since relational DBMSs do not have set
attributes, activity identifiers of process instances

are kept in a different table as explained in Section
3. Therefore, join operation is needed between
PROCESS and PROCESS_CHILD tables as shown
in the following SQL statement:

select pc.act_id
from process p, process_child pc
where p.name = ’pl’ and

p-id = pc.proc_id;

We assume that the table keeping the child activity
identifiers of process instances, PROCESS_CHILD
table is at the same site with the PROCESS table
itself.

Since the given example process definition pI does
not contain any subprocess calls, the children of the
process instances of pl consists of task identifiers
only. Therefore, with the given query, a collection
of task identifiers is retrieved from each repository.
These ns collections should be sent to ns sites to
query the TASK table with the complete set of
task identifiers. Therefore, each QE should send its
collection to the other ns-1 QEs so that each of the
ns QEs contains the whole set of task identifiers.

In the second pass, using the collection containing
the set of task identifiers of the process instances,
tasks_coll, the following query can be evaluated using
another QE:

select name

from task

where ObjRef in tasks_coll and
state = ’EXECUTING’;

Because the tasks_coll is a set of task identifiers, to
evaluate such an OQL query in a relational DBMS,
it should be converted to the equivalent SQL queries
such that:

select name

from task

where id = tasks_coll[i] and
state = ’EXECUTING’;

where i = 1, 2, ... , nt; nt is the total number of
task identifiers returned from ns sites. To retrieve
the name information of tasks, these nt SQL queries
are sent to ms data repositories, because the task
information can be at any of the data repository.
After all the subresults are obtained from the QEs,
a union of these subresults gives the final result.

Strategy 2. The only difference between this
strategy and the previous one is that, after ns

QEs have retrieved the task identifiers from the
repositories, they do not send their collections to the
other ns-1 QEs, instead all the collections of the QEs
are collected at one collection, and then complete
collection of the task identifiers are sent back again
to the ns QEs. The rest of the execution is the same
with Strategy 1.

Strategy 3. In this strategy, again there are two
passes. In the first pass, the task identifiers are
retrieved into ns collections using ns QEs. At the
end of the first pass, we have ns collections of
task identifiers, each of which contains all the task
identifiers obtained. Before the second pass starts,
we assign a threshold value to each of the task
identifiers in the collections and set this value to 1.

The second pass starts for each of these collections
in parallel in which the detailed task information is
retrieved from the native systems. These retrievals
do not follow a specific order of task identifiers, but
are done randomly. If a task information is found in
a repository, this site informs all the other sites so
that task is deleted from all of the collections. If the
task information is not found in a repository, then
that task is deleted from the collection of this site
and threshold value of that task is increased by one
in all of the other collections.

The reason why we increase the threshold in other
sites is that the possibility of finding detailed
information about the task in the other repositories
has increased. When all the threshold values are
no longer equal to 1 in a collection, the task whose
threshold value is the highest is given higher priority
in the retrieval.

In this strategy, the cost of the second pass may
decrease because there may be no need to send
queries to all of the repositories for a task. On the
other hand, communication cost in terms of network
traffic is increased due to the messages sent between
the QEs to inform the existence and nonexistence of
tasks.

Strategy 4. All of the previous strategies, first re-
trieve the child identifiers of a process instance, then
retrieve the information about these tasks by query-
ing the data repositories using the task identifiers.
On the contrary, in this strategy, while child identi-
fiers of a process are retrieved from repositories in to
a collection, all the task information in the underly-
ing repositories are retrieved in to another collection
concurrently. Afterwards, these two collections (task
identifiers and task information) are joined explicitly
in a query evaluator.

.

In this strategy, we save from the number of
QEs used. On the other hand, the explicit join
operation introduces an extra cost, especially when
the cardinalities of the collections to be joined are
very large. Moreover, the appearance costs are
high, since all the TASK objects in the underlying
repositories should be gathered.

If the process is nested, i.e., it contains a subprocess,
then these strategies become more complex. For
example, consider the following workflow definition:

PROCESS p2 { PROCESS p3 (in k,

T1 (in i, out j); out m) {
AND_PARALLEL { T4 (in k);
T2 O CONTINGENCY {
T3 O3 T5 (out m);
} T6 (out m);
p3 (in k, out m); }
} }

In the process definition of p2, first task 71 is
executed. After the successful termination of this
task, tasks 72 and T3 are started in parallel in the
scope of an AND_PARALLEL block. When both
of these tasks terminate successfully, the subprocess
p3 starts execution. In the process definition of p3,
task T4 is executed first, then in the scope of the
CONTINGENCY block, task T5 is executed. If it
terminates successfully, CONTINGENCY block also
terminates, otherwise task 76 is executed.

In the process definition given above, T4, T5 and T6
are the child activities of process p3. However, when
a query is issued retrieving the tasks of process p2,
the tasks of p& should also be included in the answer.
Therefore, if a process contains subprocesses, more
passes are necessary to the data repositories to obtain
information on the activities in various nesting levels.
For the example given above, in the first pass, given
process name p2, the retrieved collection contains the
identifiers of tasks and subprocesses, i.e. the identifiers
of the instances of T1, T2, T3 and p3 are returned.
Because this collection has an identifier of a process,
another pass is required to the data repositories for p3
to get its child identifiers. If the number of subprocess
instances of the top level process instance is nsp;, then
it takes nsp; - ns QEs for the first level of nesting. And
this continues until the collection has no subprocess
identifiers. A union of the task identifiers of all these
collections gives task information by using one of the
strategies given in the previous example.

Querying the history may also be necessary for
authorization purposes. As an example, there could be
an authorization constraint stating that ”Task T2 must
be executed by a role dominating the role which executes
task T3” where dominating role R1 is defined as the

role R1 precedes another role R2 in the ordering and
it is given a higher priority over R2 when assigning a
role to the task [Bertino 97]. The corresponding query
is "Find the users who have a role dominating the role
which ezecuted task T3”.

OQL: select u.username
from task t, role r, user u
where t.name = ’T3’ and
t.role < r.rolename and

u.role r.rolename;

This query can be executed in a similar way with the
queries against the workflow history. After task infor-
mation is retrieved, authorization databases, possibly
stored in a centralized data repository, are queried us-
ing this task information.

5 Comparison of Strategies

Our primary aim is to minimize the cost of execution of
the queries on workflow history. In [Koksal 98], various
strategies, given in the previous section, are analyzed in
detail and cost functions are derived for each strategy.

The execution costs of the different query processing
techniques given in the previous section, are compared
by considering the following metrics:

1. number of sites involved

2. number of nesting levels in a process

3. communication cost

4. number of task objects in data repositories

For each of the above criterion, we calculate the
execution costs according to the formulas given in
[Koksal 98]. In each calculation, the parameters in-
volved (communication cost, appearance cost, number
of sites, level of process nesting, number of children of
processes, number of task objects and join cost) are ran-
domly chosen with different variances for a total of 10
test cases and the results are averaged. The range of
communication cost is 10-150, that of appearance cost
is 50-1000, the range of number of sites is 3-50, the range
of nesting level is 0-9, the range of number of children
of processes is 3-60, the range of number of task objects
is 30-2000 and the range of join cost is 50-1200.

These formulas are plotted into the graphs given in
Figure 3. Since Strategy 3 has a high communication
overhead, for small number of sites, up to 12, this
strategy performs better as seen in Figure 3a. However
as the number of sites increases, Strategy 1 produces
lower execution cost. This implies that the high
execution cost of Strategy 1 is remedied when the
number of sites increases. Strategy 4 performs the
necessary join operations at the Query Evaluators which
do not have index structures to help with this operation.
Because of that reason, Strategy 4 performs so badly
that we have removed it from Figures 3a, b, ¢ so that

(9)

519900 MseL Jo JaquinN

00L 00g 0ST 0c ST (1)

e

t ABajens —»—
¢ AbBajens —=—
1 ABorens ——

r 00005

r 00000T

r 0000ST

000002

0000S¢

00000€

©)

S0 UOIEIIUNWWOD

0000S€

0ct 06 08 0L 09 0s or oe 0c 0T

r 0005

000ST

00002

00052

1s00

1500

€ Abayens —=—
T ABayens ——

¢ ABarens —=—
T ABajens ——

)

BunsaN $sa001d 4O [9Aa]

8 L 9 S 14 €

0000T

0000¢

0000€

0000¥

r 0000S

00009

r 00002

r 00008

8¢

)

(su) saus Jo JaquinN

S¢ [44 61 9T ct 0T

00006

0008

0000T

0002T

r 0007T

0009T

0008T

1500

10D

Execution Costs

Figure 3

the performance difference of the other techniques can
be more clearly seen in the figures.

Figure 3b demonstrates the performance of the
strategies as a function of the number of nesting levels
in a process, and Strategy 1 performs the best. Since
the communication between sites increases with process
nesting Strategy 3 performs poorer than Strategy 1 due
to this communication overhead.

Figure 3c demonstrates how the variances in the
communication cost effects the cost of strategies. For
low communication cost, Strategy 3 performs better
than Strategy 1. Unlike in Strategy 1, in Strategy 3 the
communication cost is dominant rather that appearance
cost. This explains the better performance of Strategy
3 over Strategy 1 for low communication overhead.

When the number of task objects are varied as shown
in Figure 3d, Strategy 1 performs the best. Note that
we assumed that indices are available in the underlying
repositories for retrieving task objects and therefore
Strategy 1 and Strategy 3 use these indices and thus
their appearance time is not effected by the number of
task objects. However for Strategy 4, since a Query
Evaluator performs the join operation and indices are
not available at this level, the cost gets higher.

For each query, the History Manager by considering
these parameters decides on the strategy to be used in
evaluating the query. Details of this work is provided in
[Koksal 98].

References

[Bertino 97] Bertino, E., Ferrari, E., Atluri, V., A Flez-
ible Model for the Specification and Enforce-
ment of Role-Based Authorizations in Work-
flow Management Systems”, Proc. of Second
ACM Workshop on Role-Based Access Con-
trol, Fairfax (Virginia), November 1997.

Dogac, A., Gokkoca, E., Arpinar, S., Kok-
sal, P.; Cingil, I., Arpinar, B., Tatbul, N,
Karagoz, P., Halici, U., Altinel, M., ”De-
sign and Implementation of a Distributed
Workflow Management System: METU-
Flow”, In Proc. of NATO-ASI on Work-
flow Management Systems and Interoperabil-
ity, Dogac, A., Kalinichenko, L., Ozsu, T.,
Sheth, A., (Edtrs.), August 1997, pp. 60-90.
http://www.srdc.metu.edu.tr/metuflow

Evrendilek, C., Dogac, A., Nural, S., Ozcan,
F., "Multidatabase Query Optimization”, in
Distributed and Parallel Databases, Volume
5, pp. 77-114, 1997.

Koksal, P., Arpinar, S., Dogac, A., Work-
flow History Management, Middle East Tech-
nical University, Software Research and Devel-
opment Center, Technical Report 1, January
1998.

[Dogac 97]

[Evren 97]

[Koksal 98]

[ODMG 93] Cattell, R.G.G., editor, ”The Object Database
Standard: ODMG-93”, Release 1.2, Morgan
Kaufmann, San Francisco, 1994.

[OMG 92] The Object Management Architecture Guide,
Version 2.1. The Common Object Request
Broker: Architecture and Specifications, OMG

Pubs 1992.

[OMG 94] Object Management Group, The Common
Object Services Specification, Volume 1, OMG

Document Number 94.1.1, January 1994.

[Ozcan 96] Ozcan, F., Nural, S., Koksal, P., Evrendilek,
C., Dogac, A., "Dynamic Query Optimiza-
tion on a Distributed Object Management
Platform”, in Proceedings of the Intl. Conf.
on Information and Knowledge Management

(CIKM'96), November 1996.

Wichter, H., Reuter, A., ”The ConTract
Model”, in Database Transaction Models for
Advanced Applications, ed. Elmagarmid, A.,
Morgan Kaufmann Pub., 1992.

[Weikum 95] Weikum, G., ”Workflow Monitoring: Queries
On Logs or Temporal Databases?”; Position
paper in HPTS’95.

[Wiich 92]

[Weikum 96] Weikum, G., Personal Communication.

A IDL of the Workflow History

interface ACTIVITY {
void start (in Parameters params);
// input parameters information
void abort ();
void commit (in Parameters params);
// output parameters information
void current_state(out State state);
void GetParentID(out OBJREF Parent0ObjID);
};

interface PROCESS : ACTIVITY {
void set (in string ProcessName,
in OBJREF ProcessId, in string comp);
void put_history (in OBJREF AnyBlock);
void get_info (out ProcessInfo info);
void children(out ObjectList ChildList);
};

interface TASK : ACTIVITY {
void set_task (in OBJREF oid, in string name,
in TaskType type, in boolean v,
in boolean c, in Retry r,
in string comp);
void set_user_task (in OBJREF oid, in string name,
in TaskType type, in boolean v,
in boolean c, in Retry r,
in string comp, in Role role,
in User u);
void putWL(); //Time a task is added to the worklist
void set_user(in User user);
void get_info (out ActivityInfo info);
};

B

interface process {
key ObjRef;

};

attribute
attribute
attribute
attribute
attribute
attribute

string name;

string ObjRef;

integer startTime, abortTime,
integer noChild;

set<string> children;

string state;

duration();
deadline();

interface task {
key ObjRef;

attribute
attribute
attribute
attribute
attribute

string name;

string ObjRef;

integer startTime, abortTime,
string state;

string role, username;

duration();
deadline();

ODL of the Workflow History

commitTime;

commitTime;

.

