
Work�ow History Management �

Pinar Koksal Sena Nural Arpinar Asuman Dogac
Software Research and Development Center

Department of Computer Engineering
Middle East Technical University �METU�

����� Ankara Turkiye
fpinar� nural� asumang	srdc
metu
edu
tr

Abstract

A work�ow history manager maintains the information
essential for work�ow monitoring and data mining as well
as for recovery and authorization purposes�
Certain characteristics of work�ow systems like the neces�

sity to run these systems on heterogeneous� autonomous and
distributed environments and the nature of data� prevent
history management in work�ows to be handled by the clas�
sical data management techniques like distributed DBMSs�
We further demonstrate that multi�database query process�
ing techniques are also not appropriate for the problem at
hand�
In this paper� we describe history management� i�e�� the

structure of the history and querying of the history� in a fully
distributed work�ow architecture realized in conformance
with Object Management Architecture �OMA� of OMG� By
fully distributed architecture we mean that the scheduler of
the work�ow system is distributed and in accordance with
this� the history objects related with activities are stored
on data repositories �like DBMSs� �les� available at the
sites involved� We describe the structure of the history
objects determined according to the nature of the data
and the processing needs� and the possible query processing
strategies on these objects using the Object Query Service
of OMG� We then present the comparison of these strategies
according to a cost model developed�

� Introduction

A work�ow system can be de�ned as a collection of
processing steps �also termed as tasks or activities�
organized to accomplish some business process� A task
may represent a manual operation by a human or a
computerizable task to be invoked� Computerizable
tasks may vary from legacy applications to programs to
control instrumentation� In addition to the collection
of tasks� a work�ow de�nes the order of task invocation
or condition�s� under which tasks must be invoked �i�e�
control��ow� and data��ow between these tasks�

�This work is being supported by Middle East Technical Uni�

versity� Project Number� AFP�����������	 and by the Scien�

ti
c and Technical Research Council of Turkey� Project Number�

EEEAG�Yazilim ��

Applications running a long period of time may need
to remember their history and execution path� An
example case occurs when the decision about what to
do next depends on previous computation steps� Hence�
there must be a way to reference the history as well as
the local state produced in the past�
Work�ow history management provides the mecha�

nisms for storing and querying the history of both on�
going and past processes for the following purposes�

� Monitoring purposes� During the execution of a
work�ow� the need may arise for looking up some
piece of information in the process history� for
example� to �gure out who else has already been
concerned with the work�ow at what time in
what role� or to monitor the current states of the
tasks of an executing process instance when the
administrator should make an interruption to the
normal execution of the process instance� The
ability of the work�ow system to reveal such kind
of information contributes to more transparency�
�exibility and overall work quality 	Weikum
���

� Business Process Reengineering purposes� Aggregat�
ing and mining the histories of all work�ows over a
longer time period form the basis for analyzing and
assessing the e
ciency� accuracy and the timeliness
of the enterprise�s business processes� Therefore�
this information provides the feedback for contin�
uous business processes re�engineering 	Weikum
���

� Recovery purposes� If there are executing process
instances or tasks on a site when the site fails�
history is used to recover the necessary information
required to continue their executions�

� Authorization purposes� The history information of
past and present processes can be used in scheduling
the user tasks by the authorization service� For
example� it may be necessary to assign a task to
a user who did the task previously� or it should not
be assigned to a user if s�he did the task previously�

�

but responded too late� or could not �nish the task
properly�

Since work�ows are activities involving the coordi�
nated execution of multiple tasks performed by di�erent
processing entities� mostly in distributed heterogeneous
environments� a distributed work�ow scheduler archi�
tecture is essential� Further advantages of such an archi�
tecture are failure resiliency and increased performance
since a centralized scheduler is a potential bottleneck�
And in order to fully exploit the advantages brought by
the distributed scheduling� history management� work�
�ow relevant data management and the worklist man�
agement should also be handled in a distributed manner�

Distributed execution necessitates the handling of in�
teroperability problem among heterogeneous resources�
The interoperability of applications on heterogeneous
platforms can be handled by using CORBA 	OMG
��
as the communication infrastructure� The work�ow his�
tory can then be implemented where the history of each
activity instance is a CORBA object at the same site
where the activity itself is invoked� This prevents the
communication cost between the activity object and its
history� In fact� this approach has been implemented
within the scope of METUFlow project 	Dogac
��� In
METUFlow� history objects are implemented on top of
a DBMS if there is one at the related site� otherwise �les
are used� For the time being� IDL interfaces of Sybase
and Oracle DBMSs� and �les are implemented�

In this paper� the querying of work�ow history
is addressed� Since history information is kept in
distributed CORBA objects� the problem converges to
querying distributed objects and optimization of query
processing� For querying the history objects� Object
Query Service �OQS� de�ned by OMG �	OMG
��� is
used�

The history management for work�ow systems has
not been extensively studied in the literature� In the
ConTract model 	W�ach
��� the set of private data
de�ning an application speci�c computation state is
called Context and is preserved for forward recovery�

In 	Weikum
��� two approaches� namely an audit
trail approach and a special kind of temporal database
management system� are proposed and compared�

The paper is organized as follows� Object Query
Service of OMG is described in Section �� In Section
�� work�ow history structure is explained� Di�erent
querying strategies of the work�ow history are given
in Section �� Finally� comparison of costs of executing
queries using di�erent strategies is provided in Section
��

� Object Query Service

The Object Query Service� de�ned by OMG 	OMG
���
provides operations of selection� insertion� updating and
deletion on collections of objects�
By using a very general model and by using predicates

to deal with queries� the Query Service is designed to be
independent of any speci�c query language� However�
in order to provide query interoperability among variety
of query systems and to provide object�level query
interoperability� a Query Service supports either SQL
or OQL�
The Query Service �QS� provides a framework con�

sisting of some interfaces to deal with the preparation
and execution of a query� These are QueryEvaluator�
QueryManager� Collection� Query and QueryableCol�
lection�
QueryEvaluator de�nes an operation to evaluate

a query� This operation executes the query using the
query language user speci�es� A database system is
an example of a QueryEvaluator object� it manages an
implicit collection of persistent objects�
When a user executes a query� the service returns a

collection of objects that satisfy the search criteria the
user speci�es via a select operation� The QS treats the
collection itself as an object� Collection de�nes the
operations that let the user add� replace� retrieve and
remove members of a collection�
For collections to serve as both the result of a query

and as a scope for another query� these collections
must themselves be QueryEvaluators� Such collections
are called QueryableCollections� They support
both the Query Evaluator and Collection interfaces�
This accomplishes the nesting by passing the query
evaluation on to a lower level� Such nesting may
continue to an arbitrary number of levels without any
limit�
Since queries can be complex and resource�demanding�

there are numerous circumstances under which one
would like to use graphical means to construct a query�
save a query and re�execute it later on� etc� Query Ser�
vice provides the preceding capabilities and extensions
through the use of Query objects�
QueryManager is a more powerful form of QueryE�

valuator� It also lets user create a Query object�

� Work�ow History Structure

Work�ow history can be managed by using CORBA to
support the network and location transparency� History
of each process and task instance can be a di�erent
CORBA object� invoked by the work�ow scheduler in
case of initialization� start� abort and commit of an
activity which is a process or a task�

A process history object should store the name of the

�

process� start� abort and commit time information� the
object identi�ers of its tasks and subprocesses� and the
object identi�ers and version numbers of the data used
as input and output parameters as shown in Figure ��
History of subprocess objects are kept in exactly the
same way�

Similarly� task history objects store the name of the
task� start� abort and commit time information� the
object identi�ers and versions of the input and output
parameters� the user name and role name if the task is
a user task� Task history object is also shown in Figure
�� To manage process and task history objects� data�
methods are provided in their interfaces de�ned in IDL
as given in Appendix A�

The persistency of history objects are provided by
mapping them via storage wrappers to a database
or to other available data repositories� In case a
relational database is used as a data repository� the
object model should be mapped to the relational
one� To handle set type attributes in a relational
database� an additional table is used as in Figure
�� PROCESS table stores the information about
processes� TASK table stores the information about
tasks� additional PROCESS CHILD table keeps the
children of a process namely children which can be tasks
and�or subprocesses shown as a set type member of the
Process object� and ACTIVITY DATA table keeps the
parameter information of process and task instances� It
should be noted that Work�ow Relevant Data �wrd� are
also implemented as versioned and persistent CORBA
objects 	Koksal
���

Since the interface of the �le repository is imple�
mented to support relational operations� the operations
performed on queries for relational databases are also
applicable to the �les�

� Querying the Work�ow History

A client of a work�ow history can be a work�ow
administrator to monitor the process instances� or
authorization service to authorize the users of the
system according to their workloads and their previous
experiences� or the work�ow scheduler for recovery
purposes� The de�nition of the history in ODL� the
Object De�nition Language of ODMG 	ODMG
��
is given in Appendix B� Clients can query the
history according to this ODL de�nition using OQL
	ODMG
��� standard query language of ODMG� An
OQL query is evaluated using the Object Query Service�

The common characteristics of the queries issued
against the work�ow history are as follows�

� The queries are evaluated on distributed CORBA
objects�

� Any history information can be at any of the data
repositories� Therefore� all the repositories should
be queried�

� Because the history of a work�ow can contain
not only the information of the current process
instances� but also that of past instances� the size
of the data repositories may be very large�

� Most of the queries either �nd the tasks of a given
process or retrieve the information on given tasks�
To retrieve the information of tasks of a process
instance� �rst task identi�ers of the process are
retrieved� then the data repositories are queried
with all these task identi�ers� since process and task
information can be stored in di�erent tables� This
requires as many SELECT queries as the number of
task identi�ers to be sent to each repository�

It should be noted that the problem at hand is
quite di�erent than the processing and the optimization
on Multidatabase Management Systems �MDBMS�� In
MDBMSs� a query decomposition process is required�
since there is a global schema� On the other hand�
in a work�ow history� all the schemas are the same
at each repository� Therefore there is no need for a
query decomposition process� In MDBMSs� much work
has focused on the optimization of join operations re�
quired at global schema level �	Ozcan
��� 	Evren
���
since join operation is expensive� However� in querying
the work�ow history structure as presented in this pa�
per� join operation is performed by �rst getting child
identi�ers of process instances in the �rst pass� and
then querying TASK table with SELECT queries in the
second pass� Therefore� in work�ow history manage�
ment a large number of query evaluators communicate
with each other and a large number of SELECT queries
are sent to each of the repositories which constitute the
dominating cost� Hence� the work on work�ow history
query optimization should focus on the optimization of
these aspects�
In the following� we explain basic processing strate�

gies through an example� A detailed treatment of the
subject is given in 	Koksal
���
Example� Assume that there is a process p� de�ned

as�

PROCESS p� �

T� �in i� out j��

T� �in j� out k��

AND�PARALLEL �

T	 ���

T
 ���

�

T� �in k� out m��

�

�

set of {par_id
 par_name
 version_no}

set of {par_id
 par_name
 version_no}

set of { activity_id
 act_name
 act_type}

name
starttime
aborttime
committime
parameters

deadline
username
rolename

name
starttime
aborttime
committime
parameters
childs
deadline

Task History ObjectProcess History Object

Figure �� History objects

PROCESS

TASK

PROCESS_CHILD

proc_id act_id act_type

ACTIVITY_DATA

act_id wrd_id ver_no

id name starttime aborttime committime deadline state

id name starttime aborttime committime deadline username rolename state

Figure �� History tables in a relational database

In this process de�nition tasks T� and T� are
executed serially and then tasks T� and T� are started
in parallel within the scope of an AND PARALLEL
block� The block terminates successfully if both of
the tasks T� and T� terminate successfully� otherwise
the block is aborted and the committed tasks are
compensated� T� is another task in this process to be
executed serially� More details about the speci�cation
language are given in 	Dogac
���
The following is an example OQL query against the

instances of this process de�nition�
Query� Find the active tasks of the instances of

process p��

select t
name

from process p� task t

where p
name � �p�� and

t in p
children and

t
state � �EXECUTING��

where children in the where clause are a set of object
identi�ers of the activities� which are subprocesses or
tasks� that a process instance owns� Because the history
is distributed� the detailed task information can be at
any of the sites� Therefore� to answer such a query�
two passes on the data repositories are needed� the �rst
pass to �nd the object identi�ers of the activities of
process instances and the second pass to get the detailed

information on these tasks�
If we assume that there are ns sites that the history

objects are stored� then there should be ns persistent
history objects� In addition� there can be many
instances of the process p� dispersed along these sites�
To answer this query� ns sources should be queried using
Object Query Service� If we assume that ns is � where
the history objects are stored in an Oracle DBMS� a
Sybase DBMS and a plain text �le� then two Query
Evaluators �QE� are created to use the native query
facilities of two relational databases and one evaluator
to get the information from the �le�
There are several strategies to evaluate this kind of

query� Note that most of the queries against work�ow
history are in this form�

� Strategy �� In the �rst pass� ns query evaluators
evaluate the following OQL query on the persistent
stores�

select children

from process

where name � �p���

If any one of the persistent stores is a relational
DBMS� since relational DBMSs do not have set
attributes� activity identi�ers of process instances

�

are kept in a di�erent table as explained in Section
�� Therefore� join operation is needed between
PROCESS and PROCESS CHILD tables as shown
in the following SQL statement�

select pc
act�id

from process p� process�child pc

where p
name � �p�� and

p
id � pc
proc�id�

We assume that the table keeping the child activity
identi�ers of process instances� PROCESS CHILD

table is at the same site with the PROCESS table
itself�

Since the given example process de�nition p� does
not contain any subprocess calls� the children of the
process instances of p� consists of task identi�ers
only� Therefore� with the given query� a collection
of task identi�ers is retrieved from each repository�
These ns collections should be sent to ns sites to
query the TASK table with the complete set of
task identi�ers� Therefore� each QE should send its
collection to the other ns�� QEs so that each of the
ns QEs contains the whole set of task identi�ers�

In the second pass� using the collection containing
the set of task identi�ers of the process instances�
tasks coll� the following query can be evaluated using
another QE�

select name

from task

where ObjRef in tasks�coll and

state � �EXECUTING��

Because the tasks coll is a set of task identi�ers� to
evaluate such an OQL query in a relational DBMS�
it should be converted to the equivalent SQL queries
such that�

select name

from task

where id � tasks�coll�i� and

state � �EXECUTING��

where i � �� �� ��� � nt� nt is the total number of
task identi�ers returned from ns sites� To retrieve
the name information of tasks� these nt SQL queries
are sent to ns data repositories� because the task
information can be at any of the data repository�
After all the subresults are obtained from the QEs�
a union of these subresults gives the �nal result�

� Strategy �� The only di�erence between this
strategy and the previous one is that� after ns

QEs have retrieved the task identi�ers from the
repositories� they do not send their collections to the
other ns�� QEs� instead all the collections of the QEs
are collected at one collection� and then complete
collection of the task identi�ers are sent back again
to the ns QEs� The rest of the execution is the same
with Strategy ��

� Strategy �� In this strategy� again there are two
passes� In the �rst pass� the task identi�ers are
retrieved into ns collections using ns QEs� At the
end of the �rst pass� we have ns collections of
task identi�ers� each of which contains all the task
identi�ers obtained� Before the second pass starts�
we assign a threshold value to each of the task
identi�ers in the collections and set this value to ��

The second pass starts for each of these collections
in parallel in which the detailed task information is
retrieved from the native systems� These retrievals
do not follow a speci�c order of task identi�ers� but
are done randomly� If a task information is found in
a repository� this site informs all the other sites so
that task is deleted from all of the collections� If the
task information is not found in a repository� then
that task is deleted from the collection of this site
and threshold value of that task is increased by one
in all of the other collections�

The reason why we increase the threshold in other
sites is that the possibility of �nding detailed
information about the task in the other repositories
has increased� When all the threshold values are
no longer equal to � in a collection� the task whose
threshold value is the highest is given higher priority
in the retrieval�

In this strategy� the cost of the second pass may
decrease because there may be no need to send
queries to all of the repositories for a task� On the
other hand� communication cost in terms of network
tra
c is increased due to the messages sent between
the QEs to inform the existence and nonexistence of
tasks�

� Strategy �� All of the previous strategies� �rst re�
trieve the child identi�ers of a process instance� then
retrieve the information about these tasks by query�
ing the data repositories using the task identi�ers�
On the contrary� in this strategy� while child identi�
�ers of a process are retrieved from repositories in to
a collection� all the task information in the underly�
ing repositories are retrieved in to another collection
concurrently� Afterwards� these two collections �task
identi�ers and task information� are joined explicitly
in a query evaluator�

�

In this strategy� we save from the number of
QEs used� On the other hand� the explicit join
operation introduces an extra cost� especially when
the cardinalities of the collections to be joined are
very large� Moreover� the appearance costs are
high� since all the TASK objects in the underlying
repositories should be gathered�

If the process is nested� i�e�� it contains a subprocess�
then these strategies become more complex� For
example� consider the following work�ow de�nition�

PROCESS p� � PROCESS p	 �in k�

T� �in i� out j�� out m� �

AND�PARALLEL � T
 �in k��

T� ��� CONTINGENCY �

T	 ��� T� �out m��

� T� �out m��

p	 �in k� out m�� �

� �

In the process de�nition of p�� �rst task T� is
executed� After the successful termination of this
task� tasks T� and T� are started in parallel in the
scope of an AND PARALLEL block� When both
of these tasks terminate successfully� the subprocess
p� starts execution� In the process de�nition of p��
task T	 is executed �rst� then in the scope of the
CONTINGENCY block� task T
 is executed� If it
terminates successfully� CONTINGENCY block also
terminates� otherwise task T� is executed�
In the process de�nition given above� T	� T
 and T�

are the child activities of process p�� However� when
a query is issued retrieving the tasks of process p��
the tasks of p� should also be included in the answer�
Therefore� if a process contains subprocesses� more
passes are necessary to the data repositories to obtain
information on the activities in various nesting levels�
For the example given above� in the �rst pass� given
process name p�� the retrieved collection contains the
identi�ers of tasks and subprocesses� i�e� the identi�ers
of the instances of T�� T�� T� and p� are returned�
Because this collection has an identi�er of a process�
another pass is required to the data repositories for p�
to get its child identi�ers� If the number of subprocess
instances of the top level process instance is nsp�� then
it takes nsp� �ns QEs for the �rst level of nesting� And
this continues until the collection has no subprocess
identi�ers� A union of the task identi�ers of all these
collections gives task information by using one of the
strategies given in the previous example�
Querying the history may also be necessary for

authorization purposes� As an example� there could be
an authorization constraint stating that �Task T� must

be executed by a role dominating the role which executes

task T�� where dominating role R� is de�ned as the

role R� precedes another role R� in the ordering and
it is given a higher priority over R� when assigning a
role to the task 	Bertino
��� The corresponding query
is �Find the users who have a role dominating the role

which executed task T���

OQL� select u
username

from task t� role r� user u

where t
name � �T	� and

t
role � r
rolename and

u
role � r
rolename�

This query can be executed in a similar way with the
queries against the work�ow history� After task infor�
mation is retrieved� authorization databases� possibly
stored in a centralized data repository� are queried us�
ing this task information�

� Comparison of Strategies

Our primary aim is to minimize the cost of execution of
the queries on work�ow history� In 	Koksal
��� various
strategies� given in the previous section� are analyzed in
detail and cost functions are derived for each strategy�
The execution costs of the di�erent query processing

techniques given in the previous section� are compared
by considering the following metrics�

�� number of sites involved
�� number of nesting levels in a process
�� communication cost
�� number of task objects in data repositories

For each of the above criterion� we calculate the
execution costs according to the formulas given in
	Koksal
��� In each calculation� the parameters in�
volved �communication cost� appearance cost� number
of sites� level of process nesting� number of children of
processes� number of task objects and join cost� are ran�
domly chosen with di�erent variances for a total of ��
test cases and the results are averaged� The range of
communication cost is ������� that of appearance cost
is �������� the range of number of sites is ����� the range
of nesting level is ��
� the range of number of children
of processes is ����� the range of number of task objects
is ������� and the range of join cost is ��������
These formulas are plotted into the graphs given in

Figure �� Since Strategy � has a high communication
overhead� for small number of sites� up to ��� this
strategy performs better as seen in Figure �a� However
as the number of sites increases� Strategy � produces
lower execution cost� This implies that the high
execution cost of Strategy � is remedied when the
number of sites increases� Strategy � performs the
necessary join operations at the Query Evaluators which
do not have index structures to help with this operation�
Because of that reason� Strategy � performs so badly
that we have removed it from Figures �a� b� c so that

�

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

10
20

30
40

50
60

70
80

90
12

0

C
om

m
un

ic
at

io
n

C
os

t

Cost

S
tr

at
eg

y
1

S
tr

at
eg

y
3

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

10
15

20
15

0
30

0
70

0

N
um

be
r

of
 T

as
k

O
bj

ec
ts

Cost

S
tr

at
eg

y
1

S
tr

at
eg

y
3

S
tr

at
eg

y
4

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

0
1

2
3

4
5

6
7

8
9

Le
ve

l o
f P

ro
ce

ss
 N

es
tin

g

Cost

S
tr

at
eg

y
1

S
tr

at
eg

y
3

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

3
5

7
10

12
16

19
22

25
28

N
um

be
r

of
 S

ite
s

(n
s)

Cost

S
tr

at
eg

y
1

S
tr

at
eg

y
3

(b
)

(c
) (d
)

(a
)

Figure �� Execution Costs

�

the performance di�erence of the other techniques can
be more clearly seen in the �gures�
Figure �b demonstrates the performance of the

strategies as a function of the number of nesting levels
in a process� and Strategy � performs the best� Since
the communication between sites increases with process
nesting Strategy � performs poorer than Strategy � due
to this communication overhead�
Figure �c demonstrates how the variances in the

communication cost e�ects the cost of strategies� For
low communication cost� Strategy � performs better
than Strategy �� Unlike in Strategy �� in Strategy � the
communication cost is dominant rather that appearance
cost� This explains the better performance of Strategy
� over Strategy � for low communication overhead�
When the number of task objects are varied as shown

in Figure �d� Strategy � performs the best� Note that
we assumed that indices are available in the underlying
repositories for retrieving task objects and therefore
Strategy � and Strategy � use these indices and thus
their appearance time is not e�ected by the number of
task objects� However for Strategy �� since a Query
Evaluator performs the join operation and indices are
not available at this level� the cost gets higher�
For each query� the History Manager by considering

these parameters decides on the strategy to be used in
evaluating the query� Details of this work is provided in
	Koksal
���

References

�Bertino 	
� Bertino� E�� Ferrari� E�� Atluri� V�� �A Flex�

ible Model for the Speci�cation and Enforce�

ment of Role�Based Authorizations in Work�

�ow Management Systems�� Proc� of Second
ACM Workshop on Role�Based Access Con�
trol� Fairfax �Virginia�� November �		
�

�Dogac 	
� Dogac� A�� Gokkoca� E�� Arpinar� S�� Kok�
sal� P�� Cingil� I�� Arpinar� B�� Tatbul� N��
Karagoz� P�� Halici� U�� Altinel� M�� �De�

sign and Implementation of a Distributed

Work�ow Management System� METU�

Flow�� In Proc� of NATO�ASI on Work�
�ow Management Systems and Interoperabil�
ity� Dogac� A�� Kalinichenko� L�� Ozsu� T��
Sheth� A�� �Edtrs��� August �		
� pp�
��	��
http���www�srdc�metu�edu�tr�metu�ow

�Evren 	
� Evrendilek� C�� Dogac� A�� Nural� S�� Ozcan�
F�� �Multidatabase Query Optimization�� in
Distributed and Parallel Databases� Volume
�� pp�

����� �		
�

�Koksal 	�� Koksal� P�� Arpinar� S�� Dogac� A�� Work�

�ow History Management� Middle East Tech�
nical University� Software Research and Devel�
opment Center� Technical Report �� January
�		��

�ODMG 	�� Cattell� R�G�G�� editor� �The Object Database
Standard� ODMG����� Release ���� Morgan
Kaufmann� San Francisco� �		��

�OMG 	�� The Object Management Architecture Guide�
Version ���� The Common Object Request

Broker� Architecture and Speci�cations� OMG
Pubs �		��

�OMG 	�� Object Management Group� The Common

Object Services Speci�cation� Volume �� OMG
Document Number 	������ January �		��

�Ozcan 	
� Ozcan� F�� Nural� S�� Koksal� P�� Evrendilek�
C�� Dogac� A�� �Dynamic Query Optimiza�

tion on a Distributed Object Management

Platform�� in Proceedings of the Intl� Conf�
on Information and Knowledge Management
�CIKM�	
�� November �		
�

�W�ach 	�� W�achter� H�� Reuter� A�� �The ConTract

Model�� in Database Transaction Models for
Advanced Applications� ed� Elmagarmid� A��
Morgan Kaufmann Pub�� �		��

�Weikum 	�� Weikum� G�� �Work�ow Monitoring� Queries

On Logs or Temporal Databases��� Position
paper in HPTS�	��

�Weikum 	
� Weikum� G�� Personal Communication�

A IDL of the Work�ow History

interface ACTIVITY �

void start �in Parameters params��

�� input parameters information

void abort ���

void commit �in Parameters params��

�� output parameters information

void current�state�out State state��

void GetParentID�out OBJREF ParentObjID��

��

interface PROCESS � ACTIVITY �

void set �in string ProcessName	

in OBJREF ProcessId	 in string comp��

void put�history �in OBJREF AnyBlock��

void get�info �out ProcessInfo info��

void children�out ObjectList ChildList��

��

interface TASK � ACTIVITY �

void set�task �in OBJREF oid	 in string name	

in TaskType type	 in boolean v	

in boolean c	 in Retry r	

in string comp��

void set�user�task �in OBJREF oid	 in string name	

in TaskType type	 in boolean v	

in boolean c	 in Retry r	

in string comp	 in Role role	

in User u��

void putWL��� ��Time a task is added to the worklist

void set�user�in User user��

void get�info �out ActivityInfo info��

��

�

B ODL of the Work�ow History

interface process �

key ObjRef�

attribute string name�

attribute string ObjRef�

attribute integer startTime	 abortTime	 commitTime�

attribute integer noChild�

attribute set
string� children�

attribute string state�

duration���

deadline���

��

interface task �

key ObjRef�

attribute string name�

attribute string ObjRef�

attribute integer startTime	 abortTime	 commitTime�

attribute string state�

attribute string role	 username�

duration���

deadline���

��

	

