Formalization of Workflows and Correctness Issues
in the Presence of Concurrency *

ISMAILCEM BUDAK ARPINAR, UGUR HALICI, SENA ARPINAR, AND ASUMAN DOGAC

{budak,nural,asuman } @srdc.metu.edu.tr
haliciQrorqual.cc.metu.edu.tr

Software Research and Development Center
Department of Computer Engineering
Middle East Technical University (METU)
06531, Ankara, Turkiye

Abstract. In this paper, main components of a workflow system that are relevant to the cor-
rectness in the presence of concurrency are formalized based on set theory and graph theory. The
formalization which constitutes the theoretical basis of the correctness criterion provided can be
summarized as follows:

e Activities of a workflow are represented through a notation based on set theory to make it
possible to formalize the conceptual grouping of activities.

o Control-flow is represented as a special graph based on this set definition, and it includes serial
composition, parallel composition, conditional branching, and nesting of individual activities
and conceptual activities themselves.

e Data-flow is represented as a directed acyclic graph in conformance with the control-flow
graph.

The formalization of correctness of concurrently executing workflow instances is based on this
framework by defining two categories of constraints on the workflow environment with which the
workflow instances and their activities interact. These categories are:

e Basic constraints that specify the correct states of a workflow environment.

e Inter-activity constraints that define the semantic dependencies among activities such as an
activity requiring the validity of a constraint that is set or verified by a preceding activity.

Basic constraints graph and inter-activity constraints graph which are in conformance with the
control-flow and data-flow graphs are then defined to represent these constraints. These graphs
are used in formalizing the intervals among activities where an inter-activity constraint should be
maintained and the intervals where a basic constraint remains invalid.

A correctness criterion is defined for an interleaved execution of workflow instances using the
constraints graphs. A concurrency control mechanism, namely Constraint Based Concurrency
Control technique is developed based on the correctness criterion. The performance analysis
shows the superiority of the proposed technique. Other possible approaches to the problem are
also presented.

Keywords: Workflow Management System, Workflow, Activity, Basic Constraint, Inter-activity
Constraint, Time Intervals, Correctness, Concurrency Control.

* This work is partially being supported by the Middle East Technical University, the Graduate

School of Natural and Applied Sciences, Project No: AFP-97-07-02-08, and by the Scientific and
Technical Research Council of Turkey, Project No: 197E038.

2 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

1. Introduction

Today, economic imperatives are forcing enterprises to look for new information
technologies to streamline their business processes. Key requirements include in-
tegrating heterogeneous information resources of an enterprise, and automating
mission-critical applications that access shared information resources. Many of the
activities in these enterprises are of long-duration and consist of multiple operations
executed over (possibly) heterogeneous systems with very diverse response times.
As a consequence of these trends, Workflow Management Systems (WFMSs) are
quickly becoming the technology of choice to implement large and heterogeneous
distributed execution environments where sets of interrelated activities can be car-
ried out in an efficient and closely supervised fashion [4]. There is also a standard-
ization effort in this respect. The Workflow Management Coalition (WfMC), an
industry consortium aims at a unified terminology and a standardization of key
components of a workflow management system. The WIMC identified a set of six
primitives with which it is possible to describe control-flow and hence construct a
workflow specification [39].

A workflow is defined as a collection of processing steps (activities) organized to
accomplish some business processes. An activity can be performed by one or more
software systems or machines (e.g., instruments or robots), by a person or a team,
or a combination of these. In addition to collection of activities, a workflow defines
the order of activity invocations or condition(s) under which activities must be
invoked (i.e., control-flow) and data-flow between these activities. Activities within
a workflow can themselves again be a workflow. In general a workflow activity is
considered to be an invocation of a local operation which is functional in nature.
Furthermore, an activity may be further composed of several calls to local systems
(such as in multidatabases [30, 34]), and this fact is hidden at the workflow level.

The activities could be transactional or non-transactional. Transactional activi-
ties are those that access data controlled by Resource Managers (RMs) with trans-
actional properties (i.e., ACID). These activities minimally support the atomicity
property and maximally support all ACID properties of traditional transaction
models [46]. These activities typically include those that interact with a DBMS
by using Commit and Abort operations, stored procedures, and two-phase commit
(2PC) activities. In addition, activities that use the XA-Protocol [33] based Re-
mote Procedure Call (RPC) to communicate with transactional processing entities
such as a TP-Monitor [16, 15] in a distributed environment can also be included in
this category.

Non-transactional activities access data controlled by RMs without transactional
properties. These non-transactional processing entities include file systems, hu-
mans, legacy systems, HTTP servers, word processors, and spreadsheets. Yet, it
may be possible to introduce transactional properties to these systems, for exam-
ple by wrapping non-transactional RMs to provide transaction and concurrency
control services according to OMG’s Object Transaction Service (OTS) [50] and
Concurrency Control Service (CCS) specifications.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 3

1.1. Correctness Issues in WFMSs

As discussed briefly in [29], the person who implements an activity is responsible for
ensuring that the activity produces correct results if it is executed alone. However
since workflows are long running processes, having the activities terminate (e.g.,
commit) within the scope of a workflow instance is an accepted practice. Thus the
data modified by these activities becomes accessible to the other activities within
the same workflow instance as well as to the other workflow instances which may
cause inconsistencies due to improper interleavings. Yet many scenarios in the
operation of a workflow system require the preservation of consistency of at least
some data items. Therefore the workflow execution must address the following two
correctness concerns: (i) The consistency of concurrent executions of activities be-
longing to the same workflow instance; (ii) the consistency of concurrent executions
of activities belonging to different workflow instances.

For example consider an Order Processing workflow in a manufacturing enterprise.
In the processing of the Order Processing workflow, raw material stock is checked
through a CheckStock activity to see whether there is enough raw material in the
stock to process the order. If not, the missing raw materials are ordered from
external vendors and inserted into stock through an InsertStock activity. Yet later
in the process when the actual manufacturing is to start for this workflow instance
there may not be enough raw material in the stock to process this order, because a
concurrently running instance of the same or other workflows might have updated
the stock. Of course, executing all these activities within the scope of a single
transaction might have solved these problems but workflow systems are there to
prevent the inefficiency of long-running transactions [32].

Another example to the data inconsistency problems is as follows: Consider the
Withdraw-Deposit workflow of a bank involving two branches. Withdraw activity
withdraws the given amount of money from an account at a branch, and the Deposit
adds this amount to an account at another branch. Let us consider an Audit
workflow which checks the balance of these accounts. If Withdraw-Deposit activities
and activities of the Audit workflow are interleaved incorrectly Audit misses the
money being transferred between the two accounts.

The current state of the art for workflows lacks a clear theoretical basis, correct-
ness criteria and support for consistency of concurrent workflows to handle such
problems [63]. In this paper exactly these issues are addressed. We provide a the-
oretical basis for the formalization of workflows, and define a correctness criterion
for the consistency of concurrently executing workflows based on this formalization,
and present a concurrency control technique to provide the correctness.

The main contributions of the paper are as follows:

(1) A workflow in conformance with the control-flow primitives of WIMC model is
formalized based on set theory and graph theory.

We start by defining a special set whose elements may also be sets, called a nested
hyperSet, and use this set in representing the conceptual groupings of activities
in a workflow system. The control-flow is imposed on this set by introducing the

4 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

related edges and the resulting graph is called hyperNodeGraph. Split and join
nodes are introduced into this graph from where control-flow splits into multiple
branches and merges into a single flow later respectively. Data-flow in a workflow is
represented through a simple directed acyclic graph which is in conformance with
the control-flow graph. Having thus set the necessary background, we provide a
formal definition of a workflow.

(2) This formalization is used in defining a correctness criterion for concurrently
executing workflows based on the semantic information available.

Workflow activities access resources which denote the set of all objects constitut-
ing the workflow environment. We define correct execution of activities in terms of
their input and output conditions, which are the sets of constraints on the workflow
environment. An input condition may involve two types of constraints: basic con-
straints that specify the correct states of a workflow environment and inter-activity
constraints that define the semantic dependencies between activities, such as an
activity requiring the validity of a constraint that is set or verified by a preceding
activity. For example a basic constraint can state that the money being transferred
between two branches of a bank through a Withdraw-Deposit workflow should not
be destroyed during this transfer. This basic constraint remains invalid between the
executions of Withdraw and Deposit activities for obvious reasons. Furthermore,
consider InsertStock activity in the manufacturing example. Since the resulting
amount of raw materials after the termination of InsertStock must remain in the
stock until the beginning of manufacturing process that ordered it, this requirement
is represented as an inter-activity constraint between InsertStock and the activity
which is responsible from actual manufacturing process.

The intervals among activities where an inter-activity constraint should be main-
tained and the intervals where a basic constraint remains invalid are formalized
through the graphs corresponding to these constraints. These graphs are then used
in developing a correctness criterion for interleaved execution of workflows which
is formally represented through a complete execution history. Simply stated, the
correctness criterion requires two conditions to hold:

i. The inter-activity constraints should be preserved in the related intervals by
preventing the activities that invalidate these constraints from executing.

ii. The activities that require the correctness of related basic constraints should be
prevented from executing during the intervals where these constraints do not
hold.

(3) A correctness technique, namely Constraint Based Concurrency Control (CBCC)
technique, is developed based on this correctness criterion.

CBCC technique which is based on locking in conjunction with validation, controls
activity interleavings in such a way that two conditions above hold. The inter-
activity constraints are locked during the time interval where they should remain
valid in the shared mode. An activity that falsifies these constraints acquire a
lock in the conflicting mode (i.e., exclusive mode). Through these conflicting locks
activities that falsify inter-activity constraints are prevented from executing. If

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES)

more than one activity require the same inter-activity constraint to be true at the
same time, their locks do not conflict. Similarly, activities that falsify the same
constraint at the same time do not conflict either. Note that we use the term
”exclusive lock” differently than its conventional meaning in that, two exclusive
locks on the same constraint do not conflict with each other in our approach.

Some activities on the other hand may falsify inter-activity constraints depending
on the instantiation of the variables in the constraints and in their parameters. For
the activities that may falsify inter-activity constraints, we prefer to use an opti-
mistic scheme rather than locking with the intention of increasing the performance,
since there is a probability that the activity will not falsify these constraints. If
these constraints evaluate to true at the end of an activity, the activity is allowed to
terminate, otherwise it is aborted and resubmitted. Continuing with the example
provided, since raw materials may be withdrawn from the stock by the concurrently
executing WithdrawFromStock activities of some other workflows, the inter-activity
constraint between InsertStock and the manufacturing activity may be invalidated.
To prevent this, InsertStock obtains a shared lock on this constraint which will
be released by the manufacturing activity and if a WithdrawFromStock activity is
executed between them it goes through a validation phase.

However, it is also possible to use a more conservative approach in which activities
acquire locks on the inter-activity constraints they may falsify in addition to the
constraints they certainly falsify. We call this conservative technique based solely
on locking as Constraint Locking Concurrency Control (CLCC) technique. For
example, WithdrawFromStock activity can obtain an exclusive lock on the inter-
activity constraint in CLCC technique instead of going through a validation phase.

The basic constraints specify the correct states of a workflow environment but
they can be invalidated by an activity to be revalidated later through an activity
or through a set of activities. The activities that require the validity of these basic
constraints should not be allowed to execute in the interval where the basic con-
straints remain invalid, and for this purpose exclusive locks are placed on the basic
constraints during these intervals by the activities that falsify these constraints.
On the other hand, the activities that require the validity of the basic constraints
acquire locks in the conflicting mode (shared mode). For example, Withdraw ac-
tivity obtains an exclusive lock on the basic constraint which it falsifies, and this
lock is released after Deposit activity terminates. Since and Audit activity needs a
shared lock on the same constraint, its execution is prevented between Withdraw
and Deposit activities. The shared locks of activities which require correctness of
the same basic constraint at the same time do not conflict with each other, and
the same is true for the exclusive locks of activities which falsify the same basic
constraint at the same time.

(4) A performance analysis of the CBCC and CLCC techniques is presented.

A performance comparison of the proposed techniques with some other approaches
to the problem is also presented. The performance results indicate that our tech-
niques result in better performance than the other techniques.

6 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

In the work presented in this paper, semantic information about activities and
workflow environment is used. In the case where this semantic information is not
available, activities should be treated as black boxes and since isolation of a whole
workflow execution is unacceptable because of performance reasons, smaller units of
isolation should be discovered. The individual activities of a workflow are isolated
by concurrency control mechanisms of local systems, and hence the main concern is
to observe the concurrency control requirements between these individual activities
and satisfy these requirements when required. These requirements may be deter-
mined by checking the data and control-flow dependencies between the activities.
These dependencies are available at design-time, and therefore spheres of isolations
each of which includes a subset of activities of a workflow can be determined in
advance and correctness of workflows can be guaranteed through the isolation of
these spheres. The approaches that use this idea [7, 53, 58] are explained in Section
2. It should be noted that these approaches are much more restrictive compared
to the techniques presented in this paper which make use of semantic information.

After setting the research context in the first section, the paper is organized as
follows: In Section 2, the related work is given. In Section 3 we present a moti-
vating example to explain main concepts of our approach and identify the general
workflow features covered by our model. Section 4 provides formal characteriza-
tion of workflows in terms of data and control-flow dependencies. Section 5 defines
correctness of concurrently executing workflows and activities. In Section 6, con-
currency control techniques based on this correctness definition are proposed, and
the performance analysis of the techniques is given. Section 7 gives concluding
remarks.

2. Related Work

Although some research has been done on the correctness problem of workflows,
neither a widely accepted correctness notion nor a correctness mechanism have been
reported in the literature. In the following, we confine ourselves to summarizing
the related research in workflow management systems and transaction processing
systems. And in spite of this research, most commercial WFMSs provide very
limited capabilities for correctness and concurrency control issues [56].

In the ConTract model [55, 60], the user is given the sole responsibility for main-
taining the consistency of the database with which activities interact. In order for
activities to work correctly, predicates named as entry and exit invariants are de-
fined to hold on the database. At run-time, these predicates are verified before and
after an activity respectively. If exit or entry invariant evaluate to false, a conflict
resolution algorithm is executed and this may involve changing values of objects in
the predicates in such a way that they are satisfied. However, an inevitable result
may be cancellation of activity and compensation of some previously terminated
activities.

In [13] to ensure data consistency, semantic serializability of workflows is proposed
as the correctness criterion. A human expert declares a compatibility matrix for

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 7

activities of a workflow. Compatibility of two activities means that the ordering
of two activities in an execution history is insignificant from an application point
of view. If two activities are not defined as compatible they are in conflict. An
execution history is semantically serializable if an equivalent serial execution exists
with the same ordering of conflicting activities.

In [3], the consistency is specified in the same way as the compatibility relation-
ships are expressed with the added complexity of having to express compatibility
relations between sequences of activities instead of between individual activities.
For instance, how different workflow instances should be interleaved in the system
is given as a matrix. The main idea is based on signatures of workflow instances
that they leave on the objects they access. This signature specifies which other
workflows are allowed to access the object.

In Transaction Specification and Management Environment (TSME) [28] using
a transaction specification language, correctness as well as state dependencies can
be specified between the activities of workflows. Different correctness dependen-
cies such as serializability, temporal, and cooperative dependencies can be specified.
To define conflicts, each object is associated with a conflict table. Serialization
dependencies are specified as acyclic serialization order dependencies between ac-
tivities. Temporal order dependencies are specified by giving specific serialization
orders between the activities. Cooperation between activities is provided by using
breakpoints or augmenting conflict tables of shared objects.

In [7], activities are treated as black boxes and to determine concurrency control
requirements between activities, data and control-flow dependencies between them
are analyzed at design-time. Using this information spheres of isolation, each of
which involves a subset of activities in a workflow, are determined and the notion
of correctness is based on the isolation of these spheres. Furthermore, a technique
to handle correctness of hierarchically structured workflows consisting of compound
activities is proposed in [7]. In [53, 54], M-serializability is defined as a correctness
criterion for concurrent execution of workflows. In this model, related activities of
a workflow are grouped into ezecution-atomic units. M-serializability assumes that
an activity involves a single site and it requires that activities belonging to the same
ezecution-atomic unit of a workflow have compatible serialization orders at all sites
they access. A similar approach is proposed in [58]. In this work, a set of activities
are grouped into a consistency unit and traditional correctness techniques are used
to provide serializable execution of this unit.

2.1. Semantics Based Concurrency Control

Although semantics based concurrency control mechanisms do not directly cover
workflow correctness, they are related to the approach proposed in this paper. Se-
mantics based concurrency control protocols can be broadly classified into three
categories depending on whether they are based upon the semantics of transactions
or upon the semantics of objects or both as described in [1]: Approaches of Gray
[32], Garcia-Molina [26], Lynch [47], Weikum [61], Beeri [10], Farrag and Ozsu [24]

8 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

DEFINE_PROCESS OrderProcessing()

GetOrder(OUT productNo, OUT quantity, OUT dueDate, OUT orderNo,
OUT customerInfo)
EnterOrderInfo(IN productNo, IN quantity, IN dueDate, IN orderNo)
CheckBillofMaterial(IN productNo, OUT partList)
PAR_AND (part = FOR EACH partList)
SERIAL
DetermineRawMaterial(IN part.No, IN part. Quantity, OUT rawMaterial,
OUT required)
CheckStock(IN rawMaterial, IN required, OUT missing)
IF (missing > 0) THEN
VendorOrder(IN rawMaterial, IN missing)
WithdrawFromStock(IN rawMaterial, IN required)
GetProcessPlan(IN part.No, OUT processPlan, OUT noofSteps)
1:=0
WHILE (i < noofSteps)
Assign(IN processPlanfi].cellld, IN orderNo, IN part.No,
IN part. Quantity, IN rawMaterial, IN required)
END_WHILE
END_SERIAL
END_PAR_AND
AssembleProduct(IN productNo)

Billing(IN orderNo, IN productNo, IN quantity, IN customerInfo)

END_PROCESS

Figure 1. Order Processing Example

can be classified into first category; works of Harder [35], O'Neil [49], Korth and
Speegle [45], Herlihy [37], Badrinath and Ramamritham [9] mainly fall into second
category. The works in the third category use the advantages of both approaches
to increase concurrency. In [1], three semantics based correctness criteria are pro-
posed. In [5] and [12], formal methods to decompose a transaction into smaller
units using transaction and object semantics are described. In [5], the notion of
semantic histories and successor sets are proposed to describe correct interleavings
of these units (i.e., steps). In [12], transaction semantics are used to decompose
transactions into steps and a concurrency control technique is described to control
step interleavings in such a way that assertions between the consecutive steps are
preserved.

3. A Motivating Example

In this section, an order processing example in a highly automated manufacturing
enterprise is provided using the workflow definition language of METUflow [7, 18,
31, 42, 43].

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 9

DEFINE_PROCESS VendorOrder(IN rawMaterial, IN missing)

SendOrder(IN rawMaterial, IN missing, OUT shipmentNo)
SuppliesArrival(IN shipmentNo)
InsertStock(IN rawMaterial, IN missing)

END_PROCESS

DEFINE_PROCESS GetProcessPlan(IN part.No, OUT processPlan, OUT noofSteps)

DetermineNoofCells(IN partNo, OUT cellNo)

SelectBestCells(IN cellNo, OUT qualifiedCells)

ConstructProcessPlan(IN qualifiedCells, OUT processPlan, OUT noofSteps)
END_PROCESS

DEFINE_PROCESS Billing(IN orderNo, IN productNo, IN quantity, IN customerInfo)

Payment(IN orderNo, IN productNo, IN quantity, IN customerInfo, OUT amount,
OUT paymentStatus)
IF (paymentStatus = unpaid) THEN
UpdateUnpaidBalance(IN customerInfo, IN amount, OUT unpaidBalance, OUT U)
IF (unpaidBalance > U) THEN
XOR
RejectShipping(IN orderNo)
MoreCredit(IN customerInfo, IN unpaidBalance, IN U)
END_XOR
END_IF
END_PROCESS

Figure 2. Order Processing Example (Cont.)

An incoming customer request causes a product order to be created and inserted
into an order entry database by GetOrder and EnterOrderInfo activities respectively
(Figure 1). The next step is to determine required parts to assemble the ordered
product by CheckBillofMaterial activity. A part is the physical object which is
fabricated in the manufacturing system. For each part, DetermineRawM aterial
activity is executed to find out the raw materials required to manufacture that
part, and a CheckStock activity is initiated afterwards to check stock database for
the availability of these raw materials. If the required amounts of these raw mate-
rials do not exist in the stock, they should be ordered from the external vendors
through VendorOrder (Figure 2). After all missing raw materials are obtained,
required raw materials to fabricate the part is withdrawn from the stock to be
sent to the manufacturing cells. This is accomplished by WithdrawFromStock ac-
tivity by decrementing the available amount of the withdrawn raw material (i.e.,
quantity(m)) in the stock database. The required steps to manufacture a part,
and the manufacturing cells where these steps are performed are obtained as a
result of GetProcessPlan. Actual manufacturing activity is initiated by assigning
the work to the corresponding cells for each step in Assign. Finally, manufactured

10 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

DEFINE_PROCESS WarehouseAllocation()

GetAllocationOrder(OUT rawMaterial, OUT quantity, OUT source, OUT destList)
RetrieveMaterial(IN rawMaterial, IN quantity, IN source)
PAR_AND (destination = FOR EACH destList)
UpdateMaterialLocation(IN rawMaterial, IN quantity, IN destination)
END_PAR_AND
END_PROCESS

DEFINE_PROCESS StockControl(IN stockDBList)

WarehouseEvaluation(IN stockDBList, OUT materialSum)
PrintMaterialReport(IN materialSum)
END_PROCESS

Figure 3. WarehouseAllocation and StockControl Workflows

parts are assembled to form the product that the customer had ordered by the
activity AssembleProduct. Further downstream activities include a billing activity.
Billing itself is another workflow which is responsible from collecting bills of ordered
products. The details of Billing workflow is explained in Section 5.

We further consider two other workflows defined in the system (Figure 3): Ware-
houseAllocation and StockControl. WarehouseAllocation distributes raw materials
among different warehouses and reallocates the materials according to demand and
delivery schedules. RetrieveMaterial retrieves the given amount of raw material
from the stock of the source warehouse and UpdateMaterialLocation transfers these
raw materials to the stocks of the destination warehouses in destList. StockCon-
trol workflow checks the available raw materials of different types in stocks of all
warehouses through WarehouseEvaluation activity and prints a stock report.

4. Formal Characterization of Workflows

In this paper, we first attempt to formalize the correctness issues of workflow sys-
tems in the presence of concurrency and then provide a correctness technique based
on the theory developed. In order to formalize the correctness issues, we first for-
malize the related concepts of workflows.

Currently, specification of workflows is realized through the following types of
methods [48]: Script languages, net-based methods, logic-based methods, algebraic
methods, and event-condition-action (ECA) rules. Most script languages and net-
based methods lack a formally founded semantics. The notable exceptions are state
charts [36, 62] and Petri nets [27, 20]. For a logic-based specification, temporal
logic is a commonly used method [23], e.g., computational tree logic (CTL) is used
to define control-flow dependencies [8]. Similarly, ECA rules are used to specify
control-flow (e.g., [41]). As a final remark, many of these methods do not have

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 11

either a solid formal foundation or are often not intuitive and hard to understand.
Thus, a formal yet simple formalization of workflows is needed.

A workflow in the most general sense describes groupings of activities that are
executed sequentially or in parallel and defines data that may be exchanged between
these activities. In formalizing a workflow, we define special graphs to express this
data and control-flow information. We first define a hyperSet which represents
the groupings of activities in a workflow and constitutes the basis of the graph
to define the control-flow. In order to introduce control-flow relations between
activities, edges are introduced into a hyperSet and then a graph which is named
as a hyperNodeGraph is obtained. Data-flow between the activities is represented
through a simple directed acyclic graph (DAG). Since control-flow and data-flow
should be in conformance with each other, consistency relation between the graphs
that represent them is defined. In our model, control-flow is not permitted to
contain cycles, therefore a hyperNodeGraph is refined to a hyperNodeDAG. In
addition, in order to define activities from where control-flow splits into multiple
branches and merges into a single flow later, split and join nodes are introduced
into a hyperNodeDAG, resulting in a split-join hyperNodeDAG.

Notice that, building the required properties of workflows through graphs in a top-
down fashion with starting with the most general graph and refining it to include
further properties of workflows, provides a formal and clear definition of a workflow.
The solid mathematical and graph theory based foundation of this formalization
make it appropriate for developing a correctness theory and a favorable reference
model. It should be noted that, the primitives defined by Workflow Management
Coalition (WfMC) [39] are taken into consideration in our model.

In the following, definition of a hyperSet that reflects the groupings of activities is
provided. These groupings of activities are called as execution blocks or conceptual
activities. When proper control-flow edges are imposed on this set, the resulting
graph shows the execution structure of the workflow process.

Definition 4.1 [HyperSet] A hyperSet S is a set whose elements are simple ele-
ments or hyperelements which are simple sets or hyperSets. O

Notation: The notation S; € S is used to denote that S; is an element of S
the notation S(g;) is used to denote the element €; of S; size(lS) is used to denote
the number of elements in S; simple(S) and hyper(S) are used to denote the set of
simple elements of S and the set of hyperelements of S respectively. S;, which may
be a simple element or a hyperelement, is a subelement of a hyperSet S, denoted
as S; € 5, iff S; € Sor S; € S for some S; € S. The notation €, 4,...i,_1,ix)
is used to denote a subelement which satisfies €(;, i, . ix_y1,in) € E(irsin,..rin_y) €

. € E(i1,in) € €iy € 5. We shall drop parentheses and comas between indexes
when it is clear in the notation. The level of set S is zero; the elements S; € S
are called level k elements for which the parent is level k-1 element. The set of
base elements of hyperSet S, denoted as base(S), is a flat set which contains all the
simple subelements of S. A hyperSet S is a flat set if it has no hyperelement, that
is any S; € S is a simple element.

12 I. B. ARPINAR, U. HALICIL, S. ARPINAR, AND A. DOGAC

Observe that elements in a hyperSet are not disjoint. In a workflow system
however, each instantiation of the same activity type should be treated as a new
element at each invocation (e.g., with different set of parameter values). Further-
more, participation of the same activity instance to more than one execution block
is similar to improper nesting of blocks in a procedural language. For these reasons,
a nested hyperSet with disjoint elements is defined, and it constitutes the nodes of
the hyperGraphs to be defined for representing different components of a workflow.

Definition 4.2 [Nested HyperSet] A hyperSet is nested if base(S;)Nbase(S;) = 0
for any S;, 55 € S. O

Figure 4. A HyperSet Figure 5. A Nested HyperSet

Example 4.1 Let S = {a,{c, {b,d},{d, f}},{e,{d, f},{g,h}}}; elements of S are
e1 =a,e2 ={c,{b,d},{d, f}},es = {e,{d, f},{g, h}}; subelements of Sare e2; = ¢,
€22 = {b; d}; €23 = {daf}a €31 = €, €32 = {daf}a €33 = {gah}a €221 = b, €222 = d,
€231 = d, €232 = f, €321 = d, €322 = f, €331 = ¢, €332 = h in addition to €1, €2, €3;
base(S) = {a,b,c,d,e, f,g,h}; simple(S) = €1, hyper(S) = {e2,e3}; size(S) = 3;
size(base(S)) = 8. Figure 4 shows this hyperSet. S = {a,{c, {b,d}},{e, f, {9, h}}}
is a nested hyperSet which is depicted in Figure 5. O

Having defined a nested hyperSet which represents individual and conceptual
activities, we can now define other components of a workflow. In the definition of
a workflow we use four different graphs, namely a control-flow graph, a data-flow
graph, and two constraints graphs. In a control-flow graph, precedence relations
between individual and conceptual activities are provided, e.g., if an activity should
be started after the termination of another activity this is represented by a directed
edge from the former activity to the latter activity in the control-flow graph. In
order to represent these control-flow dependencies, we introduce edges into a nested
hyperSet and thus obtain a graph which we call as a hyperNodeGraph.

Data-flow between individual activities occurs if output parameter of an activity is
involved in the input parameter of a successor activity in the control-flow. Data-flow
is represented through a simple directed acyclic graph (DAG) in the formalization.

In Section 5, we develop a theory in which an input condition for an activity
to execute correctly is specified in terms of constraints on the workflow environ-
ment with which a workflow and its constituting activities interact. The intervals
among activities where a constraint should be maintained and intervals where a

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 13

constraint (may) remains invalid along a workflow execution are formalized using
two constraints graphs which are 2-level hyperGraphs. Although construction and
usage of a 2-level hyperGraph are explained in detail in Section 5, its definition is
provided here for the sake of completeness. Furthermore, to keep the formalization
at a general level we also provide the definition of a hyperGraph.

Definition 4.3 [HyperGraph, HyperNodeGraph, 2-level HyperGraph] A
hyperGraph G = (S, E) is a directed graph in which S is a hyperSet and edges E
are defined on S x SU{S, x S,} for any S, € S. Notice that the graph itself can
be thought as a node at an abstract level. Any S, € S is called a node and S, €
S is called a subnode. A hyperNodeGraph is a hyperGraph G = (S, E), where S is
a nested hyperSet. A 2-level hyperGraph G = (S, E) is a hyperGraph, where any
S, € S satisfies S, C base(S). O

In the following, these definitions are clarified through examples.

Figure 6. A HyperNodeGraph Figure 7. A 2-level HyperGraph

Example 4.2 Let G = (S, E) be a hyperNodeGraph, where S = {a, b, {c,d, e}, {{g,
h}, f}} is a nested hyperSet and E = {(e3,¢1), (€1,€4), (€3,€4), (€2,€4), (€31, €32),
(€33,€32), (€42,€41), (€411,€412) }. Figure 6 demonstrates this hyperNodeGraph.
Let G = (S, E) be a 2-level hyperGraph, where S = {{a, f},{c,d},e, {g,h, f}},
and E = {(e2,¢€4), (€3,€1), (€3,€11), (€11,€41) }. This graph is shown in Figure 7. O

Observe that the difference between a hyperGraph and hyperNodeGraph is that a
nested hyperSet constitutes the nodes of a hyperNodeGraph. Therefore, only edges
between the simple or hyperelements at the same level are possible. In this way,
when we use a hyperNodeGraph to specify control-flow, anomalies in precedence
relations are prevented. For example, if control splits into several flows and these
flows are joined together within a hyperNode, control-flow can not jump into the
middle of such flows from outside of this hyperNode.

Notice that level of elements in S is not greater than 2 in a 2-level hyperGraph
G = (S,E), ie,level of Sis 0, level of a S; € Sis 1, and level of a S; € S; is 2.

In a workflow, data-flow should be in conformance with its control-flow, that is,
there can be data-flow between two activities only when there is a control-flow
between them. Therefore a directed acyclic graph (DAG) which represents data-
flow should be consistent with the hyperNodeGraph which represents corresponding
control-flow. Informally, a DAG is said to be consistent with a hyperNodeGraph iff

14 I. B. ARPINAR, U. HALICIL, S. ARPINAR, AND A. DOGAC

for any edge between the two nodes of a DAG, there corresponds an edge between
the same nodes or hyperNodes that include them in the transitive closure of the
hyperNodeGraph. Transitive closure of a hyperNodeGraph G = (S, E), denoted
as G* = (S, E*), can be obtained by taking transitive closure of the edges within
every hyperNode of the graph. A more formal definition can be found in [6].

Furthermore, a 2-level hyperGraph which represents constraints graphs of a work-
flow should be consistent with its control-flow. The reason behind this requirement
is explained in Section 5.

Definition 4.4 [Consistency with a HyperNodeGraph] A DAG D = (T,V) is

said to be consistent with a hyperNodeGraph G = (5, E) iff the following condition

is satisfied:

e Forany (T,,Ty) € V, 3(S;, S;) € E*, where S; =T, or S; = T4 such that T, €
Tp € S,and Sj =Ty or S; =Tp such that T, € Tp € S.

A 2-level hyperGraph D = (T,V) is said to be consistent with a hyperNodeGraph

G = (S, E) iff for any (T}, T;) € V the following condition is satisfied:

o For any T, € T}, and Ty € Ty, 3(S;, S;) € E*, where S; = T, or S; = T4 such
that T, € Ta € S, and S; =Tj or S; =T such that T, € Tp € S. O

In the following, we introduce various useful operations on a nested hyperSet
and a hyperNodeGraph. With these operations it becomes possible to focus on a
hyperNode representing an execution block in a control-flow and conversely simplify
it when its internals are not in the scope of our consideration.

A restriction of a hyperNodeGraph G = (S, E) to one of its subelements S, € S,
denoted as G(S,), results in a new hyperNodeGraph which involves the node itself,
its constituting simple and hyperNodes if they exist and edges between them. The
other nodes and edges in the hyperNodeGraph are omitted. Figure 8 depicts the
restriction of hyperNodeGraph in Figure 6 to node &4.

/

f
Figure 8. Restriction of the HyperNode- Figure 9. The Abstraction of Node g4 in Hy-
Graph in Figure 6 to Node ¢4 perNodeGraph of Figure 6

Abstraction of a subelement S, in a nested hyperSet S, denoted as S/S,, is the re-
placement of S, with an abstract simple element s, in S. Let S = {a, b, {c,d,{e, f}},
{g,h}}. Abstraction of Sz = {¢,d,{e, f}} in S results in S/S; = {a,b, s3,{g, h}},
where s3 is representing Ss.

An abstraction of anode S, in a hyperNodeGraph G results in a new graph G/S,,
in which the node under consideration is replaced with a simple node and every

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 15

edge involving the former node is replaced with a new edge involving the simple
node. Figure 9 shows the abstraction of node ¢4 in hyperNodeGraph of Figure 6.

Some workflow models assume that, all the structural components (i.e., control-
flow) can be specified in advance. However, in some workflow applications either
the number of activities in a workflow execution or the control-flow dependencies
that must be enforced can not be determined in advance. These cases are named as
domain uncertainty and structural uncertainty respectively [59]. Structural uncer-
tainty occurs due to the fact that a workflow specification can contain a condition
to allow selections. Our formalization covers this type of uncertainty and this is
explained later in this section. Domain uncertainty occurs due to the loops (i.e.,
iterations) that can occur in a workflow specification. Within a loop workflow ac-
tivities are repeated as long as a certain condition holds. However, representing
loops in a control-flow makes the notation used in the correctness theory compli-
cated. This is due to the fact that each instantiation of an activity within a loop
should be treated as a different element for the correctness. Therefore for the sake
of simplicity, we assume that a control-flow graph does not contain cycles. With
this assumption a hyperNodeGraph is refined to a hyperNodeDAG in the following
definition.

Definition 4.5 [HyperNodeDAG] A hyperNodeDAG is a hyperNodeGraph G =
(S, E) in which the abstraction of all elements results in a simple DAG, and this is
recursively valid for any S, € S. |

Example 4.3 The hyperNodeGraph in Figure 6 is a hyperNodeDAG. O

Recall that, a 2-level hyperGraph representing constraints graphs of a workflow
should be consistent with the control-flow graph. Since we use a hyperNodeDAG
to represent the control-flow, if a 2-level hyperGraph is consistent with this graph
it should be acyclic also intuitively, i.e., it should contain no cycles involving its
hyperNodes or simple nodes. In this case we name this graph as a 2-level hyperDAG.
A definition of a 2-level hyperDAG is provided in [6].

In the following we provide a path definition for a hyperNodeDAG.

Definition 4.6 [A Path in a HyperNodeDAG] In a hyperNodeDAG G =
(S, E), a path is a sequence (ej,es,...,er) of edges such that e; = (s;,si41) &
(Si, Siv1) € E, where i = 1,....k and s;, s;+1 are the abstractions of the nodes
Si, Sit1 € S respectively. A path connecting the nodes s; and sg41 is denoted as
(81, 8k+1)-path. a

A path definition makes it possible to identify a sequence of individual and con-
ceptual activities which are executed one after another. For example, consider the
conditional branches in a workflow specification. The possible flows between a split
activity and a join activity can be specified as a set of paths between these activities.

In the following definition, we distinguish initial, final, first, and last nodes of
a hyperNodeDAG. These nodes shall correspond to the specialized activities of
a workflow. Initial and final nodes are simple nodes for which hyperNodes that
include them and themselves have no predecessors and no successors respectively.

16 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

Furthermore, if there is a unique initial or a unique final node they are called as
first and last nodes respectively. As we provide later in this section, we require a
control-flow to include unique initial and final activities, i.e., it should include a
first and a last activity.

Definition 4.7 [Initial, Final, First, Last Nodes] A simple node ¢;, € S of a
hyperNodeDAG G = (S, E) is called initial, if indegree(e;,) = 0, and for any S,
such that e;, € S,, indegree(S,) = 0. A simple node €¢;, € S of a hyperNodeDAG
G = (S,E) is called final, if outdegree(cs;,) = 0, and for any S, such that €;, €
Sa, outdegree(S,) = 0. If initial (final) node of a hyperNodeDAG G = (S, E) is
unique, it is the first (last) node of S, denoted as €y (g;). |

As mentioned previously, workflow activities can be executed sequentially or in
parallel. In representing control-flow, the node where the control splits into multiple
parallel activities is referred to as split node. The node where control merges into
one activity is referred to as join node. We introduce split and join nodes into
a hyperNodeDAG definition to model these issues; the resulting graph is called a
split-join hyperNodeDAG.

Definition 4.8 [Split, Join Nodes, Split-Join HyperNodeDAG] A split node
of a hyperNodeDAG G = (S, E) is a simple node S(es) (i-e., €5 € S) for which
indegree(es) < 1 and outdegree(es) > 1. A join node of G = (S, E) is a simple
node S(gj) (i.e., g5 € S) for which indegree(e;) > 1 and outdegree(e;) < 1. A
split-join hyperNodeDAG G = (S, E) is a hyperNodeDAG for which the following
conditions hold:

e There exist a first and a last element.

e If there is a split element this must be the first element, and there must corre-
spond a join element to this, and this should be the last element.

e For any restriction G(S,), where S, € S the conditions above hold. O

In a control-flow graph, a split node from where control splits into two or more
flows in order to execute activities in parallel is called an and-split node. After
the termination of all activities involved in these flows, control merges into a join
activity and execution continues from this activity. A split node where a decision
is made upon which branch to take when encountered with multiple branches is
called an or/zor-split node. Some of the branches following an or-split node, and
exactly one of the branches following an xor-split node are selected for execution.
This selection may depend on a condition. In our model, truth value of a condition
is determined by an or/xor-split node (i.e., activity) and according to this value a
branch (or some branches) are selected for execution. In this case, we name this
condition as a test condition and associate it with the branch for which it is verified.
More specifically, if s is an or/xor-split node and j is the corresponding join node,
each of the branches between them is represented through a path between s and
J, i.e., {(s,7)-path;, and if a test condition T is used to select a branch, we label
the corresponding (s, j)-path; with 7. If a condition is not associated with a path
we assume that its label is true, i.e., corresponding branch is selected for execution

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 17

Figure 10. A Labeled Split-Join HyperNodeDAG

unconditionally. Furthermore, since some of the branches are selected for parallel
execution starting from an or-split node, at least one of the test conditions of these
branches should be true at a time. Similarly, exactly one of the test conditions of
the branches following an xor-split node should be true.

Having defined adequate tools and setting the necessary background, a formal
definition of a workflow can be provided. A workflow is defined as a 5-tuple with
elements representing its activities, control and data-flow and constraints graphs.

Definition 4.9 [Workflow] A workflow W is a tuple W = (N,CF,DF,IC, BC),

where

e N is a nested hyperSet whose base(N) =T U SUJU{f,1} where T is the set of
individual activities, S is the set of split activities, J is the set of join activities,
and f and [are the first and last activities respectively, and they are the virtual
activities indicating the start and termination of a workflow respectively.

¢ CF =(N,Ecp,L,TC) is a labeled split-join hyperNodeDAG on N correspond-
ing to the control-flow. The labels L is a mapping from S to {and,or,zor}
representing the types of split nodes. The labels T'C' is a mapping from every
(s,7)-pathin CF to {T1, T2, ..., Ti, ..., Tn}, where s € S is an or/xor-split activity,
j € J is the corresponding join activity, and 7; is a test condition. The following
condition holds for every (s, j)-path starting from a common or/xor-split activ-
ity s: If L(s) = or then V?gtldegree(s)TC((s,j)—pathi) = true, and if L(s) = zor
then M?gtldegree(s)TC((s,j)—pathi) = true, where V denotes xor operator.

e DF = (T,Epr) is a DAG indicating the data-flow such that DF is consistent
with C'F.

e IC = (Vi¢,Erc, Lic) is a labeled 2-level hyperDAG representing inter-activity
constraints graph.

e BC = (Vec,Epc,CLpc,VLpe) is a labeled 2-level hyperDAG representing
basic constraints graph. O

In the following an example is provided to clarify the definition of workflow.

18 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

Example 4.4 Figure 10 demonstrates a sample labeled split-join hyperNodeDAG
which corresponds to a control-flow. In this graph, N = {a,b,{c,d,e, f, g,{h,1,j, k,
I},m},n}, and T = {b,d,e, f,g,i,5,k}, S = {c,;h}, J = {{,m}, f =a, | =n.
Furthermore, L(c) = zor, L(h) = and, and TC({c,m)-path;) = Ti, TC((c,m)-
pathy) = Tz, TC({c,m)-paths) = Ts. i

In the above workflow definition, main components of a workflow are formalized.
Other properties of workflows such as assignment of agents to activities, assignment
of users to roles etc. are not taken into account in the formalization, since they are
out of the scope of the main focus of this work. Last two components of a workflow
definition, namely inter-activity constraints graph (IC) and basic constraints graph
(BC) constitute our basic building blocks to develop a correctness theory for a
concurrent execution of workflows. Semantics and construction of these graphs are
discussed in the following section.

5. Correctness of Activities and Workflows

In this section we formalize the workflow correctness in the presence of concurrency.
A workflow involves several activities each of which is performed by an agent.
These activities access resources which denote the set of all objects constituting the
workflow environment. We define the correct execution of activities in terms of their
input and output specifications which are the set of constraints on the workflow
environment. These constraints can be classified into two categories in general,
namely basic constraints and inter-activity constraints which are formally defined as
first-order logic formulas. The constraints that should be satisfied when an activity
starts constitute the input condition of the activity. An output condition of an
activity on the other hand imposes a constraint upon the workflow environment in
which a workflow system must find itself after the execution of this activity.

In order to represent an interleaved execution of workflows we introduce a com-
plete execution history and use the input and output conditions to define the cor-
rectness of this history. A complete execution history is correct if input condition
of every activity involved in this history is correct when the activity starts and if
the basic constraints that hold when the history starts also hold at the end of the
history. We then provide a theorem which states that a complete execution history
is correct if the inter-activity constraints are preserved in the required intervals and
activities that require correctness of related basic constraints are prevented from
executing during the intervals where these constraints do not hold. Inter-activity
constraints and basic constraints are represented through inter-activity constraints
graph and basic constraints graph which are used in formalizing the intervals among
activities where an inter-activity constraint should be maintained and the intervals
where a basic constraint remains invalid respectively.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 19

In the following, we provide some basic definitions and notations used in repre-
senting activity and workflow semantics and in defining the correctness of workflows.
We begin by defining the state of the workflow environment.

Definition 5.1 [Workflow Environment, State of the Workflow Environ-
ment] Let RM = U, RM'® be the set of transactional and non-transactional
resource managers involved in a workflow system. The set of all variables (objects)
controlled by RM* is denoted by Of. O = U™, O denotes the set of all objects of
the workflow environment, and dom/(o;) represents the domain of an object o;. A
state (or valuation) of a workflow environment is a function St : O — Sty, where
Sty = xfff(o)dom(oi) = dom(oy) X dom(0) X ... X dom(04;.¢(0)), and x denotes
the cartesian product. We use Sty to represent the set of all possible states. O

An activity t is a mapping from Sty to Sty, i.e., t : Sty — Sty. The resulting
workflow environment state after an activity ¢ is applied to state St is denoted as
t(St). However, this definition of an activity is not sufficient for our purposes since
we require some semantic knowledge to define correctness of activities. Activity se-
mantic is defined in terms of constraints on the workflow environment as mentioned
previously.

As specification languages, first-order logic has been the dominant choice for the
expression of constraints. Therefore, to represent constraints over the objects of the
workflow environment we use First-Order Logic (FOL) formulas which are denoted

by calligraphic letters A,...,Z. More information on FOL formulas can be found in
[25].

Notation: Let F be a FOL formula and St be a particular state of the workflow
environment. We use notation St |=F to mean that F is true for the state St. If F
is false in St this is represented as St [£F. We denote the set of states that satisfy
a formula F as F(St), i.e., F(St) = {St | St | F}. The set of objects (variables)
involved in a formula F is represented as O(F).

Now, we can give the formal definition of a workflow activity in terms of its
parameters, objects accessed, and its specification.

Definition 5.2 [Activity] An activity ¢ is a tuple t = (IP,OP,RS,W S, AS),
where I P is the set of input parameters, OP is the set of output parameters, RS is
the set of objects read by t, W S is the set of objects updated by t, AS is the activity
specification. O

In the above definition, we assume that WS C RS. The last item, specification
of an activity, is clarified through the following definition.

Definition 5.3 [Specification of an Activity] A specification of an activity t is
a tuple AS(t) = (I, O¢), where I; and O; are the set of FOL formulas on O (i.e.,
objects of the workflow environment). Z; = A;Z;;, where Z; ; € I, is called the
input specification or input condition of t and Oy = A;O; j, where O ; € O, is
called the output specification or output condition of t. O

20 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

In the above definition, Z; (O;) is obtained by taking conjunction of all formulas
in the set I; (O;). An activity is said to be correct with respect to a specification
AS(t) = (I, O) if any terminating execution of ¢ starting from an initial state St
satisfying Z; ends in some final state St' = t(St) satisfying Oy, i.e., (VSt € Sty)

((St = I¢) = (t(St) |E O)). The activities are assumed to be correct and
deterministic by intuition. More information about formal specification of programs
(e.g., activities) can be found in Hoare [38], and Dijkstra’s works [17]. Related work
includes modal and temporal logics [23].

An output condition of an activity imposes a constraint upon the workflow en-
vironment in which workflow system must find itself after the execution of this
activity. The following example demonstrates this situation.

Example 5.1 The output condition of WithdrawFromStock (shortly twrs) ac-
tivity whose purpose is to withdraw required raw materials of type m; from the
stock is defined as follows:

Oty rs = (quantity(m;) = quantity(m;) — required(m;)). (1)
Oty s States that available amount of m; is decremented by required(m;). O

The input condition characterizes the set of all initial states such that the ter-
mination of an activity will leave the system in a final state satisfying the output
condition. In other words, input condition of an activity represents the states of the
workflow environment in which the activity can be executed correctly. Depending
on the validity of the input condition, the following three possibilities can occur
[17]: (1) Activation of ¢ leads a final state satisfying Oy; (2) activation of ¢ leads
a final state satisfying —O; (3) activation of ¢ does not lead a final state, i.e., ac-
tivity fails to terminate properly. Since an activity ¢ is designed correctly and it is
executed in isolation, if its input condition is satisfied then the execution of ¢ yields
in first possibility. However, if the input condition is not satisfied the execution
of ¢t may result in any of three possibilities. What constitutes the input condition
of an activity is described later after possible constraints in a workflow system are
introduced. The following is an example to input condition of an activity.

Example 5.2 Input condition of tyy g activity states that sufficient amount of raw
material of type m; should be available in the stock:

Liwes = (quantity(m;) > required(m;)). (2)

Note that, in order to satisfy the output condition in Formula 1, this input condi-
tion must be true prior to execution of tywrg. O

Intuitively, the following conditions should hold to execute an activity ¢ correctly:

e ¢ should read consistent (correct) values of objects in a workflow environment;

hence, these consistent values should be displayed to the users and/or used to
update other (or same) objects.

e If the correct execution of an activity depends on the validity of constraints

that are set or verified by preceding activities, these constraints should still be
valid prior to the execution of .

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 21

In the following, we discuss these two conditions in detail. We start by describing
what should be understood from correctness of a workflow environment. Correct
states of a workflow environment are represented through basic constraints.

Definition 5.4 [Basic Constraints| A basic constraint B; is a FOL formula de-
fined on the objects of the workflow environment. The set of all basic constraints
are represented as B and called as the basic constraints of the workflow system.
B = N;B;, where B; € B, partition the set of all possible states Sty into two dis-
joint sets, B(St) and Sty—B(St). First is the set of correct states in which all basic
constraints hold, and second is the set of incorrect states in which one or more basic
constraints are violated. a

Thus, basic constraints specify the correct states of the workflow environment as
the following examples demonstrate.

Example 5.3 Suppose that a basic constraint of the stock databases in the order
processing example is defined as follows:

By = (¥iL,quantity(m; ;) = M;), (3)

where gquantity(m; ;) represents the amount of raw material m; in the stocks of
warehouse j, and w is the total number of different warehouses in the enterprise.
Total amount of raw material m; currently residing at the stocks is denoted as M;.
Notice that, B; does not prevent entering new raw materials of type m; into stocks
or withdrawing them for production; yet B; implies that "raw materials should
neither be created or destroyed during the transfer of these raw materials between
the stocks of different warehouses by a Warehouse Allocation workflow”. a

Example 5.4 Suppose that balance of unpaid bills of a customer has a predefined
upper limit. Thus, a basic constraint is defined as follows:

By = ((Ve; € customerlList) : (unpaidBalance(c;) < U;)), (4)

where customerList denotes the customers of the manufacturing enterprise, and
unpaidBalance(c;) and U; denote the balance of unpaid bills and the upper limit
of a particular customer ¢; respectively. B, implies that ”orders invoked by a cus-
tomer should not cause an overdraft”. a

These examples demonstrate that basic constraints require activities to be de-
signed and/or arranged properly in a control-flow in order to rationally update a
workflow environment, so that these basic constraints are not violated during their
execution. For example, activities of Billing workflow should be designed properly,
so that balance of unpaid bills of a customer does not cause an overdraft. The
restrictions induced by basic constraints in the design of a workflow are clarified
later in this section through Definition 5.9.

Some activities require that some of the basic constraints must hold to execute
them correctly. Thus these basic constraints are involved in the input conditions of
these activities. The set of basic constraints to be involved in the input condition
of an activity ¢ is denoted as B(t), and defined as follows:

(VB; € B) : (O(B;) N RS(t) # 0) = (B; € B(t))). (5)

22 I. B. ARPINAR, U. HALICIL, S. ARPINAR, AND A. DOGAC

According to Formula 5 if an object involved in a basic constraint B; is also an
element of the read set of ¢ (i.e., RS(t)), B; is included in the input condition of ¢. So
activity t accesses correct states of objects in the workflow environment; otherwise
t may produce incorrect results or update workflow environment erroneously.

The following example demonstrates a case in which a basic constraint is included
in the input condition of an activity.

Example 5.5 Consider the basic constraint B; (Formula 3), and StockControl
workflow and its WarehouseEvaluation (shortly twg) activity which evaluates
the available raw materials of type m; in the stocks of all warehouses. This infor-
mation is printed as a report later. Since O(B1) N RS (tw k) = UL, quantity(m; ;),
(i.e., all quantity(m;) objects in w warehouses) B; should be an element of basic
constraints involved in the input condition of twg, i-e., By € B(twg). Since twg
should see a correct state related to amount of raw material m; in the stocks and
B1 describes the corresponding set of correct states, B; must hold for the correct
execution of ty g activity. O

Assume that an incorrect state is also acceptable for a particular Warehouse Eval-
uation activity. Hence a report about approximate quantity of a raw material in
the stocks is allowed. In this case, basic constraint 5; can be excluded from B(twg)
although implied by the Formula 5. In this way, flexibility in the specification of
incorrect but acceptable states for an activity ¢ can be achieved. This approach
resembles the isolation levels provided by some database management systems [33].

Although activities are usually execution-atomic (i.e., isolated) steps by their na-
ture, there may be semantic dependencies between them that must be observed and
preserved. For example, an activity may cause that a constraint to be satisfied on
the workflow environment after its termination, and a successor activity may be ex-
ecuted with the assumption of the validity of this constraint. Furthermore, another
activity may evaluate a constraint and determine its truth value, and this value
may be used in the workflow specification to allow branching. Activities relying on
the selected branch are likely to require validity of the constraint associated with
their branch when they are executing. Both cases impose dependencies between
activities. We represent such dependencies between individual activities as a set of
inter-activity constraints on the workflow environment.

Definition 5.5 [Inter-activity Constraints] Let W = (N,CF, DF,IC, BC) be
a workflow, and ¢; and ¢; be the particular activities of this workflow, i.e., t; €
base(N), t; € base(N). The inter-activity constraints between t; and t;, denoted
as Cfy, ¢}, 1s a set of constraints on the workflow environment which satisfy the
following conditions:

(1) t; precedes t; in CF.

(2) (VD S C{ti,tj}) . (D S It].).

(3) (VD € Cyy,4,y,3F € Oy,) : (F = D). O

In the above definition, if a constraint F in the output condition of a preceding
activity ¢; implies a constraint D in the input condition of a successor activity t;, the

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 23

latter constraint is included in the set of inter-activity constraints between these
two activities. Note that we require implication instead of equivalence between
constraints F, and D. This is due to the fact that, validity of F already guarantees
the validity of D, and D is the constraint that is involved in the input condition of
the successor activity. Thus the inclusion of the less restrictive constraint D in the
set of inter-activity constraints is enough.

Notation: If the conditions in Definition 5.5 hold we say that constraint D is
emanating from activity ¢; and incoming to activity ¢;. We use these terms to
provide the reader the ability to pictorially imagine the constraint relations between
activities. The set of inter-activity constraints incoming to and emanating from an
activity t; are denoted as Cip(t;) and Coyt(t;) respectively and defined as follows:
Cin(t;) = UiCly, t;1> Cout(tj) = UpCly, 4,1~ We denote the set of all inter-activity
constraints in a workflow as C, i.e., C = U;Cin(t;) = U;jCous(t;).

The following examples present some inter-activity constraints in the order pro-
cessing example.

Example 5.6 Consider CheckStock (shortly tcs) and WithdrawFromStock
(twrs) activities. tcs checks whether the required amount of raw material of type
my; (i.e., required(m;)) to manufacture a particular part is available in the stock.
Thus the current value of quantity(m;) (e.g., n) is determined and using this value
the missing raw materials (i.e., missing(m;)) that should be ordered from external
vendors are calculated. Ordered raw materials are inserted into stock through
InsertStock (ts) activity of VendorOrder workflow. Thus the output condition
of tcg, and input and output conditions of ¢;5 are defined as follows:

Ot = ((quantity(m;) = n) A (missing(m;) = required(m;) — n)), (6)
T = (quantity(mg) > n), 7
Ous = ((quantity(m;) = quantity(m;) + missing(m;)) A

(quantity(m;)’ > required(m;))), (8)

where quantity(m;)’ is the new quantity of m; when t;s is completed. Since out-
put condition of tcg implies input condition of trg, i.e., Oty = It,5, and output
condition of t;¢ implies input condition of twpg (Formula 2), i.e., O = Lty s
the constraints (quantity(m;) > n), and (quantity(m;) > required(m;)) are in-
cluded in the sets Cying 1,53, and Cyy ¢ 1y s}y TeSPectively. In other words, if n
particular materials of type m; are available in tcg, at least this amount of ma-
terial should be available in the corresponding t;s also, so quantity(m;) becomes
larger than or equal to required(m;) after the insertion of missing materials into
stock. Required(m;) materials should remain in the stock, so Z;,, s holds when
twrs is executed. Notice that (quantity(m;) > n) is an element of Cy,(trs), and
Cout(tes), and (quantity(m;) > required(m;)) is an element of Cy,(twrs), and
Cout(trs). Furthermore, both of these constraints are elements of C'. O

The following is also an example from order processing workflow to further clarify
inter-activity constraints.

24 I. B. ARPINAR, U. HALICIL, S. ARPINAR, AND A. DOGAC

Example 5.7 Consider Get ProcessPlan workflow, and its Select BestCells (tspc)
activity. tspc evaluates the manufacturing cells in the factory and selects the
required number of the best qualified cells to manufacture a particular part. Thus,

Otspe = ((Veell; € qualifiedCells,Vcell; € (cells — qualifiedCells)) :
(rank(cell;) > rank(celly))), 9)

where qualifiedCells, and rank(cell;) denote the set of selected cells, and rank of
a particular cell respectively. The rank is obtained by evaluating qualifications,
workload, capacity, etc. of a particular cell. Cells denotes the set of all operational
cells in the factory. Since the selected best cells should remain so until the work
is actually assigned to them in the corresponding Assign (t4) activities, the input
condition of a t4 activity for cell; should be defined as follows:

Lt s,y = ((Veellj € (cells — quali fiedCells)) : (rank(cell;) >
rank(cell;))). (10)

Since Orgpo = Lt y(.enr,,» Formula 10 should be an element of Cyg ., |

ta(eett;)}-

In order to represent inter-activity constraints graphically in a workflow, we use
a special graph, namely inter-activity constraints graph which is a labeled 2-level
hyperDAG defined in Section 4. In this way, inter-activity constraints can be rep-
resented in the way control and data-flow are represented.

Let W = (N,CF,DF,IC, BC) be a workflow; inter-activity constraints between
the activities of W are represented as a labeled 2-level hyperDAG IC = (Vi¢, Erc,
L;¢), where Vi¢ and Er¢ denote the nodes and edges respectively. V¢ is a hyper-
Set, and for any S, € Vi¢, S, C base(N), and for any (S,, Sy) € Erc, Sa € base(N)
and S, C base(N). Ljc are the labels of the edges and it is a mapping from the
edges in Erc to the inter-activity constraints in C. For a given set of inter-activity
constraints between activity pairs, if there is a constraint F between t; and t;,
this is represented through an edge (t;,t;,F) in IC. If a constraint F emanat-
ing from an activity ¢; is incoming to more than one activity, these activities are
grouped into a hyperSet S,) and this situation is represented through the edge
(ti, S(e;,7)F). The following example demonstrates the construction of an inter-
activity constraints graph.

Example 5.8 Let C = {Fy, Fa, F3,Fa, Fs, Fe, Fr}, and C{t1,t2} ={HA}, C{t17t3} =
(A} Clonay = {52, 5, Faby Cpnisy = {Fs Fats Cgsy = {Fsh Clagtey =
{Fs} Crransy = 1F6}s Cpepsy = {Fr}. Therefore, as explained above, ¢, and 3
are grouped into a hyperSet and (¢, {t2, t3}, F1) is included in IC. Eventually, IC
corresponding to C is obtained as depicted in Figure 11. O

Note that IC is consistent with control-flow graph (CF) due to Condition 1 of
Definition 5.5.

An inter-activity constraints graph can be simplified by removing redundant edges
from it. In general if an edge covers another edge in an inter-activity constraints

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 25

G(t)

Figure 12. Relations Between
Figure 11. Inter-activity Constraints Graph Inter-activity, Basic, and Ex-
tensional Constraints

graph and constraint of the former edge implies the constraint of the latter edge,
the latter edge can be removed from the graph. This is due to the fact that if first
inter-activity constraint is valid between the executions of activities in its source
and sink, validity of second constraint is automatically guaranteed. Furthermore,
some inter-activity constraints can be removed from an inter-activity constraints
graph through human intervention. If invalidity of an inter-activity constraint is
acceptable for a particular activity, the edge corresponding to this constraint can
be excluded from the graph by a workflow designer. This is similar to exclusion
of some basic constraints from the input condition of an activity. Details of the
simplification process and elimination of constraints are provided in [6].

We use an inter-activity constraints graph to develop a correctness criterion for
workflows. Since inter-activity constraints contribute to the input condition of an
activity, constraints in an IC' graph should be preserved between the nodes of the
graph during execution of the workflow since only activities are isolated not the
whole workflow.

Up to this point, we have defined basic constraints and inter-activity constraints.
Having defined these two types of constraints, we can now formally provide the
semantic of an input condition of an activity ¢ as follows:

T = (NiBBi) A (N F5) N (AkGr), (11)

where B; € B(t), and F; € Ciy(t), and G, € G(t). Intuitively, input condition
of an activity is the conjunction of the basic constraints, inter-activity constraints,
and constraints in G(t) which are required to execute this activity correctly. G(t)
is composed of a set of constraints to execute ¢ correctly which are not included
in neither in B(t) nor in Cj,(t) as depicted in Figure 12. Therefore constraints
in G(t) refer to state information which is not transferred from preceding activ-
ities or can not be represented through basic constraints. For example, consider
WithdrawFromStock activity (shortly twrs) and its input condition which is de-
fined in Formula 2. Furthermore, suppose that a CheckStock activity is not placed
before it in the control-flow; therefore quantity of missing materials can not be

26 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

determined and inserted into stock before the execution of twprg. In this case,
(quantity(m;) > required(m;)) is not in B(twrs) and Cin(twrs). This type of
constraints are called as an extensional constraints, and included in the set G(t) as
depicted in Figure 12.

Later in this section we discuss the cases in which the constraints in the input
condition of an activity are violated and therefore its correct execution is sacrificed.
To detect these violations we are interested in whether an activity maintains a
constraint. The following definition is provided to formalize this issue.

Definition 5.6 [Preserve Function] Let ¢ be an activity and F be a FOL formula
on the workflow environment. Preserve(t, F) is a three-valued function which is
defined as follows:

(1) Preserve(t,F) = true (1) if (VSt € Sty) : ((St E F)=(t(St) = F)). In this
case we say that ”t preserves F”.

(2) Preserve(t,F) = false (0) if (VSt € Sty) : ((St |= F)=(¢(St) & F)). In this
case we say that 7t falsifies (or invalidates) F”.

(3) Preserve(t,F) = may be (1/2) if (3St € Stv) : ((St |= F)=(t(St) £ F)). In
this case we say that ”t may falsify (or may invalidate) F”. a

Intuitively, Preserve(t,F) = 0 or 1/2 requires that W.S(¢) N O(F) # 0. Result of
Preserve(t,F) is not always binary since the effects of an activity on the state of
the workflow environment may depend on the actual values of its input parameters
and/or the current values of variables in O(F). Thus an activity may not falsify
some of the constraints depending on the actual instantiation of these parameters
and variables. The following is a simple example to demonstrate this situation.

Example 5.9 Let 1 = (21 < x2), and Fa2 = (x1 = x2), and ¢ = increment(x2),
to = decrement(xy1), t3 = increment(x1), t4 = decrement(xs). Assume that
dom(zy), and dom(z2) are equal to the same totally ordered set with respect to
a relation <. Preserve(t,F1) = 1 for t € {t1,t2}; Preserve(t,F;) = 1/2 for
t € {t3,ts}; Preserve(t,Fs) =0 for t € {t1,t2,t3,t4}. |

According to the approach described above, we would like to check activities to
see whether they always preserve a constraint . But, the recent results in the
related literature show that it is almost impossible to automatically determine the
value of Preserve for a given activity and a constraint. As noted in [11], for transac-
tions specified as select-project-join expressions of relational algebra and constraints
specified as FOL formulas, it is undecidable to check if a given transaction preserves
a given constraint. Therefore, we simply assume that a workflow system adminis-
trator and/or workflow designers can specify the value of Preserve(t,F).

As discussed previously, basic constraints specify the correct states of the workflow
environment. Invalidation of basic constraints may be permissible by the individual
activities; yet this situation imposes some restrictions (1) on the execution of the
workflow in which an activity that invalidates (or may invalidate) a basic constraint
resides, and (2) on the execution of activities which require accessing correct states.
Since basic constraints represent these correct states, if they are violated during a

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 27

workflow execution they should be resatisfied again prior to the termination of
this execution. Otherwise the workflow environment is left in an incorrect state.
Therefore, a workflow should be designed properly so that, if it includes an activity
which falsifies (or may falsify) a basic constraint then it should include another
activity (or possibly a set of activities) which certainly guarantees revalidation of
this basic constraint. Furthermore, if the same basic constraint is involved in the
input condition of another activity, execution of this activity should be prevented
between the executions of former and latter activity (or activities). To capture
these issues we have defined a validating set of activities for a basic constraint.

Definition 5.7 [And, Or-Validating Sets] Let W = (N,CF,DF,IC,BC) be a
workflow, and B be the set of basic constraints of the workflow system. Further-
more, let t; € T, where V.S C T, and T represents the individual activities in N.
V'S is an and-validating set for B € B if the following conditions hold:

(1) Preserve(t;,) =0 or 1/2.

(2) (Vt; € VS) : (t; precedes t; in C'F).

(3) N;jOy; = B, where t; € VS.

(4) (Vt; € VS) : (AOy, # B), where ty, € (VS —t;).

V'S is an or-validating set for B € B if the following conditions hold:
(1) Conditions 1, and 2 above.
(2) (Vt; €VS): (O = B). O

Informally, V'S is an and-validating set for B if B is a basic constraint which is
(or may be) invalidated by ¢;, and validated collectively by the elements of V'S.
Condition 4 guarantees that execution of activities in a subset of an and-validating
set V'S is not a sufficient condition for the validation of B, and therefore V'S is the
minimum set of activities to validate B. If the execution of at least one element of
a set of activities (V'S) is a sufficient condition for the validation of B we call V.S
as the or-validating set for B.

Notation: We denote the set of basic constraints which are (or may be) invalid
between ¢; and activities of an and-validating set V'S as SBy, v s and}- The set of
basic constraints which are (or may be) invalid between ¢; and at least one activity
of an or-validating set V'S is denoted as SByy, vs,or}-

In the following, we clarify these definitions through examples.

Example 5.10 Consider the WarehouseAllocation workflow in Figure 3. Output
conditions of RetrieveMaterial (trn), and UpdateM aterial Location (typrr) ac-
tivities of a WarehouseAllocation workflow are defined as follows:

OtRM(w]-) = (quantity(m; ;)" = quantity(m; ;) —n), (12)
Otomiriwy = (quantity(m;) = quantity(m; k) + i), (13)

28 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

where w; represents the source warehouse, and wy represents a warehouse k£ in
destList, i.e., w, € destList, and EZZi(deStht)lk = n. Since after n raw ma-
terials of type m; are withdrawn from the stock of warehouse j, B; (Formula 3)
is no longer true of the workflow environment state. However, B; is resatisfied
after the termination of the corresponding ty s activities which distribute with-
drawn amount to stocks at different warehouses in destList. In this case tynrp(w,)
activities for each warehouse k constitute an and-validating set for B;, since af-

ter the termination of all activities in this set B; is satisfied again, and therefore

{tRM(w]-)7U2i:zle(deStLiSt)tUML(wk)7and} - {Bl} =
The following is an example to an or-validating set for a basic constraint.

Example 5.11 Consider Billing workflow and its UpdateUnpaidBalance (tyus),

RejectShipping (trs), and MoreCredit (tprc) activities (Figure 2). Their output
conditions are defined as follows:

Otyvs = (unpaidBalance(c;)' = unpaidBalance(c;) + b) (14)
Otrns = ((unpaidBalance(c;)' = unpaidBalance(c;) — b) A

(orderStatus = rejected)) (15)

Otwe = ((U; =U; +¢) A (U] > unpaidBalance(c;))), (16)

where U} denotes the new upper limit after ¢p¢ is terminated. If a customer
¢; does not pay the bill of an ordered product, her/his balance of unpaid bills
(i-e., unpaidBalance(c;)) is updated in tyyp activity (Formula 14 above). Since
Preserve(tyup, B2) = 1/2, basic constraint By (Formula 4) may be invalid at this
moment. In this case either shipping of ordered product is rejected (or delayed) and
unpaidBalance(c;) is decremented in trs activity (Formula 15), or if responsible
branch of the enterprise grants more credit to this customer, her/his upper limit
(U;) is incremented in tpr¢ activity, thus U; > unpaidBalance(c;) holds (Formula
16). Observe that Bo is certainly satisfied after the termination of either tgg or
tyo activity. Therefore tpg and tp¢ activities constitute an or-validating set for
B, and SB{tUUB7{tRs,tMc},OT} = {B:}. o

As the previous examples demonstrate activities of an and/or-validating set guar-
antee revalidation of a basic constraint. Yet to achieve this, there is a prerequisite
which is a natural outcome of our definition of activity semantic: Input condi-
tions of activities of an and/or-validating set should hold when they are executed.
Only in this way Condition 3 for an and-validating set, and Condition 2 for an
or-validating set in Definition 5.7 can be satisfied. To achieve this, required inter-
activity constraints between the activity which (may) invalidate a basic constraint
and activities in the corresponding validating set should be preserved. The following
example demonstrates this requirement.

Example 5.12 In the manufacturing example, a product is composed of parts and
parts are further composed of raw materials. Therefore consistency of technical
data, i.e., design information belonging to a product and its constituting parts is an
essential requirement in a manufacturing process. To state this, a basic constraint

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 29

of the system is defined as follows:
Bs = ((Vprod; € products,Vpart; € parts) : ((part; € P(prod;)) =
Consistent(design(prod;), design(part;)))). (17)

Acording to Bs, design of a product, i.e., design(prod;), should be consistent with
designs of its constituting parts, i.e., design(part;), where part; € P(prod;). Let
UpdatePartDesign (shortly typartp) and Update Product Design (ty proap) be two
activities whose output conditions are defined as follows:

Otypamp = ((design(partj)' = design(part;) + A) A

Consistent(design(prod;) + F(A), design(part;)')) (18)
Otyproanr = ((design(prod;)' = design(prod;) + F(A)) A
Consistent(design(prod;)', design(part;))) (19)

where design(part;)’ and design(prod;)’ represent new designs. typerep changes
design of a part by A, and typroqp updates corresponding product through a func-
tion F'(A), so that the consistency of designs for product and its part is achieved
again after typroan, i-€., Oty p..qu = Bs. In order to get the above result, however,
input condition of ¢y proap should include the constraint Consistent(design(prod;)+
F(A),design(part;)). That is, prior to execution of typroap, change made in
design(part;) must remain the same (i.e., no other activities change the design of
the part), so update of design(prod;) by F(A) should make the design of product
consistent with its part again. Note that, the output condition of typertp also
includes this constraint since this part is redesigned with the assumption that the
product design will change accordingly. As a result, the constraint Consistent
(design(prod;) + F(A),design(part;)) is included in the set of inter-activity con-
straints between ty partp, and typroan, i-€., it is an element of Cy . oty proan}- B

In Definition 5.7, it is assumed that if a basic constraint is (or may be) invali-
dated by a previously executed activity, its revalidation is guaranteed by successor
activities in control-flow. However, this invalidation can be prevented through
the execution of a preceding activity or a set of activities. More precisely, if
Preserve(t,B) = 1/2 invalidation of B by the execution of ¢ can be prevented
by the execution of some preceding activities in control-flow, thus O; = B [6]. The
details are omitted here due to space limitations.

The presented examples provide sufficient guidance for workflow designers, so if
their workflow specification includes an activity which (may) invalidates a basic
constraint they should also include other activities conforming to the definitions of
validating sets or prevent this invalidation by placing preceding activities.

We formally represent and/or-validating sets and intervals at which the basic
constraints are (or may be) invalid during the execution of a workflow W, through
a labeled 2-level hyperDAG BC = (VBc,EB(j,CLB(j,VLB(j), where VB(j, and
Epc represent nodes, and edges respectively. Vpe is a hyperSet, and for any
Sq € Ve, Sq € T and for any (S,,Sy) € Egc, Sq € T and S, C T. Recall that
T is the set of individual activities of W. CLpc and V Lpg¢ are the labels of edges

30 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

Figure 13. Basic Constraints Graph

in Epc; CLpe is a mapping from Epc to negated elements of B, where B is the
set of basic constraints of the workflow system, and V Lp¢ is a mapping from Epc
to {and, or} denoting the types of validating sets. Ep¢ is constructed through the
use of following principles:

° (VB € B) : ((B € SB{ti7VS7and}) = (<ti,VS, —B,and) € EBC))-
d (VB € B) : ((B € SB{tuVSpr}) = (<t1,VS, _|B,07“) € EBC))'

According to these principles, if V.S is an and-validating set or an or-validating set
for B this situation is represented by the edges (t;, V'S, =B, and) and (t;, V'S, =B, or)
respectively. Note that if V'S includes more than one activity it is represented as
a hyperSet in BC. If VS has one element, this element is represented with a
simple node, and since type of V'S (i.e., and/or) is immaterial in this case, label
of the edge incoming to V'S representing its type is omitted. Furthermore BC' is
consistent with control-flow graph (CF') due to Condition 2 of Definition 5.7. The
following example demonstrates the construction of a basic constraints graph using
the principles above.

Example 5.13 Let B = {B, B2, Bs, B4, Bs, Bs, Br }, and SB{t17{t2,t3}7and} ={B},
SBity qtatsy,ory = 1B2,83}, SBiiy sy = {B1,Bs}, SByi, 1y = {Bs}. The corre-
sponding basic constraints graph BC' is depicted in Figure 13. |

We use basic constraints graph in conjunction with inter-activity constraints
graph to develop the notion of correct execution of workflows. To define a correct-
ness criterion we need the definition of a complete execution history of workflow
instances. In the following, the definition of a complete execution of a workflow is
provided which is then used in defining the history.

In Section 4, control-flow of a workflow is formalized as a labeled split-join hyperN-
0deDAG. In this graph, or/xor-split nodes cause some activities of the workflow not
to take place in the actual execution. This is due to the fact that after the execution
of an or/xor-split node a decision is made upon which branch to take. To define the
parts of a workflow which are actually executed at run-time, namely a complete

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 31

execution of a workflow, the following algorithm is provided. In this algorithm,
G=(Tg,Eqg,L;, TCg) is a labeled split-join hyperNodeDAG which is local to the
algorithm itself. The split-join hyperNodeDAG CE = (N¢g, Ecg) is the resulting
complete execution graph for a given control-flow graph, CF = (N, Ecp, L, TC).

Algorithm 5.1 [Complete Execution Generation Algorithm)]

procedure PathGenerate(G):
begin

1. [+ fZ"I“St(G/El/EQ.../&Size(TG)), where G = (Tg, Eg, La, TCq);

2. L« last(G/e1/e2...[€size(1s));

3. if f is a split node then

4. case Lg(f) of
begin

5. and : for every (f,l)-path C Eg do Ecg < Ecg U (f,1)-path;

6. or : for some (f,l)-path C E¢ do Ecg < Ecg U (f,1)-path;

7. zor : for ezxactly one (f,1)-path C E¢ do Ecg < Ecg U (f,1)-path;
end

8. else Ecg < Ecg U (f,1)-path

end

program main:
begin
1. Neg<+ 0, Ecp +0;
2. PathGenerate(CF);
3. for every node ecp € Nog and ecp € hyper(N) do
4. PathGenerate(CF (ecg))
end

The procedure PathGenerate accepts a labeled split-join hyperNodeDAG G as
an input. In Steps 1-2, each hyperNode of G is replaced with an abstract simple
element; thus it results in a simple DAG. First and last elements of the DAG are
assigned to f and [respectively. If f is an and-split node all paths connecting it to
[are included in C'E; if f is an or-split node some of the paths connecting it to [
are included in CE; if f is an zor-split node exactly one of the paths connecting it
to [is included in CE. If f is not a split node, single (f,{)-path is included in CE.

The main program which calls procedure PathGenerate is also provided above.
After initialization, this main program executes PathGenerate for control-flow,
CF. For every node ecg included in CE after this step (i.e., ecp € Nog), if
this node corresponds to a hyperNode in CF, PathGenerate is called with the
restriction of C'F to this node (i.e., CF(ecg)) as the input. The program executes
until there is no element in CE corresponding to a hyperNode in C'F'. In this way,
a complete execution is generated in a top-down fashion.

32 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

In the following, a complete execution of a workflow is formally defined as an
outcome of the main program above.

Definition 5.8 [Complete Execution of a Workflow] Let W = (N,CF, DF, IC,
B(C) be a workflow, and CF = (N, Ecp, L,TC) be its control-flow, where C'F’ itself
is thought as a single node at an abstract level. A Complete Ezecution of W de-
noted as CE = (N¢g, Ecg) is a split-join hyperNodeDAG which can be generated
through the Complete Execution Generation Algorithm (Algorithm 5.1). O

Notice that there could be many complete executions that can be generated from
the control-flow graph using Algorithm 5.1. The following example demonstrates
the generation of a complete execution from a given control-flow.

Example 5.14 Consider the control-flow graph (CF') in Figure 10. One of the com-
plete executions that is generated from CF, e.g., CE; = (N¢g,, Ecg,), can be de-
fined as follows: Nog, = {a,b,{c,g,{h,i,j,k,1},m},n}, and Ecg, = {(a,b), (b,e3),
(537n>7 (c,g), <97533>7 <5337m>7 <h72>7 <h7.7>7 <h7 k>7 (Za l>7 (]7l>7 <k7 l>}7 where €3 =
{caga {h7i7j7k71}7m}7 and €33 :{h,l,j,k,l} o

As stated previously, basic constraints can be violated during a workflow execu-
tion; yet as one of the essential conditions to preserve them all complete executions
must satisfy the criteria given in the following definition.

Definition 5.9 [Validation Complete Control-Flow] Let W = (N,CF, DF,
IC,BC) be a workflow, and BC = (Vsc, Egc,CLpc,V Lpc) be its basic con-
straints graph. CF is a Validation Complete Control-Flow if the following condi-
tions hold for every complete execution CE; = (N¢g,, Ecg,;) of W:

(1) (Y(t,VS,=B,and) € Epc) : ((t € base(NcEg,)) = (V.S C base(N¢cg;)))-

(2) (V({t,VS,=B,or) € Epc) : ((t € base(Ncg,)) = (VS Nbase(Ncg,) # 0)). O

Conditions 1 and 2 state that if an activity (¢#) does not preserve a basic con-
straint (i.e., O; % B), then every complete execution (C'E;) including this activity
must contain activities which validate this basic constraint again (i.e., activities
of the corresponding and-validating set or at least one activity of corresponding
or-validating set). This property must be ensured by the workflow designers. Note
that, if Preserve(t,B) = 1/2 and invalidation of B is prevented by the preceding
activities then Oy = B. In this case, ¢ is not placed in BC.

The following example clarifies the definition above.

Example 5.15 WarehouseAllocation (Example 5.10), and Billing (Example 5.11)
workflows have validation complete control-flows, since intuitively every complete
execution of Warehouse Allocation workflow includes the activities in U5 =¢(4e5t£#)
tuML(wy) if it includes tgas(w;), and every complete execution of Billing workflow

includes either tgs or ty; ¢ activity in the case By is falsified by tyypg. O

A workflow environment can be left in an incorrect state due to incorrect in-
terleavings during the execution of activities of the same or different workflows
even these individual workflows have validation complete control-flows. Further-
more inter-activity constraints can be invalidated and therefore input conditions of

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 33

Table 1. Relations Defined on Time Intervals

Relation Condition

TI; and TI; intersect ~ —(END(TI;) < START(TI;))A
~(END(TI;) < START(T1;))
)

TI; covers T (START(T'I;) < START(T')
(END(TI;) < END(TI;))

A

some activities may be false when they are executed. Both situations sacrifice the
correctness of workflows. Before introducing a correctness notion, we provide a for-
mal definition of concurrent execution of workflows, namely a complete execution
history of workflows. To specify interleavings of workflows and their constituting
activities clearly in this definition, time intervals are associated with them during
execution.

Assuming a model consisting of a fully ordered set of points (instants) of time,
a time interval T is an ordered pair of points which represents its endpoints,
ie., TI = [START(TI), END(TI)], where START(TI) and END(TI) denote
the start-point and end-point of T'I respectively. Two relations between the time
intervals, namely intersect and cover are presented in Table 1. In this table, T'I; and
T'I; represent two arbitrary time intervals. T'I; and T'I; intersect, which is denoted
as TI; NTI; # 0, if they have at least a common point of time. If T'I; covers T'I;
this is denoted as T'I; D T'I;. These relations are used later in this section. More
information about time intervals and relations between them can be found in [2].

After introducing time intervals and required relations among them, the following
definition of the complete execution history of workflows is presented.

Definition 5.10 [Complete Execution History of Workflows] A Complete
Ezecution History CH = (Tcn,Ecu,Lon) defined over a set of complete work-
flow executions CE= {CE,,CEs,...,CE,}, where CE;,CE,,...,CE,, are gener-
ated from control-flows of a set of workflows W = {Wy, Ws,...,W,,}, is a labeled
split-join hyperNodeDAG, where

o Tou =V, Neg,U{scu,jcu}, where scg and jom denote the split and join
nodes of CH respectively, and scy, jou are equal to foy and loy (first and
last nodes of C H) respectively.

* Eop = (UL, Ece,) VU UL {(scu, Noe,), (Nos:, jou)})-

e Lcy is the labels of the nodes, i.e., each node is labeled with its time interval
T1I. For a simple node S, TIg = [start(S), end(S)], where start(S) and end(S)
denote the time instants when the activity is started and terminated respec-
tively. For a hyperNode S, TIs = [min(START (TIs,)), max(END(TIs,))],
where S; is a simple or a hyperNode of S (i.e., S; € S). O

In the following definition, a correctness criterion for a complete execution history
of workflows is presented. In this definition, a correct complete execution history
is characterized by referring to the properties of the workflow environment state at
particular time instants. Intuitively, for an infinite sequence 7 = 0,1, 2, ... of time

34 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

instants there is a corresponding sequence Stg, St1, Sto, ... of workflow environment
states. The notation Steyent is employed to denote a particular workflow environ-
ment state at the time instant with which the event is associated. For example,
Stsiare(ry denotes the state when activity ¢ is started. If a constraint F holds at the
time instant at which event occurs, this situation is represented as Steyent = F.

Definition 5.11 [Correct Complete Execution History] A Complete Ezecu-
tion History CH = (Tcou, Ecu,Lon) is correct if the following conditions hold:

(1) (Vt € base(TCH)) : (Ststart(t) |: It).

(2) (Ststart(fCH) E B) = (Stend(ZCH) E B), where fom and I are the first and
last nodes of C'H respectively, and B = A;B; where B; € B, and B is basic
constraints of the workflow system. O

Condition 1 states that when an activity ¢ involved in the history is started its in-
put condition Z; should hold. Notice that since the individual activities are isolated,
validity of their input conditions when they are started is a sufficient condition to
execute them correctly. According to Condition 2, if the basic constraints of the
workflow system are true when the history is started they should be true after the
termination of the history.

After defining a correctness notion for a complete execution history of workflows
the ways correctness can be sacrificed are illustrated in the following paragraphs.
If the execution of activities of workflows are interleaved, correctness of a complete
execution history can be violated in two ways:

e Input condition of an activity ¢ may be false when ¢ is executed (i.e., Styqpe(r)
¥ 1y).

e Although basic constraints are true when the complete execution history is
started, they may be false when it is terminated (i.e., Stezecute(ion) ¥ B)-

Input condition of an activity (Formula 11) can be violated in three ways: (1) An
inter-activity constraint F € C;,(t), or (2) a basic constraint B € B(t), or (3) an
extensional constraint G € G(t) may not be true when ¢ is executed. The following
two examples demonstrate the first case.

Example 5.16 Consider the CheckStock (tcs), InsertStock (trs), and Withdraw-

FromStock (twps) activities, and the inter-activity constraints F; = (quantity
(m;) > n), and Fy = (quantity(m;) > required(m;)) given in Example 5.6. Re-
member that 7y € Clig 4,63, and F2 € Clyp 1y rs)- Since raw materials of type
m; may be withdrawn from the stock by the concurrently executing ¢ty rs activity
of some other workflows, F;, and F> may be invalidated between the tcg, and
trs activities, and corresponding tyw s activity. This situation is depicted in the

following;:

F . InsertStock1

AT

L]
CheckStock WithdrawFromStock,

- WithdrawFromStock

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 35

Suppose that tcs, sees n = 75 raw materials in the stock and required(m;) = 125;
therefore 50 raw materials are ordered from vendors and inserted into stock through
trs, activity. After this, if a tyrg, activity of another instance of Order Processing
workflow withdraws 30 raw materials of same type, input condition of twrg, (i-e.,
quantity(m;) > 125) is invalidated. i

Example 5.17 Consider SelectBestCells (tspc) and Assign (ta) activities, and
the inter-activity constraint F3 = ((Vcell; € (qualifiedCells)) : (rank(cell;) >
rank(cell;))) defined in Example 5.7. Recall that 73 € Clispotaeen,)}- Since
other t4 activities might concurrently assign a work to a preselected cells they can
invalidate F3. This situation is depicted as follows:

Fs

/QA\A

SelectBestCellg Assign, (cell,) Assign, (cell;) Assign, (celly)

Suppose that available cells are evaluated in tspc, , and celly and celly are selected.
If £ 4, (cenr,) assigns a heavy work to cell;, and degrades its previously assessed rank,
celly may become a worse selection for the assignment of the work in £ 4, (cesr,)- Thus
input condition of £, (cerr;) may be invalid when it is executed.

The following example demonstrates a situation in which a basic constraint in-
volved in the input condition of an activity is falsified.

Example 5.18 Consider Examples 5.5 and 5.10, and note that basic constraint
By is false between RetrieveMaterial(w;) (shortly tgps(w;)), and corresponding
Update M aterial Location(wy) (tumL(w,)) activities for every wy, € destList. If a
Warehouse Evaluation (twg) activity is executed between these activities it exe-
cutes incorrectly, since its input condition includes B;. This situation is demon-
strated in the following;:

- B,

| |
RetrieveMaterial; (w) .%U pdateMaterialLocation, (w,)

[u . .
WarehouseEvaluation., UpdateMaterialL.ocation, (ws)

Suppose that tgys, (w,) retrieves 1200 raw materials of type m; from the stock of
warehouse w; and these materials are distributed to stocks of warehouses w,, and
w3 through typrp, (w,) activities. If tyw g, activity is executed between them it
misses the raw materials being transferred and an incorrect amount of raw material
my; is reported. O

The preceding examples demonstrate the possible violations of input conditions.
Now, we discuss the cases in which basic constraints may remain false after the
termination of a complete execution history.

36 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

Note that validation completeness (Definition 5.9) is an essential requirement to
preserve basic constraints in a complete execution history, thus if a basic constraint
is invalidated by an activity it is revalidated by the execution of activities in its
validating set. Yet to achieve this, the input conditions of activities in the vali-
dating set must hold when they are executed (Example 5.12). If input conditions
of activities in a validating set are falsified, revalidation of a basic constraint fails.
Thus, although workflows having validation complete control-flows are involved in
a complete execution history, a workflow environment can be left in a state where
basic constraints do not hold. The following example demonstrates this situation.

Example 5.19 Suppose that a basic constraint Bs is defined as follows:

Bs = ((Veell; € cells) : (((capacityM ode(cell;) = Normal) =
(workload(cell;) < C;)) V ((capacityMode(cell;) = Max) =
(C; < workload(cell;) < MAX;)))) (20)

The intuition behind this constraint is as follows: A manufacturing cell (cell;) can
work in normal (Normal) or maximum (Mazx) capacity modes. If cell; works in
Normal mode, its workload should be equal or less than a predetermined upper
limit C;. In Max mode, its workload should be between C; and MAX;. Employing
cells in Normal load is more desirable, and transferring a part of a workload to other
available cells is possible. Consider the following executions of related activities:

- B,
TransferWork (cell,) ® //Z\ " ChangeMode (cell,)
Assign,(cell,) " ChangeMode, (cell,)

Assume that MAX; = 500, C; = 300, and current workload of cell; is 400.
TransferWork (celly) (shortly 1w, (ceur,)) transfers a part of cell;’s workload (i.e.,
150) to other available cells. In this case, B is invalidated and ChangeM ode; (cell;)
(tc ay (ceity)) should be executed to change mode of cell; from Max to Normal. No-
tice that to guarantee validation of Bj, inter-activity constraint

Fs = (workload(cell;) < Cy) (21)

must hold when tcons, (ceury) 18 executed. Thus, cell; works in Normal capacity
mode with workload = 250, and therefore Bs is revalidated after the termination of
tony (cetry)- This situation is similar to one presented in Example 5.12. Consider the
executions of activities which belong to another workflow instance. Suppose that
Assigny(celly) (tay(ceu,)) assigns a work to cell; in amount of 200, and therefore
the resulting workload is 450. Since this workload requires Maz capacity mode
toMy(celty) 18 executed to validate Bs, and capacity M ode(cell,) is made Max. Note
that the activities presented belong to workflows having validation complete control-
flows. At the end of these executions, the resulting capacityM ode is Normal and
current workload is equal to 450. Thus Bs is still invalid. This is due to 4, (ceuy)

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 37

is invalidated 4 which is required for the correct execution of toaz, (ceir,)- O

As discussed through the preceding examples, although individual activities of
a workflow are executed in isolation, workflow correctness may be violated due to
improper interleavings. Thus, proper concurrency control mechanisms are required
to ensure correctness of a complete execution history. A concurrency control mech-
anism can guarantee that when #; is executed 7y, is true if it does not permit any
activity that falsifies constraints in Cyy, ;1 to be executed between ¢; and t; for
different #;5. Furthermore, if a basic constraint involved in Z;, is invalidated by
a previously executed activity, execution of ¢; should be delayed until this basic
constraint is satisfied again by the activities of corresponding validating set. Reval-
idation of a basic constraint can be ensured by the validation completeness property,
and guaranteeing correctness of input conditions of activities in a validating set.

Extensional constraints (i.e., G(t;)) involved in the input condition of an activity
may be falsified by the activities which are terminated even before the beginning
of workflow in which ¢; participates, and remain invalid for an uncertain time.
Therefore, ensuring their validity like inter-activity or basic constraints through a
concurrency control mechanism is not possible. A possible way to achieve this is
that, a workflow designer places preceding activities in the control-flow to check
these constraints, and if they evaluate to false either they are validated by proper
activities or t; is excluded from the execution history through conditional branches.
Placing CheckStock and InsertStock activities before the WithdrawFromStock is an
example to the first case. In this way, extensional constraints can be transformed
to inter-activity constraints and their validity can be ensured like other constraints.
If this design requirement is not taken into consideration by workflow designers,
activity itself should verify extensional constraints, and if they evaluate to false,
the activity should be removed from the execution history (e.g., by aborting it).

The essential design requirements which provide for the correctness of a complete
execution history of workflows and hence must be ensured by the workflow designers
can be summarized as follows: (1) Control-flow of workflows must be validation-
complete; (2) proper inter-activity constraints must be introduced between the
activities which invalidate and later revalidate a basic constraint; (3) extensional
constraints must be transformed to inter-activity constraints, thus G(t;) = 0.

Theorem 5.1 provides the concurrency control requirements explained above in a
formal manner. To specify the intervals where the basic constraints are (or may be)
invalid, and where inter-activity constraints should be preserved at run-time in the
theorem, time intervals (T'Ig) are associated with the edges of a basic constraints
graph (BC), and inter-activity constraints graph (IC) in the following:

o If Eis an edge of an IC then, TIp = [START (T Lsource(E)), END(T Lyink(k))],
i.e., TIg is denoted by the start of time interval associated with the source node
and end of time interval associated with the sink node of E.

o If Eis an edge of a BC, and V Lgc = and then, TIg = [START (T ource(r)),

o If £ is an edge of a BC, and VLpgc = or then, Tlg = [START (T ource(r)),
min(END(TIs,))], and S; € sink(E), i.e., TIg is denoted by the start of

38 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

time interval associated with the source node, and minimum end-point of time
intervals associated with the elements of the sink node of E. This is due to the
fact that once an activity in sink(FE) is terminated, validity of a basic constraint
is ensured.

Theorem 5.1 [Correctness of a Complete Execution History] Let CH =
(Ten, Ecu,Lon) be a complete execution history defined over a set of complete
executions CE = {CE;,CE,,...,CE,}, where CE,,CE,,...,CE, are generated
from a set of workflows W = {W;, Wa, ..., W,,,} having validation complete control-
flows. W; € W is represented as W; = (N;,CF;, DF;, IC;, BC;), where IC; =
(V[ci y EIC“LICi): and Bcl = (VBCi , EBC“ CLBC“VLBCZ-)- CH is correct if the
following conditions hold:

(1) Ststart(fen) E B-

(2) (VW; € W,VE € Egc,, Vi, € base(Tcn)) : (TIg N (U {TI;, | -CLpc,(E) €
I, }) = 0).

(3.a) (YW; € W,VE € Eic,, Vt, € base(Tcm)) : (TIg N (U {TI;, | Preserve(t,,
Lic,(E)) =0}) =0).

(3.b) (VW; € W, VE € Ej¢,, Vt, € base(Tcn)) : (((Preserve(ty, Lic,(E)) =
12)N(TIeNTIL;, #0)) = (Stena(t,) = Lic:(E))). O

In the following, these conditions are explained to clarify them.

(1) Basic constraints (i.e., B = A;B;, where B; € B) should hold when complete
execution history (CH) is started (i.e., when its first activity, fou, is started).

(2) It £ = (t;,VS = {te,t1,...},CLpc;(E) = =By, VLpc,(E) = and/or) is an
edge in BC; (where BC; a basic constraints graph of a workflow W; € W), and
if -CLpc,(E) = B, is involved in the input condition of another activity ¢,
(i.e., By € I,), time intervals associated with E (T'Ig) and t, (T'I;,) should
not intersect.

(3.a) If E = (tj,{ts,t,...}, Lic,(E) = F) is an edge in IC; (where IC; is an inter-
activity constraints graph of a workflow W; € W), and if another activity ¢,
falsifies F (i.e., Preserve(ty, F) =0), TIg and TI;, should not intersect.

(3.b) If E = (tj,{tr,t1,...}, Lic,(E) = F) is an edge in IC;, and t, may falsify
F (i.e., Preserve(ty, F) = 1/2), F should be still valid when ¢, is terminated.
Notice that, if ¢, does not participate in CH (e.g., by removing it from CH),
this condition automatically holds.

Proof: To prove this theorem, we show that if the conditions stated in Theorem

5.1 are true, the conditions in the definition of a correct complete execution history

(i.e., Definition 5.11) hold.

(1) As a first step, it is proved that (V¢ € base(Tcm)) : (Stsarer) = Z¢) is true.
Assume that (3¢, € base(Ton)) : (Ststare(r,) ¥ Zt.). To achive this, at least
one of the conditions below should hold:

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 39

o Ststart(tz) ¥ B;, where B; € B(t,).

o Ststart(tw) l# fj, where f] € Cln(tx)

o Ststart(tz) ¥ G, where G, € G(t,).

Remember that the constraints constituting an input condition are the elements
of B(ty) U Cin(ty) UG(t,) (Formula 11). Trivially, Condition 2 of Theorem 5.1
prevents first case; second case is not possible due to Conditions 3.a and 3.b. It
is guaranteed that the last case does not occur by workflow design.

(2) In this step, it is proved that (Stsart(fon) F B) = (Stend(cy) E B) holds.
First part of the formula is true by assumption (i.e., Condition 1 of Theorem
5.1). Assume that St.,q(.,) # B; to achieve this O;, # B should hold for a
ty € base(Tcm). In this case, however, activities of an and/or-validating set are
present in C'H due to validation completeness property (Definition 5.9). It has
been already proved that validity of input conditions of activities in a validating
set are guaranteed. Thus, B is certainly validated prior to the termination of
CH by these activities.

Thus, if the conditions of Theorem 5.1 are true, correctness of C'H is guaranteed. O

6. Constraint Based Concurrency Control (CBCC) Mechanism

In this section, a Constraint Based Concurrency Control (CBCC) mechanism for
workflows based on the correctness notion developed in Section 5 is proposed.

In Section 5 it is shown that, if the conditions of Theorem 5.1 hold, correctness
of a complete execution history of workflows is guaranteed. Validity of these condi-
tions can indeed be guaranteed through a Constraint Based Concurrency Control
mechanism to control activity interleavings in such a way that inter-activity con-
straints are preserved and accesses to workflow environment on which the basic
constraints do not hold are prevented. In this mechanism, activities acquire and
release locks on inter-activity and basic constraints in two different modes, and
certain inter-activity constraints are evaluated within an activity. To achieve this,
CBCC mechanism employees three stages for the execution of an activity: (1) Lock-
ing stage before the actual execution of an activity; (2) Certification (evaluation)
stage before the actual termination of an activity; (3) Lock releasing stage after
an activity terminates. Activities acquire locks on the relevant constraints in the
locking stage by issuing lock requests to CBCC mechanism. The lock compatibility
table for inter-activity and basic constraints is given in Table 2. ”Y” means that
the locks do not conflict and ”N” means the locks conflict.

An inter-activity constraint F can be locked by an activity ¢, in one of the
following modes:

e Shared: This mode of lock is acquired when ¢, intends to preserve F until a
set of other activities terminate, i.e., F € Cpur(ts).

e Exclusive: This mode is used when ¢, falsifies F, i.e., Preserve(t;, F) = 0. All
inter-activity constraints in a workflow management system which are falsified

40 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

Table 2. The Lock Compatibility Table
for Inter-activity and Basic Constraints

Mode Existing

Requested Shared Exclusive

Shared Y

Exclusive N Y

by t, constitute the set F'(t,). Note that not only inter-activity constraints
within a workflow in which ¢, resides, but also all inter-activity constraints of
other workflows are considered for this set.

If F is to be preserved in the interval between activity ¢; and a set of activities
{tk, 1, ...}, and if another activity ¢, that falls in this interval falsifies F, ¢, should
be delayed until F is unlocked by the every activity in {¢x,%,...}. Therefore, the
shared lock taken by ¢; conflicts with the exclusive lock taken by ¢, as indicated
in Table 2. Furthermore if F is to be preserved in the interval between activities
t; and {tg,%;,...}, and again F is to be preserved in another interval between ¢,
and {t,,t,,...}, both t; and t,, lock F in shared mode and clearly there is no
need for these shared locks to be in conflict, as indicated in Table 2. Note that
we use the term ”exclusive lock” differently than its conventional meaning in that,
two exclusive locks on the same constraint do not conflict with each other in our
approach as opposed to traditional exclusive locks.

It should be noted that some of the inter-activity constraints may be falsified by
ty, i.e., Preserve(t,, F) = 1/2, which constitute the set LF(¢,). For the activities
that may falsify inter-activity constraints, we prefer to use an optimistic scheme
rather than locking with the intention of increasing the performance, since there
is a probability that the activity will not falsify these constraints. If a constraint
in this set is already locked in shared mode to be maintained when ¢, is executed,
this constraint is evaluated in the certification stage and if it evaluates to false, t,
is rolled back and resubmitted to workflow management system.

A basic constraint B can be locked by ¢, in one of the following modes:

e Shared: If ¢, requires the correctness of B, i.e., B € B(t,), a shared lock is
acquired.

e Exclusive: If , invalidates (or may invalidate) B, i.e., B € (UysSBy, vs,and/
or}), an exclusive lock is required.

An activity ¢, (may) falsify a basic constraint B to be revalidated by the activities
of and/or-validating sets as explained in Section 5. Therefore the activities that
require the correctness of B in this interval should not be allowed to execute. For
this reason, t, obtains an exclusive lock on B. On the other hand the activity that
requires the correctness of B acquires a shared lock. The shared lock conflicts with
the exclusive lock as indicated in Table 2. It is clear that the activities that require
correctness of B do not conflict with each other.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 41

6.1. CBCC Algorithms

In this section, the algorithms employed by CBCC mechanism are described. In
these algorithms, data structures IC, BC for every workflow, and B(t;), F(t),
LF(t,) for every activity are required. A Constraint Editor in conjunction with a
first-order constraint specification language [11, 14] can be used by an administrator
and/or workflow designers to define these data structures.

6.1.1. Algorithm for Activity Start

Any activity ¢, needs an exclusive lock for every inter-activity constraint it falsifies
to start (Steps 1-2 of Algorithm 6.1). This is possible only when there is no other
activity that has a shared lock on F; in other words no other activity wants to
preserve F. Furthermore, ¢, also needs to acquire shared locks for all the basic
constraints involved in its input condition (i.e., B(t;)) (Steps 3-4). A lock for a
constraint B in B(t,) is granted to ¢, if there is no invalidating activity that has an
exclusive lock on B. After this step, every inter-activity constraint emanating from
t, in the inter-activity constraints graph (IC) (i.e., elements of Cyys(t;)) are locked
in the shared mode in Steps 5-6. t, can acquire a shared lock on F € Cou(ts)
if no other invalidating activity for F has an exclusive lock on F. Recall that F
may be incident to more than one activity, and these activities are grouped into
a hyperSet S(;, 7). This is represented by the edge (t., S,), F) in IC. Since
F should be preserved until the termination of all the activities in the hyperSet
S(t,,F), it is necessary to obtain a shared lock for each of the activities in this set,
i.e., size(S,,r)) locks are acquired. A conflicting lock can then only be allowed
when all these locks are released. In Steps 7-10, exclusive locks are acquired on
the basic constraints which are invalidated by ¢, which is only possible if there are
no shared locks on B. That is, since t, is invalidating B, there should not exist
any activity that requires the correctness of B. If V'S is an and-validating set for
B and if it contains more than one activity, ¢, acquires an exclusive lock on B for
each activity of V'S, that is the number of locks acquired is size(V'S). If V'S is an
or-validating set, ¢, acquires a single lock since the termination of the first activity
of V'S guarantees validity of B.

Inter-activity constraints which may be falsified by t,, i.e., LF(t,) are handled
in an optimistic manner. Note that all the constraints in LF(t,) may not be ac-
tive, that is, it may be the case that for some constraints in LF(t,), there is no
activity requiring these constraints to hold. We include all the active constraints in
ActiveIC'S set and all the constraints in this set are already locked in the shared
mode. The intersection of LF(t,) and ActiveIC'S sets gives us the set of constraints
denoted as ALF'(t,), that are both active when ¢, has started and also has to be
validated when ¢, terminates (Step 11). Since new shared locks can be acquired on
the elements of LF(t,) — ActiveICS by other activities before the activity termi-
nates, constraints in PLF'(t,) = LF(t,) — ActiveICS (i.e., non-active constraints
which are in LF(t,)) are locked in exclusive mode. Furthermore, operations in

42 I. B. ARPINAR, U. HALICIL, S. ARPINAR, AND A. DOGAC

Step 11 are executed atomically (i.e., in a critical section). In this way, further
constraints that may be falsified by ¢, are prevented from becoming active after
the set of constraints that will be validated are determined.

Algorithm 6.1 [Algorithm for Activity Start]

begin
for every F € F(t,) do
ExclusiveLock(F);
for every B € B(t,) do
SharedLock(B);
for every F € Cou(t,) do
SharedLock(F) with Counter = size(Sy,,r));
for every B € (UysSBy, vs,andy) do
EzclusiveLock(B) with Counter = size(V S);
for every B € (UysSBy, vs,ory) do
FEzclusiveLock(B);
ALF(t;) < (LF(t;) N ActivelCS);
PLF(ty) < (LF(t;) — ActivelCS);
for every F € PLF(t,) do
EzxclusiveLock(F)

NS %N D T e~

S

~
~

end

After successfully acquiring all the necessary locks as indicated in the Algorithm
6.1, an activity can be scheduled for execution.

6.1.2. Algorithm for Activity End

An activity terminates when all of its operations are complete. But prior to ter-
mination, an evaluation algorithm (Algorithm 6.2) is executed to check whether an
active inter-activity constraint is falsified by the execution of this activity. This
is achieved in Step I by evaluating the constraints in ALF(t,) in parallel by the
routine FvallnParallel; once a constraint evaluates to false, EvalInParallel ter-
minates immediately and returns false. In this case, the activity ¢, is rolled backed
and resubmitted to workflow management system. Note that all the locks acquired
by t, should be released. If ALF(t,) is empty, Algorithm 6.2 is not executed.

Algorithm 6.2 [Algorithm for Activity End]

begin
1. if (EvallnParallel(ALF(t,)) = false) then
2. Rollback(t,.), Resubmit(t,

end

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 43

6.1.3. Algorithm For Activity Post-Processing

After an activity ¢, is terminated, all locks acquired by ¢, on the constraints in
PLF(t;), F(t;), and B(t;) are released in Steps 1-2, 3-4, and 5-6 of Algorithm
6.3 respectively. Inter-activity constraints incident to ¢, (i.e., Cyy,(t;)) which are
locked by other activities are released in Steps 7-8. If t, is in an and-validating
set (V.S) of a basic constraint B, one of the previously acquired exclusive locks by
the invalidating activity of B is released in Steps 9-10. If t, is the first terminating
activity of an or-validating set, a corresponding lock is released Steps 11-12.

Algorithm 6.3 [Algorithm for Activity Post-Processing]

begin
for every F € PLF(t;) do
Unlock(F);
for every F € F(t,) do
Unlock(F);
for every B € B(t,) do
Unlock(B);
for every F € Cy,(t,) do
Unlock(F);
9. for every B € (U, SByy,,vs,anay) wheret, € VS ort, =VS do
10. Unlock(B);
11. for every B € (U, SByy, v s,ory) where t, = first(V.S) do
12. Unlock(B)

end

X NS ST o~

6.2. Correctness of the CBCC Mechanism

To prove that a complete execution history (C'H) generated by CBCC mechanism
is correct we show that the conditions of Theorem 5.1 hold for CH. The following
properties about time intervals are used in the proof. Note that D and N denote
cover and intersect relations between the time intervals respectively.

o (TLOTL)NTLNTI, #0)) = (TLNTI, #0).

o (TLOTLH)N(TLNTI,=0) = (T;NTI,=0).

Theorem 6.1 Any complete execution history (CH) generated by CBCC mecha-
nism is correct.

Proof:

(1) Condition 1 of Theorem 5.1 holds due to the assumption.

(2) Assume that Condition 2 of Theorem 5.1 does not hold; hence TIgNT I, # 0
in CH for an edge E = (t;,VS = {ty,t;,...},~Bn,and/or) in BC;, and an
activity ¢, where B,, € B(t,) C I;,. The interval between the time when an

44 I. B. ARPINAR, U. HALICIL, S. ARPINAR, AND A. DOGAC

exclusive lock on B,, is acquired with counter by ¢; and the time when the last of
these locks are released is denoted as TI;EL(B") in the case where V.S is an and-
validating set. Same notation is used to denote the interval between the time
instances where a single lock is acquired by ¢; and released by the first activity of
an or-validating set V'S. Similarly, the interval between the time when a shared
lock is acquired and released on B, by t, is denoted as TIt’s; L(B1) Since activities
acquire locks before they start and release after they complete, TI;L(B") DTIg
and TItSwL(B") D T1I;,. Since exclusive and shared locks on a basic constraint
conflict, it is guaranteed that TII);L(B") N TI{ZL(B") = . Yet, due to first
property above (T %) > TIg) A (TINTI,, #0)) = (TIZ*5)nTI,, #
(). Furthermore, according to second property, ((TI:;L(B") DTL,)A (TIiL(B")

n TI]);L(B") =0) = (T, N TI;L(B") = (). Observe that the right hand
sides of two formulas contradict each other; hence our presumption is false and
Condition 2 of Theorem 5.1 holds.

(8.a) We start with proving that if Preserve(t,,F) = 0 then TIg N TI, = is
guaranteed in CH for an edge E = (tj, {ts,t,...},F) in IC;. We denote the
interval between the time when a shared lock on F is acquired with counter by
t; and the time when the last of these locks are released as TI};L(f). Similarly,

the interval between the time when an exclusive lock is acquired and released on

F by t, is denoted as TI; "), Again, TIZ"Y) 5 TIy and T ") 5 T,

Since exclusive and shared locks on an inter-activity constraint conflict, it is

ensured that TI;L(f) N Tlt): LIF) — 9. With the similar observations as in

Condition 2 of this proof, Condition 3.a of Theorem 5.1 holds.

(8.b) We conclude with proving that if Preserve(t,,F) = 1/2, TIg N T1I;, # 0
implies F holds after t, is terminated. Depending on the execution sequences
of t; and ¢, two possibilities can occur:

e t; acquires a shared lock on F before ¢, acquires an exclusive lock on F: F is
certainly logged into ALF(t,) and if t,, falsifies F, EvalInParallel(ALF(t,))
returns false and t, is removed from CH (i.e., rolled backed); hence
TIgNTI, =0.

e t, acquires an exclusive lock on F before t; acquires a shared lock on F: t;
can not lock F in shared mode after Step 11 of Algoritm 6.1 and before t,
terminates, since t, already locked F in exclusive mode in Step 11. Hence
TIgNTI, =0.

Thus, a complete execution history generated by CBCC mechanism is correct. O
6.3. Discussion

There are several alternatives to implement a constraint based concurrency control
mechanism. In the following, some of these alternatives are discussed:

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 45

e Conservative: In this approach, activities that are certainly or likely to falsify
basic and inter-activity constraints are determined in advance (i.e., in design-
time), and possible invalidations of inter-activity constraints and accesses to
states on which the basic constraints do not (or may not) hold are prevented
conservatively. For example, proposed CBCC mechanism can be classified into
this category if activities try to acquire locks on the inter-activity constraints
which they may falsify in addition to constraints which they certainly falsify in
Steps 1-2 of Algorithm 6.1. Also Step 11 of Algorithm 6.1, and Algorithm 6.2 be-
come unnecessary in this case. Since this conservative technique is based solely
on locking, we call it as the Constraint Locking Concurrency Control (CLCC)
mechanism. In CLCC mechanism, constraints themselves are no longer neces-
sary, but can be represented through some simple data items just for locking
purposes. It should also be noted that, if such a technique is not implemented
in a workflow system, it is possible to acquire locks manually on virtual data
items using the same principles.

e Optimistic: In this approach, activities validate their input conditions. This
requires additional operations for the verification of these conditions. Optimistic
technique is very similar to concurrency control mechanism of ConTract model
[60]; however the input conditions we check are well-defined interms of inter-
activity and basic constraints. If input condition of an activity evaluates to false,
a conflict resolution algorithm can be executed to correct the input condition
violation or to relax the requirements in the input condition. An inevitable
result may be abortion of the activity and compensation of some previously
terminated activities.

e Dynamic-conservative: The approach employed by the CBCC mechanism can be
classified into this category.

In the optimistic technique, if conflict resolution algorithm requires rollback of
the activity this may cause (possibly cascading) compensation of previously termi-
nated activities which may be a very costly process [44, 52]. In addition, overhead
of validation of every input condition should not be ignored. CLCC and CBCC
techniques guarantee that input condition of an activity is true when it is exe-
cuted; thus neither input condition validation nor compensation of other activities
to resolve conflicts are required in these techniques. In addition, CBCC mechanism
provides some activities to be executed and terminated if they pass certification
process although these activities and consequently successor activities would be
blocked by the CLCC mechanism. Furthermore, in the optimistic technique it is
necessary to check the constraints themselves; however in CLCC mechanism these
constraints can be represented by some simple data items just for locking purposes.
In CBCC mechanism on the other hand, only the inter-activity constraints which
may be falsified by the activities are needed in the validation phase. In Section 6.4,
a comparison of the performance characteristics of these techniques is provided.

It should be noted that, proposed CBCC and CLCC mechanisms may result in
deadlocks like any other locking-based concurrency control mechanism, since ac-
tivities may be blocked indefinitely. Therefore, special algorithms are required to

46 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

handle deadlocks. There are three well known types of methods for handling dead-
locks: prevention, avoidance, and detection and resolution [51]. We have developed
a deadlock avoidance technique for CBCC and CLCC mechanisms in which po-
tential deadlock situations are detected in advance (i.e., in design-time) and it is
ensured that they will not occur at run-time by imposing additional restrictions
on the interleavings of activities. Since concurrency control dependencies among
activities are known in advance, possible deadlock situations can be detected in
design-time in CBCC and CLCC mechanisms. Detailed explanation and formal
foundation of this approach are presented in [6] due to space limitations.

6.4. Performance Analysis

In this section, a performance comparison of the CBCC, CLCC mechanisms and
optimistic technique which is similar to concurrency control mechanism of ConTract
model [60] is given. The simulation is realized in GPSS [57]. In the experiments,
average response time of a workflow instance (avgResTime) is measured by aver-
aging response times of 10 workflow instances. Response time is defined as the time
between the generation and termination of a workflow instance.

In the simulation, there are a total of 10 different basic and inter-activity con-
straints in the system. It should be noted that, the total number of constraints are
kept small so that the possibility of conflicts among activities is high. In this way,
the performances of the methods can be observed in a very high conflict case. For
each activity, the number of constraints that should be considered (i.e., locked or
evaluated) is randomly chosen from the interval [0 — mazCons] where mazCons
denotes the maximum number of constraints per activity and is given a priori. In
the CLCC mechanism, each activity tries to obtain a lock on all of its constraints.
Note that, some of the constraints which may be falsified by an activity are eval-
uated at the activity end instead of being locked in the CBCC mechanism. The
evaluation cost per constraint is taken as constant for simplicity (i.e., 5 simulation
time units). If a constraint evaluates to false the activity is aborted and restarted
later. In the optimistic technique, the constraints are evaluated when the activity
starts and once a constraint evaluates to false the activity is aborted and preceding
activities are compensated. The result of the evaluation is randomly determined as
true or false with the probability of 70% and 30% respectively. It should be noted
that this fraction favors the optimistic technique rather than the CBCC mechanism,
because in the CBCC mechanism a small fraction of constraints goes through the
validation as opposed to all constraints in the optimistic method. Also in favor of
the optimistic technique, the compensation cost is chosen as close to the maximum
duration of just one activity, i.e., 50 simulation time units, although in reality this
cost is much higher since compensation of more than one activity is more probable.

The graph in Figure 14 shows the average workflow instance response times
(avgResTime) of three techniques for different maximum number of constraints
per activity (maxCons). The experiment results can be summarized as follows:

All techniques provide their best avgResT'imes when mazCons is small, i.e., in

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 47

4500

4000 o
—=— Optimistic (ConTract)

3500 --»-- Conservative (CLCC)

—— Dynamic-conservative (CBCC)
3000
2500 +

2000

1500 +

Avg. response time / workflow instance

1000

[
500 +

0 1 2 3
Max. number of constraints/ activity

Figure 14. Average Response Times for Different Maximum Number of Constraints per Activity

[0 —2]. This is expected since when maxCons < 2 the probability of conflicts
among activities is low, and consequently the number of blocked or compensated
activities is small.

When maxCons > 2, CBCC and CLCC techniques provide better avgResTimes
than optimistic technique. For example, when mazCons is equal to half of the total
number of constraints in the system (e.g., around 5), avgResT'ime provided by the
optimistic technique becomes worse than two times of avgResT'ime provided by
CBCC mechanism, i.e., 1884 vs. 4306 simulation time units. This is due to fact
that, the number of compensated activities increases in the optimistic technique
with the increasing number of constraints (maxCons) which implies higher rate of
conflicts. In CBCC mechanism, however, abortion of an activity does not lead to
compensation of previous activities, only the activity itself is retried later.

When maxCons = 2, CBCC mechanism starts to perform better than CLCC
mechanism. For example, when mazCons > 3, CBCC mechanism provides ap-
proximately 25% faster avgResT'ime than CLCC technique. Since not all the con-
straints are locked in the CBCC mechanism, the probability of delays due to locking
is lower than that of CLCC mechanism. This difference becomes more visible when
maxCons is larger.

Performance results presented indicate that the CBCC mechanism results in lower
average workflow instance response times in almost all cases except when max-
imum number of constraints that should be considered per activity (mazCons)
is very small (e.g., 1) or such a constraint does not exist. If maxCons is small,
avgResTimes provided by the compared techniques are almost the same.

After observing that the performance of the optimistic technique is not good in
a high conflict case, additional experiments are conducted to compare the per-
formances of CBCC and CLCC techniques for different evaluation costs. These
experiment results are presented in [6].

48 I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

7. Conclusions

Concurrency control aspects of workflow systems is addressed in this work, which
is very important for some workflow applications where mission critical operations
require the consistent view of the execution environment [22].

The fundamental issue of correctness criterion specific to workflow systems is de-
fined through inter-activity constraints and basic constraints by using the semantic
workflow information available at design-time. A concurrency control technique,
namely Constraint Based Concurrency Control (CBCC) mechanism, based on this
criterion is defined which uses the concept of locking in conjunction with validation
with a fundamental difference from the database locking: the constraints rather
than data items are locked. We have shown that, with a proper constraint locking
and validation mechanism, the inter-activity constraints that should remain valid
are preserved, and the activities that need basic constraints to hold are prevented
from executing in the intervals where these constraints do not hold. It is also possi-
ble to use a more conservative approach in which the activities acquire locks instead
of going through a validation phase. We call this technique as Constraint Locking
Concurrency Control (CLCC) mechanism. These techniques are simple to imple-
ment, and the performance analysis indicate that the suggested techniques have
better performance than an optimistic approach based on the constraints (similar
to ConTract [60]). Note that when a workflow designer does not require the correct-
ness to be preserved, some of the constraints may not be enforced. In this respect,
it is possible to apply an isolation mechanism similar to isolation levels in databases
[33] by allowing the workflow designer to customize the constraints graphs accord-
ing to the correctness requirements of workflow application. For these reasons, we
believe that the CBCC and CLCC techniques have practical importance.

References

1. D. Agrawal, A. E. Abbadi, and A. K. Singh, Consistency and Orderability: Semantics- Based
Correctness Criteria for Databases, ACM TODS, Vol. 18, No. 3, September 1993.

2. J. F. Allen, Maintaining Knowledge about Temporal Intervals, Comm. of the ACM, 26, 11,
November 1983.

3. G. Alonso, D. Agrawal, and A. E. Abbadi, Process Synchronization in Workflow Manage-
ment Systems, 8th IEEE Symposium on Parallel and Distributed Processing, 1996.

4. G. Alonso, and H.-J. Schek, Research Issues in Large Workflow Management Systems,
In. Proc. of NSF Workshop on Workflow and Process Automation in Information Systems:
State-of-the-Art and Future Directions, Edited by A. Sheth, Athens, Georgia, May 1996.

5. P. Ammann, S. Jajodia, and I. Ray, Applying Formal Methods to Semantic-Based Decom-
position of Transactions, ACM TODS, Vol. 22, No. 2, June 1997.

6. I. B. Arpinar, Concurrency Control and Transaction Management in Workflow Manage-
ment Systems, Ph. D. Thesis, in preparation, Dept. of Computer Engineering, Middle East
Technical University, 1998.

7. 1. B. Arpinar, S. (Nural) Arpinar, U. Halici, and A. Dogac, Correctness of Workflows in
the Presence of Concurrency, NGITS’ 97, Next Generation Information Technologies and
Systems, Israel, July 1997.

8. P. A. Attie, M. P. Singh, A. Sheth, and M. Rusinkiewicz, Specifying and Enforcing Intertask
Dependencies, In Proc. of the 19th Intl. Conf on VLDB, September 1993.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 49

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

B. Badrinath, and K. Ramamritham, Semantics-based Concurrency Control: Beyond Com-
mutativity, In Proc. of Intl. Conf. on Data Engineering, February 1987.

C. Beeri, P. A. Bernstein, and N. Goodman, A Model for Concurrency in Nested Transaction
Systems, Journal of the ACM, 36(2), 1989.

M. Benedikt, T, Griffin, and L. Libkin, Verifiable Properties of Database Transactions, ACM
PODS 1996, Montreal, Canada.

A. J. Bernstein, and P. M. Lewis, Transaction Decomposition Using Transaction Semantics,
Distributed and Parallel Databases, 4, 25-47, 1996.

Y. Breitbart, A. Deacon, H. J. Schek, A. Sheth, and G. Weikum, Merging Application-
centric and Data-centric Approaches to Support Transaction-oriented Multi-system Work-
flows, ACM SIGMOD Record, 22(3), Sept. 1993.

S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca, Automatic Generation of Production
Rules for Integrity Maintenance, ACM TODS, Vol. 19, No. 3, September 1994.

U. Dayal, and M.-C. Shan, Issues in Operation Flow Management for Long-Running Activ-
ities, Data Eng. Bulletin, June 1993.

U. Dayal, H. Garcia-Molina, M. Hsu, B. Kao, and M.-C. Shan, Third Generation TP Mon-
itors: A Database Challenge, SIGMOD, 1993.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J., 1976.
A. Dogac, E. Gokkoca, S. Arpinar, P. Koksal, I. Cingil, I. B. Arpinar, N. Tatbul, P. Karagoz,
U. Halici, M. Altinel, Design and Implementation of a Distributed Workflow Management
System: MET Uflow, In: [19].

A. Dogac, L. Kalinichenko, M. T. Ozsu, and A. Sheth (eds.), Advances in Workflow Man-
agement Systems and Interoperability, Springer Verlag, 1998.

J. A. Ellis, and G. J. Nutt, Modeling and Enactment of Workflow Systems, 14th Intl. Conf.
on Application and Theory of Petri Nets, 1993.

A. K. Elmagarmid (ed.), Database Transaction Models for Advanced Applications, Morgan
Kaufmann Publishers, San Mateo, 1992.

A. Elmagarmid, and W. Du, Workflow Management: State of the Art vs. State of the Market,
In: [19].

E. A. Emerson, Temporal and Modal Logic, In: J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, Elseiver 1990.

A. Farrag, and M. T. Ozsu, Using Semantic Knowledge of Transactions to Increase Con-
currency, ACM TODS, Vol. 14, No. 4, December 1989.

M. Fitting, First Order Logic and Automated Theorem Proving, Springer Verlag, NY, 1990.
H. Garcia-Molina, Using Semantic Knowledge for Transaction Processing in a Distributed
Database, ACM TODS, Vol. 8, No. 2, June 1983.

H. J. Genrich, Predicate/Transition Nets, In Advances in Petri Nets, 1986, Springer, 254.
D. Georgakopoulos, M. Hornick, and F. Manola, Customizing Transaction Models and Mech-
anisms in a Programmable Environment Supporting Reliable Workflow Automation, IEEE
Trans. on Knowledge and Data Eng., 1995.

D. Georgakopoulos, M. Hornick, and A. P. Sheth, An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure, Distributed and Parallel
Databases, 3, pp. 119-153, 1995.

D. Georgakopoulos, M. Rusinkiewicz, and A. P. Sheth, Using Tickets to Enforce the Serial-
izability of Multidatabase Transactions, IEEE TKDE, 6(1), 1994.

E. Gokkoca, M. Altinel, I. Cingil, N. Tatbul, P. Koksal, A. Dogac, Design and Implemen-
tation of a Distributed Workflow Enactment Service, in Proc. of Intl. Conf on Cooperative
Information Systems, Charleston, USA, June 1997.

J. Gray, The Transaction Concept: Virtues and Limitations, In Proc. of 7th Intl. Conf. on
VLDB, Cannes, France, September 1981.

J. Gray, and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann Publishers, San Mateo, CA, 1993.

U. Halici, I. B. Arpinar, and A. Dogac, Serializability of Nested Transactions in Multi-
databases, Intl. Conf. on Database Theory (ICDT ’97), Greece, January 1997.

T. Harder, Handling Hot Spot Data in DB-sharing Systems, Info. Sys. , 13, 2, 1988.

50

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

62.

63.

I. B. ARPINAR, U. HALICI, S. ARPINAR, AND A. DOGAC

D. Harel, et al., Statemate: A Working Environment for the Development of Complex
Reactive Systems, IEEE Transactions on Software Engineering, Vol. 16, No. 4, April 1990.
M. P. Herlihy, and W. E. Weihl, Hybrid Concurrency Control for Abstract Data Types, J.
Comput. Syst. Sci., Vol. 43, No.1, August 1991.

C. A. R. Hoare, An Aziomatic Basis for Computer Programming, Commun. ACM, 12, 10,
October 1969.

D. Hollinsworth, The Workflow Reference Model, Technical Report T'C00-1003, Workflow
Management Coalition, December 1994. Accessible via: http://www.aiai.ed.ac.uk/WfMC/.
M. Hsu, Special Issue on Workflow Systems, Bulletin of the Technical Committee On Data
Engineering, IEEE, 18(1), March 1995.

G. Kappel, P. Lang, S. Rausch-Schott, and W. Retschitzegger, Workflow Management Based
on Objects, Rules, and Roles, In: [40].

P. Karagoz, S. Arpinar, P. Koksal, N. Tatbul, E. Gokkoca, and A. Dogac, Task Handling in
Workflow Management Systems, In Proc. of Intl. Workshop on Issues and Applications of
Database Technology, IADT’98, Berlin, June 1998.

P. Koksal, S. Arpinar, and A. Dogac, Workflow History Management, ACM Sigmod Record,
Vol. 27, No. 1, March 1998.

H. F. Korth, E. Levy, and A. Siberschatz, A Formal Approach to Recovery by Compensating
Transactions, In Proc. of the 16th VLDB Conf., Brisbane, Australia, 1990.

H. F. Korth, and G. Speegle, Formal Aspects of Concurrency Control in Long-Duration
Transaction Systems Using the NT/PV Model, ACM TODS, Vol. 19, No. 3, 1994.

N. Krishnakumar, and A. Sheth, Managing Heterogeneous Multi-System Tasks to Support
Enterprise-Wide Operations, Distributed and Parallel Databases, 3(2):155-186, April 1995.
N. A. Lynch, Multilevel Atomicity: A New Correctness for Database Concurrency Control,
ACM TODS, Vol. 8, No. 4, pp. 484-502, Dec. 1983.

P. Muth, D. Wodtke, J. WeiBenfels, G. Weikum, and A. K. Dittrich, Enterprise-wide Work-
flow Management based on State and Activity Charts, In: [19].

P. E. O’Neil, The Escrow Transaction Method, ACM TODS, Vol. 11, No. 4, December 1986.
Object Transaction Service, OMG Document, 1994.

M. T. Ozsu, and P. Valduriez, Principles of Distributed Database Systems, 2nd edition,
Prentice Hall, Englewood Cliffs, New Jersey, 1998.

M. Rusinkiewicz, A. Cichocki, A. Sheth, and G. Thomas, Bounding the Effects of Compen-
sation under Multi-level Serializability, Dist. and Parallel Databases, 4(4), Oct. 1996.

M. Rusinkiewicz, and A. P. Sheth, Transactional Workflow Management Systems, In Proc.
of Advances in Database and Information Systems, ADBIS’94, Moscow, May 1994.

M. Rusinkiewicz, and A. P. Sheth, Specification and Ezecution of Transactional Workflows,
W. Kim, editor, Modern Database Systems: The Object Model, Interoperability and Beyond,
pp. 592-620, ACM Press, New York, NY, 1995.

F. Schwenkreis, A Formal Approach to Synchronize Long-Lived Computations, In Proc. of
the 5th Australasian Conf. in Information Systems, Melbourne 1994.

A. Sheth, D. Georgakopoulos, S. M.M. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden,
and A. Wolf, Report from the NSF Workshop on Workflow and Process Automation in
Information Systems, Accessible via: http://lsdis.cs.uga.edu/activities/.

1. Stahl, Introduction to Simulation with GPSS, Prentice Hall, 1990.

J. Tang, and J. Veijalainen, Transaction-oriented Workflow Concepts in Inter-organization
Environments, Intl. Conf. on Information and Knowledge Management, Baltimore, 1995.

J. Tang, and S.-Y. Hwang, Handling Uncertainty in Workflow Applications, In Proc. of 5th
Intl. Conf on Info. and Knowledge Engineering, CIKM’96, Maryland, November, 1996.

H. Waechter, and A. Reuter, The ConTract Model, In: [21], Chapter 7.

G. Weikum, Principles and Realization Strategies of Multilevel Transaction Management,
ACM TODS, Vol. 16, No. 1, 1991.

D. Wodtke, and G. Weikum, A Formal Foundation for Distributed Workflow Management
Based on State Charts, In Proc. of 6th Intl. Conf on Database Theory, Greece, Jan. 1997.
D. Worah, and A. Sheth, What do Advanced Transaction Models Have to Offer for Work-
flows?, In Proc. of Intl. Workshop on Advanced Transaction Models and Architectures
(ATMA), Goa, India, August 1996.

