
�

Formalization of Work�ows and Correctness Issues

in the Presence of Concurrency �

�ISMA�ILCEM BUDAK ARPINAR� U�GUR HALICI� SENA ARPINAR� AND ASUMAN DO�GAC�

fbudak�nural�asumang�srdc�metu�edu�tr

halici�rorqual�cc�metu�edu�tr

Software Research and Development Center
Department of Computer Engineering
Middle East Technical University �METU�
������ Ankara� Turkiye

Abstract� In this paper� main components of a work�ow system that are relevant to the cor�
rectness in the presence of concurrency are formalized based on set theory and graph theory� The
formalization which constitutes the theoretical basis of the correctness criterion provided can be
summarized as follows�

� Activities of a work�ow are represented through a notation based on set theory to make it
possible to formalize the conceptual grouping of activities�

� Control��ow is represented as a special graph based on this set de�nition� and it includes serial
composition� parallel composition� conditional branching� and nesting of individual activities
and conceptual activities themselves�

� Data��ow is represented as a directed acyclic graph in conformance with the control��ow
graph�

The formalization of correctness of concurrently executing work�ow instances is based on this
framework by de�ning two categories of constraints on the work�ow environment with which the
work�ow instances and their activities interact� These categories are�

� Basic constraints that specify the correct states of a work�ow environment�

� Inter�activity constraints that de�ne the semantic dependencies among activities such as an
activity requiring the validity of a constraint that is set or veri�ed by a preceding activity�

Basic constraints graph and inter�activity constraints graph which are in conformance with the
control��ow and data��ow graphs are then de�ned to represent these constraints� These graphs
are used in formalizing the intervals among activities where an inter�activity constraint should be
maintained and the intervals where a basic constraint remains invalid�

A correctness criterion is de�ned for an interleaved execution of work�ow instances using the
constraints graphs� A concurrency control mechanism� namely Constraint Based Concurrency
Control technique is developed based on the correctness criterion� The performance analysis
shows the superiority of the proposed technique� Other possible approaches to the problem are
also presented�
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�� Introduction

Today� economic imperatives are forcing enterprises to look for new information
technologies to streamline their business processes� Key requirements include in�
tegrating heterogeneous information resources of an enterprise� and automating
mission�critical applications that access shared information resources� Many of the
activities in these enterprises are of long�duration and consist of multiple operations
executed over �possibly� heterogeneous systems with very diverse response times�
As a consequence of these trends� Work�ow Management Systems �WFMSs� are
quickly becoming the technology of choice to implement large and heterogeneous
distributed execution environments where sets of interrelated activities can be car�
ried out in an e�cient and closely supervised fashion 	
�� There is also a standard�
ization e�ort in this respect� The Work�ow Management Coalition �WfMC�� an
industry consortium aims at a unied terminology and a standardization of key
components of a work�ow management system� The WfMC identied a set of six
primitives with which it is possible to describe control��ow and hence construct a
work�ow specication 	����

A work�ow is dened as a collection of processing steps �activities� organized to
accomplish some business processes� An activity can be performed by one or more
software systems or machines �e�g�� instruments or robots�� by a person or a team�
or a combination of these� In addition to collection of activities� a work�ow denes
the order of activity invocations or condition�s� under which activities must be
invoked �i�e�� control��ow� and data��ow between these activities� Activities within
a work�ow can themselves again be a work�ow� In general a work�ow activity is
considered to be an invocation of a local operation which is functional in nature�
Furthermore� an activity may be further composed of several calls to local systems
�such as in multidatabases 	��� �
��� and this fact is hidden at the work�ow level�

The activities could be transactional or non�transactional� Transactional activi�
ties are those that access data controlled by Resource Managers �RMs� with trans�
actional properties �i�e�� ACID�� These activities minimally support the atomicity
property and maximally support all ACID properties of traditional transaction
models 	
��� These activities typically include those that interact with a DBMS
by using Commit and Abort operations� stored procedures� and two�phase commit
��PC� activities� In addition� activities that use the XA�Protocol 	��� based Re�
mote Procedure Call �RPC� to communicate with transactional processing entities
such as a TP�Monitor 	��� ��� in a distributed environment can also be included in
this category�

Non�transactional activities access data controlled by RMs without transactional
properties� These non�transactional processing entities include le systems� hu�
mans� legacy systems� HTTP servers� word processors� and spreadsheets� Yet� it
may be possible to introduce transactional properties to these systems� for exam�
ple by wrapping non�transactional RMs to provide transaction and concurrency
control services according to OMG�s Object Transaction Service �OTS� 	��� and
Concurrency Control Service �CCS� specications�
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���� Correctness Issues in WFMSs

As discussed brie�y in 	���� the person who implements an activity is responsible for
ensuring that the activity produces correct results if it is executed alone� However
since work�ows are long running processes� having the activities terminate �e�g��
commit� within the scope of a work�ow instance is an accepted practice� Thus the
data modied by these activities becomes accessible to the other activities within
the same work�ow instance as well as to the other work�ow instances which may
cause inconsistencies due to improper interleavings� Yet many scenarios in the
operation of a work�ow system require the preservation of consistency of at least
some data items� Therefore the work�ow execution must address the following two
correctness concerns� �i� The consistency of concurrent executions of activities be�
longing to the same work�ow instance� �ii� the consistency of concurrent executions
of activities belonging to di�erent work�ow instances�
For example consider an Order Processing work�ow in a manufacturing enterprise�
In the processing of the Order Processing work�ow� raw material stock is checked
through a CheckStock activity to see whether there is enough raw material in the
stock to process the order� If not� the missing raw materials are ordered from
external vendors and inserted into stock through an InsertStock activity� Yet later
in the process when the actual manufacturing is to start for this work�ow instance
there may not be enough raw material in the stock to process this order� because a
concurrently running instance of the same or other work�ows might have updated
the stock� Of course� executing all these activities within the scope of a single
transaction might have solved these problems but work�ow systems are there to
prevent the ine�ciency of long�running transactions 	����
Another example to the data inconsistency problems is as follows� Consider the

Withdraw�Deposit work�ow of a bank involving two branches� Withdraw activity
withdraws the given amount of money from an account at a branch� and the Deposit
adds this amount to an account at another branch� Let us consider an Audit
work�ow which checks the balance of these accounts� IfWithdraw�Deposit activities
and activities of the Audit work�ow are interleaved incorrectly Audit misses the
money being transferred between the two accounts�
The current state of the art for work�ows lacks a clear theoretical basis� correct�
ness criteria and support for consistency of concurrent work�ows to handle such
problems 	���� In this paper exactly these issues are addressed� We provide a the�
oretical basis for the formalization of work�ows� and dene a correctness criterion
for the consistency of concurrently executing work�ows based on this formalization�
and present a concurrency control technique to provide the correctness�
The main contributions of the paper are as follows�

��� A work�ow in conformance with the control��ow primitives of WfMC model is
formalized based on set theory and graph theory�

We start by dening a special set whose elements may also be sets� called a nested
hyperSet� and use this set in representing the conceptual groupings of activities
in a work�ow system� The control��ow is imposed on this set by introducing the
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related edges and the resulting graph is called hyperNodeGraph� Split and join
nodes are introduced into this graph from where control��ow splits into multiple
branches and merges into a single �ow later respectively� Data��ow in a work�ow is
represented through a simple directed acyclic graph which is in conformance with
the control��ow graph� Having thus set the necessary background� we provide a
formal denition of a work�ow�

��� This formalization is used in dening a correctness criterion for concurrently
executing work�ows based on the semantic information available�

Work�ow activities access resources which denote the set of all objects constitut�
ing the work�ow environment� We dene correct execution of activities in terms of
their input and output conditions� which are the sets of constraints on the work�ow
environment� An input condition may involve two types of constraints� basic con�
straints that specify the correct states of a work�ow environment and inter�activity
constraints that dene the semantic dependencies between activities� such as an
activity requiring the validity of a constraint that is set or veried by a preceding
activity� For example a basic constraint can state that the money being transferred
between two branches of a bank through a Withdraw�Deposit work�ow should not
be destroyed during this transfer� This basic constraint remains invalid between the
executions of Withdraw and Deposit activities for obvious reasons� Furthermore�
consider InsertStock activity in the manufacturing example� Since the resulting
amount of raw materials after the termination of InsertStock must remain in the
stock until the beginning of manufacturing process that ordered it� this requirement
is represented as an inter�activity constraint between InsertStock and the activity
which is responsible from actual manufacturing process�
The intervals among activities where an inter�activity constraint should be main�
tained and the intervals where a basic constraint remains invalid are formalized
through the graphs corresponding to these constraints� These graphs are then used
in developing a correctness criterion for interleaved execution of work�ows which
is formally represented through a complete execution history� Simply stated� the
correctness criterion requires two conditions to hold�

i� The inter�activity constraints should be preserved in the related intervals by
preventing the activities that invalidate these constraints from executing�

ii� The activities that require the correctness of related basic constraints should be
prevented from executing during the intervals where these constraints do not
hold�

��� A correctness technique� namely Constraint Based Concurrency Control �CBCC�
technique� is developed based on this correctness criterion�

CBCC technique which is based on locking in conjunction with validation� controls
activity interleavings in such a way that two conditions above hold� The inter�
activity constraints are locked during the time interval where they should remain
valid in the shared mode� An activity that falsies these constraints acquire a
lock in the con�icting mode �i�e�� exclusive mode�� Through these con�icting locks
activities that falsify inter�activity constraints are prevented from executing� If
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more than one activity require the same inter�activity constraint to be true at the
same time� their locks do not con�ict� Similarly� activities that falsify the same
constraint at the same time do not con�ict either� Note that we use the term
�exclusive lock� di�erently than its conventional meaning in that� two exclusive
locks on the same constraint do not con�ict with each other in our approach�

Some activities on the other hand may falsify inter�activity constraints depending
on the instantiation of the variables in the constraints and in their parameters� For
the activities that may falsify inter�activity constraints� we prefer to use an opti�
mistic scheme rather than locking with the intention of increasing the performance�
since there is a probability that the activity will not falsify these constraints� If
these constraints evaluate to true at the end of an activity� the activity is allowed to
terminate� otherwise it is aborted and resubmitted� Continuing with the example
provided� since raw materials may be withdrawn from the stock by the concurrently
executingWithdrawFromStock activities of some other work�ows� the inter�activity
constraint between InsertStock and the manufacturing activity may be invalidated�
To prevent this� InsertStock obtains a shared lock on this constraint which will
be released by the manufacturing activity and if a WithdrawFromStock activity is
executed between them it goes through a validation phase�

However� it is also possible to use a more conservative approach in which activities
acquire locks on the inter�activity constraints they may falsify in addition to the
constraints they certainly falsify� We call this conservative technique based solely
on locking as Constraint Locking Concurrency Control �CLCC� technique� For
example� WithdrawFromStock activity can obtain an exclusive lock on the inter�
activity constraint in CLCC technique instead of going through a validation phase�

The basic constraints specify the correct states of a work�ow environment but
they can be invalidated by an activity to be revalidated later through an activity
or through a set of activities� The activities that require the validity of these basic
constraints should not be allowed to execute in the interval where the basic con�
straints remain invalid� and for this purpose exclusive locks are placed on the basic
constraints during these intervals by the activities that falsify these constraints�
On the other hand� the activities that require the validity of the basic constraints
acquire locks in the con�icting mode �shared mode�� For example� Withdraw ac�
tivity obtains an exclusive lock on the basic constraint which it falsies� and this
lock is released after Deposit activity terminates� Since and Audit activity needs a
shared lock on the same constraint� its execution is prevented between Withdraw
and Deposit activities� The shared locks of activities which require correctness of
the same basic constraint at the same time do not con�ict with each other� and
the same is true for the exclusive locks of activities which falsify the same basic
constraint at the same time�

�
� A performance analysis of the CBCC and CLCC techniques is presented�

A performance comparison of the proposed techniques with some other approaches
to the problem is also presented� The performance results indicate that our tech�
niques result in better performance than the other techniques�
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In the work presented in this paper� semantic information about activities and
work�ow environment is used� In the case where this semantic information is not
available� activities should be treated as black boxes and since isolation of a whole
work�ow execution is unacceptable because of performance reasons� smaller units of
isolation should be discovered� The individual activities of a work�ow are isolated
by concurrency control mechanisms of local systems� and hence the main concern is
to observe the concurrency control requirements between these individual activities
and satisfy these requirements when required� These requirements may be deter�
mined by checking the data and control��ow dependencies between the activities�
These dependencies are available at design�time� and therefore spheres of isolations
each of which includes a subset of activities of a work�ow can be determined in
advance and correctness of work�ows can be guaranteed through the isolation of
these spheres� The approaches that use this idea 	�� ��� ��� are explained in Section
�� It should be noted that these approaches are much more restrictive compared
to the techniques presented in this paper which make use of semantic information�
After setting the research context in the rst section� the paper is organized as
follows� In Section �� the related work is given� In Section � we present a moti�
vating example to explain main concepts of our approach and identify the general
work�ow features covered by our model� Section 
 provides formal characteriza�
tion of work�ows in terms of data and control��ow dependencies� Section � denes
correctness of concurrently executing work�ows and activities� In Section �� con�
currency control techniques based on this correctness denition are proposed� and
the performance analysis of the techniques is given� Section � gives concluding
remarks�

�� Related Work

Although some research has been done on the correctness problem of work�ows�
neither a widely accepted correctness notion nor a correctness mechanism have been
reported in the literature� In the following� we conne ourselves to summarizing
the related research in work�ow management systems and transaction processing
systems� And in spite of this research� most commercial WFMSs provide very
limited capabilities for correctness and concurrency control issues 	����
In the ConTract model 	��� ���� the user is given the sole responsibility for main�
taining the consistency of the database with which activities interact� In order for
activities to work correctly� predicates named as entry and exit invariants are de�
ned to hold on the database� At run�time� these predicates are veried before and
after an activity respectively� If exit or entry invariant evaluate to false� a con�ict
resolution algorithm is executed and this may involve changing values of objects in
the predicates in such a way that they are satised� However� an inevitable result
may be cancellation of activity and compensation of some previously terminated
activities�
In 	��� to ensure data consistency� semantic serializability of work�ows is proposed
as the correctness criterion� A human expert declares a compatibility matrix for
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activities of a work�ow� Compatibility of two activities means that the ordering
of two activities in an execution history is insignicant from an application point
of view� If two activities are not dened as compatible they are in con�ict� An
execution history is semantically serializable if an equivalent serial execution exists
with the same ordering of con�icting activities�
In 	��� the consistency is specied in the same way as the compatibility relation�
ships are expressed with the added complexity of having to express compatibility
relations between sequences of activities instead of between individual activities�
For instance� how di�erent work�ow instances should be interleaved in the system
is given as a matrix� The main idea is based on signatures of work�ow instances
that they leave on the objects they access� This signature species which other
work�ows are allowed to access the object�
In Transaction Specication and Management Environment �TSME� 	��� using
a transaction specication language� correctness as well as state dependencies can
be specied between the activities of work�ows� Di�erent correctness dependen�
cies such as serializability� temporal� and cooperative dependencies can be specied�
To dene con�icts� each object is associated with a con�ict table� Serialization
dependencies are specied as acyclic serialization order dependencies between ac�
tivities� Temporal order dependencies are specied by giving specic serialization
orders between the activities� Cooperation between activities is provided by using
breakpoints or augmenting con�ict tables of shared objects�
In 	��� activities are treated as black boxes and to determine concurrency control
requirements between activities� data and control��ow dependencies between them
are analyzed at design�time� Using this information spheres of isolation� each of
which involves a subset of activities in a work�ow� are determined and the notion
of correctness is based on the isolation of these spheres� Furthermore� a technique
to handle correctness of hierarchically structured work�ows consisting of compound
activities is proposed in 	��� In 	��� �
�� M�serializability is dened as a correctness
criterion for concurrent execution of work�ows� In this model� related activities of
a work�ow are grouped into execution�atomic units� M�serializability assumes that
an activity involves a single site and it requires that activities belonging to the same
execution�atomic unit of a work�ow have compatible serialization orders at all sites
they access� A similar approach is proposed in 	���� In this work� a set of activities
are grouped into a consistency unit and traditional correctness techniques are used
to provide serializable execution of this unit�

���� Semantics Based Concurrency Control

Although semantics based concurrency control mechanisms do not directly cover
work�ow correctness� they are related to the approach proposed in this paper� Se�
mantics based concurrency control protocols can be broadly classied into three
categories depending on whether they are based upon the semantics of transactions
or upon the semantics of objects or both as described in 	��� Approaches of Gray
	���� Garcia�Molina 	���� Lynch 	
��� Weikum 	���� Beeri 	���� Farrag and Ozsu 	�
�
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DEFINE PROCESS OrderProcessing��
���
GetOrder�OUT productNo� OUT quantity� OUT dueDate� OUT orderNo�

OUT customerInfo�
EnterOrderInfo�IN productNo� IN quantity� IN dueDate� IN orderNo�
CheckBillofMaterial�IN productNo� OUT partList�
PAR AND �part � FOR EACH partList�

SERIAL
DetermineRawMaterial�IN part�No� IN part�Quantity� OUT rawMaterial�

OUT required�
CheckStock�IN rawMaterial� IN required� OUT missing�
IF �missing � �� THEN

VendorOrder�IN rawMaterial� IN missing�
WithdrawFromStock�IN rawMaterial� IN required�
GetProcessPlan�IN part�No� OUT processPlan� OUT noofSteps�
i���
WHILE �i � noofSteps�

Assign�IN processPlan�i	�cellId� IN orderNo� IN part�No�
IN part�Quantity� IN rawMaterial� IN required�

END WHILE
END SERIAL

END PAR AND
AssembleProduct�IN productNo�
���
Billing�IN orderNo� IN productNo� IN quantity� IN customerInfo�
���

END PROCESS

Figure �	 Order Processing Example

can be classied into rst category� works of Harder 	���� O�Neil 	
��� Korth and
Speegle 	
��� Herlihy 	���� Badrinath and Ramamritham 	�� mainly fall into second
category� The works in the third category use the advantages of both approaches
to increase concurrency� In 	��� three semantics based correctness criteria are pro�
posed� In 	�� and 	���� formal methods to decompose a transaction into smaller
units using transaction and object semantics are described� In 	��� the notion of
semantic histories and successor sets are proposed to describe correct interleavings
of these units �i�e�� steps�� In 	���� transaction semantics are used to decompose
transactions into steps and a concurrency control technique is described to control
step interleavings in such a way that assertions between the consecutive steps are
preserved�

�� A Motivating Example

In this section� an order processing example in a highly automated manufacturing
enterprise is provided using the work�ow denition language of METU�ow 	�� ���
��� 
�� 
���
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DEFINE PROCESS VendorOrder�IN rawMaterial� IN missing�
���
SendOrder�IN rawMaterial� IN missing� OUT shipmentNo�
SuppliesArrival�IN shipmentNo�
InsertStock�IN rawMaterial� IN missing�

END PROCESS

DEFINE PROCESS GetProcessPlan�IN part�No� OUT processPlan� OUT noofSteps�
���
DetermineNoofCells�IN partNo� OUT cellNo�
SelectBestCells�IN cellNo� OUT quali
edCells�
ConstructProcessPlan�IN quali
edCells� OUT processPlan� OUT noofSteps�

END PROCESS

DEFINE PROCESS Billing�IN orderNo� IN productNo� IN quantity� IN customerInfo�
���
Payment�IN orderNo� IN productNo� IN quantity� IN customerInfo� OUT amount�

OUT paymentStatus�
IF �paymentStatus � unpaid� THEN

UpdateUnpaidBalance�IN customerInfo� IN amount� OUT unpaidBalance� OUT U�
IF�unpaidBalance � U� THEN
XOR
RejectShipping�IN orderNo�
MoreCredit�IN customerInfo� IN unpaidBalance� IN U�

END XOR
END IF

END PROCESS

Figure 
	 Order Processing Example �Cont��

An incoming customer request causes a product order to be created and inserted
into an order entry database byGetOrder and EnterOrderInfo activities respectively
�Figure ��� The next step is to determine required parts to assemble the ordered
product by CheckBillofMaterial activity� A part is the physical object which is
fabricated in the manufacturing system� For each part� DetermineRawMaterial
activity is executed to nd out the raw materials required to manufacture that
part� and a CheckStock activity is initiated afterwards to check stock database for
the availability of these raw materials� If the required amounts of these raw mate�
rials do not exist in the stock� they should be ordered from the external vendors
through VendorOrder �Figure ��� After all missing raw materials are obtained�
required raw materials to fabricate the part is withdrawn from the stock to be
sent to the manufacturing cells� This is accomplished by WithdrawFromStock ac�
tivity by decrementing the available amount of the withdrawn raw material �i�e��
quantity�m�� in the stock database� The required steps to manufacture a part�
and the manufacturing cells where these steps are performed are obtained as a
result of GetProcessPlan� Actual manufacturing activity is initiated by assigning
the work to the corresponding cells for each step in Assign� Finally� manufactured
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DEFINE PROCESS WarehouseAllocation��
���
GetAllocationOrder�OUT rawMaterial� OUT quantity� OUT source� OUT destList�
RetrieveMaterial�IN rawMaterial� IN quantity� IN source�
PAR AND �destination � FOR EACH destList�

UpdateMaterialLocation�IN rawMaterial� IN quantity� IN destination�
END PAR AND

END PROCESS

DEFINE PROCESS StockControl�IN stockDBList�
���
WarehouseEvaluation�IN stockDBList� OUT materialSum�
PrintMaterialReport�IN materialSum�

END PROCESS

Figure �	 WarehouseAllocation and StockControl Work�ows

parts are assembled to form the product that the customer had ordered by the
activity AssembleProduct� Further downstream activities include a billing activity�
Billing itself is another work�ow which is responsible from collecting bills of ordered
products� The details of Billing work�ow is explained in Section ��

We further consider two other work�ows dened in the system �Figure ��� Ware�
houseAllocation and StockControl� WarehouseAllocation distributes raw materials
among di�erent warehouses and reallocates the materials according to demand and
delivery schedules� RetrieveMaterial retrieves the given amount of raw material
from the stock of the source warehouse and UpdateMaterialLocation transfers these
raw materials to the stocks of the destination warehouses in destList� StockCon�
trol work�ow checks the available raw materials of di�erent types in stocks of all
warehouses through WarehouseEvaluation activity and prints a stock report�

�� Formal Characterization of Work�ows

In this paper� we rst attempt to formalize the correctness issues of work�ow sys�
tems in the presence of concurrency and then provide a correctness technique based
on the theory developed� In order to formalize the correctness issues� we rst for�
malize the related concepts of work�ows�

Currently� specication of work�ows is realized through the following types of
methods 	
��� Script languages� net�based methods� logic�based methods� algebraic
methods� and event�condition�action �ECA� rules� Most script languages and net�
based methods lack a formally founded semantics� The notable exceptions are state
charts 	��� ��� and Petri nets 	��� ���� For a logic�based specication� temporal
logic is a commonly used method 	���� e�g�� computational tree logic �CTL� is used
to dene control��ow dependencies 	��� Similarly� ECA rules are used to specify
control��ow �e�g�� 	
���� As a nal remark� many of these methods do not have



FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 		

either a solid formal foundation or are often not intuitive and hard to understand�
Thus� a formal yet simple formalization of work�ows is needed�

A work�ow in the most general sense describes groupings of activities that are
executed sequentially or in parallel and denes data that may be exchanged between
these activities� In formalizing a work�ow� we dene special graphs to express this
data and control��ow information� We rst dene a hyperSet which represents
the groupings of activities in a work�ow and constitutes the basis of the graph
to dene the control��ow� In order to introduce control��ow relations between
activities� edges are introduced into a hyperSet and then a graph which is named
as a hyperNodeGraph is obtained� Data��ow between the activities is represented
through a simple directed acyclic graph �DAG�� Since control��ow and data��ow
should be in conformance with each other� consistency relation between the graphs
that represent them is dened� In our model� control��ow is not permitted to
contain cycles� therefore a hyperNodeGraph is rened to a hyperNodeDAG� In
addition� in order to dene activities from where control��ow splits into multiple
branches and merges into a single �ow later� split and join nodes are introduced
into a hyperNodeDAG� resulting in a split�join hyperNodeDAG�

Notice that� building the required properties of work�ows through graphs in a top�
down fashion with starting with the most general graph and rening it to include
further properties of work�ows� provides a formal and clear denition of a work�ow�
The solid mathematical and graph theory based foundation of this formalization
make it appropriate for developing a correctness theory and a favorable reference
model� It should be noted that� the primitives dened by Work�ow Management
Coalition �WfMC� 	��� are taken into consideration in our model�

In the following� denition of a hyperSet that re�ects the groupings of activities is
provided� These groupings of activities are called as execution blocks or conceptual
activities� When proper control��ow edges are imposed on this set� the resulting
graph shows the execution structure of the work�ow process�

De�nition ��� �HyperSet	 A hyperSet S is a set whose elements are simple ele�
ments or hyperelements which are simple sets or hyperSets� �

Notation
 The notation Si � S is used to denote that Si is an element of S�
the notation S��i� is used to denote the element �i of S� size�S� is used to denote
the number of elements in S� simple�S� and hyper�S� are used to denote the set of
simple elements of S and the set of hyperelements of S respectively� Si� which may
be a simple element or a hyperelement� is a subelement of a hyperSet S� denoted
as Si � S� i� Si � S or Si � Sj for some Sj � S� The notation ��i��i������ik���ik�
is used to denote a subelement which satises ��i��i������ik���ik� � ��i��i������ik��� �
��� � ��i��i�� � �i� � S� We shall drop parentheses and comas between indexes
when it is clear in the notation� The level of set S is zero� the elements Si � S
are called level k elements for which the parent is level k�� element� The set of
base elements of hyperSet S� denoted as base�S�� is a �at set which contains all the
simple subelements of S� A hyperSet S is a �at set if it has no hyperelement� that
is any Si � S is a simple element�
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Observe that elements in a hyperSet are not disjoint� In a work�ow system
however� each instantiation of the same activity type should be treated as a new
element at each invocation �e�g�� with di�erent set of parameter values�� Further�
more� participation of the same activity instance to more than one execution block
is similar to improper nesting of blocks in a procedural language� For these reasons�
a nested hyperSet with disjoint elements is dened� and it constitutes the nodes of
the hyperGraphs to be dened for representing di�erent components of a work�ow�

De�nition ��� �Nested HyperSet	 A hyperSet is nested if base�Si��base�Sj� � �
for any Si� Sj � S� �
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Figure �	 A HyperSet Figure �	 A Nested HyperSet

Example ��� Let S � fa� fc� fb� dg� fd� fgg� fe� fd� fg� fg� hggg� elements of S are
�� � a� �� � fc� fb� dg� fd� fgg� �� � fe� fd� fg� fg� hgg� subelements of S are ��� � c�
��� � fb� dg� ��� � fd� fg� ��� � e� ��� � fd� fg� ��� � fg� hg� ���� � b� ���� � d�
���� � d� ���� � f � ���� � d� ���� � f � ���� � g� ���� � h in addition to ��� ��� ���
base�S� � fa� b� c� d� e� f� g� hg� simple�S� � ��� hyper�S� � f��� ��g� size�S� � ��
size�base�S�� � �� Figure 
 shows this hyperSet� S � fa� fc� fb� dgg� fe� f� fg� hggg
is a nested hyperSet which is depicted in Figure �� �

Having dened a nested hyperSet which represents individual and conceptual
activities� we can now dene other components of a work�ow� In the denition of
a work�ow we use four di�erent graphs� namely a control��ow graph� a data��ow
graph� and two constraints graphs� In a control��ow graph� precedence relations
between individual and conceptual activities are provided� e�g�� if an activity should
be started after the termination of another activity this is represented by a directed
edge from the former activity to the latter activity in the control��ow graph� In
order to represent these control��ow dependencies� we introduce edges into a nested
hyperSet and thus obtain a graph which we call as a hyperNodeGraph�

Data��ow between individual activities occurs if output parameter of an activity is
involved in the input parameter of a successor activity in the control��ow� Data��ow
is represented through a simple directed acyclic graph �DAG� in the formalization�

In Section �� we develop a theory in which an input condition for an activity
to execute correctly is specied in terms of constraints on the work�ow environ�
ment with which a work�ow and its constituting activities interact� The intervals
among activities where a constraint should be maintained and intervals where a
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constraint �may� remains invalid along a work�ow execution are formalized using
two constraints graphs which are ��level hyperGraphs� Although construction and
usage of a ��level hyperGraph are explained in detail in Section �� its denition is
provided here for the sake of completeness� Furthermore� to keep the formalization
at a general level we also provide the denition of a hyperGraph�

De�nition ��� �HyperGraph� HyperNodeGraph� ��level HyperGraph	 A
hyperGraph G � �S�E� is a directed graph in which S is a hyperSet and edges E
are dened on S � S � fSa � Sag for any Sa � S� Notice that the graph itself can
be thought as a node at an abstract level� Any Sa � S is called a node and Sa �
S is called a subnode� A hyperNodeGraph is a hyperGraph G � �S�E�� where S is
a nested hyperSet� A ��level hyperGraph G � �S�E� is a hyperGraph� where any
Sa � S satises Sa � base�S�� �

In the following� these denitions are claried through examples�
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Figure �	 A HyperNodeGraph Figure �	 A �level HyperGraph

Example ��� Let G � �S�E� be a hyperNodeGraph� where S � fa� b� fc� d� eg� ffg�
hg� fgg is a nested hyperSet and E � fh��� ��i� h��� ��i� h��� ��i� h��� ��i� h���� ���i�
h���� ���i� h���� ���i� h����� ����ig� Figure � demonstrates this hyperNodeGraph�
Let G � �S�E� be a ��level hyperGraph� where S � ffa� fg� fc� dg� e� fg� h� fgg�
and E � fh��� ��i� h��� ��i� h��� ���i� h���� ���ig� This graph is shown in Figure �� �

Observe that the di�erence between a hyperGraph and hyperNodeGraph is that a
nested hyperSet constitutes the nodes of a hyperNodeGraph� Therefore� only edges
between the simple or hyperelements at the same level are possible� In this way�
when we use a hyperNodeGraph to specify control��ow� anomalies in precedence
relations are prevented� For example� if control splits into several �ows and these
�ows are joined together within a hyperNode� control��ow can not jump into the
middle of such �ows from outside of this hyperNode�
Notice that level of elements in S is not greater than � in a ��level hyperGraph

G � �S�E�� i�e�� level of S is �� level of a Si � S is �� and level of a Sj � Si is ��
In a work�ow� data��ow should be in conformance with its control��ow� that is�
there can be data��ow between two activities only when there is a control��ow
between them� Therefore a directed acyclic graph �DAG� which represents data�
�ow should be consistent with the hyperNodeGraph which represents corresponding
control��ow� Informally� a DAG is said to be consistent with a hyperNodeGraph i�
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for any edge between the two nodes of a DAG� there corresponds an edge between
the same nodes or hyperNodes that include them in the transitive closure of the
hyperNodeGraph� Transitive closure of a hyperNodeGraph G � �S�E�� denoted
as G� � �S�E��� can be obtained by taking transitive closure of the edges within
every hyperNode of the graph� A more formal denition can be found in 	���
Furthermore� a ��level hyperGraph which represents constraints graphs of a work�
�ow should be consistent with its control��ow� The reason behind this requirement
is explained in Section ��

De�nition ��� �Consistency with a HyperNodeGraph	 A DAG D � �T� V � is
said to be consistent with a hyperNodeGraph G � �S�E� i� the following condition
is satised�

� For any hTa� Tbi � V � �hSi� Sji � E�� where Si � Ta or Si � TA such that Ta �
TA � S� and Sj � Tb or Sj � TB such that Tb � TB � S�

A ��level hyperGraph D � �T� V � is said to be consistent with a hyperNodeGraph
G � �S�E� i� for any hTk� Tli � V the following condition is satised�

� For any Ta � Tk and Tb � Tl� �hSi� Sji � E�� where Si � Ta or Si � TA such
that Ta � TA � S� and Sj � Tb or Sj � TB such that Tb � TB � S� �

In the following� we introduce various useful operations on a nested hyperSet
and a hyperNodeGraph� With these operations it becomes possible to focus on a
hyperNode representing an execution block in a control��ow and conversely simplify
it when its internals are not in the scope of our consideration�
A restriction of a hyperNodeGraph G � �S�E� to one of its subelements Sa � S�
denoted as G�Sa�� results in a new hyperNodeGraph which involves the node itself�
its constituting simple and hyperNodes if they exist and edges between them� The
other nodes and edges in the hyperNodeGraph are omitted� Figure � depicts the
restriction of hyperNodeGraph in Figure � to node ���
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Figure �	 The Abstraction of Node �� in Hy�
perNodeGraph of Figure �

Abstraction of a subelement Sa in a nested hyperSet S� denoted as S�Sa� is the re�
placement of Sa with an abstract simple element sa in S� Let S � fa� b� fc� d� fe� fgg�
fg� hgg� Abstraction of S� � fc� d� fe� fgg in S results in S�S� � fa� b� s�� fg� hgg�
where s� is representing S��
An abstraction of a node Sa in a hyperNodeGraph G results in a new graph G�Sa�
in which the node under consideration is replaced with a simple node and every
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edge involving the former node is replaced with a new edge involving the simple
node� Figure � shows the abstraction of node �� in hyperNodeGraph of Figure ��

Some work�ow models assume that� all the structural components �i�e�� control�
�ow� can be specied in advance� However� in some work�ow applications either
the number of activities in a work�ow execution or the control��ow dependencies
that must be enforced can not be determined in advance� These cases are named as
domain uncertainty and structural uncertainty respectively 	���� Structural uncer�
tainty occurs due to the fact that a work�ow specication can contain a condition
to allow selections� Our formalization covers this type of uncertainty and this is
explained later in this section� Domain uncertainty occurs due to the loops �i�e��
iterations� that can occur in a work�ow specication� Within a loop work�ow ac�
tivities are repeated as long as a certain condition holds� However� representing
loops in a control��ow makes the notation used in the correctness theory compli�
cated� This is due to the fact that each instantiation of an activity within a loop
should be treated as a di�erent element for the correctness� Therefore for the sake
of simplicity� we assume that a control��ow graph does not contain cycles� With
this assumption a hyperNodeGraph is rened to a hyperNodeDAG in the following
denition�

De�nition �� �HyperNodeDAG	 A hyperNodeDAG is a hyperNodeGraph G �
�S�E� in which the abstraction of all elements results in a simple DAG� and this is
recursively valid for any Sa � S� �

Example ��� The hyperNodeGraph in Figure � is a hyperNodeDAG� �

Recall that� a ��level hyperGraph representing constraints graphs of a work�ow
should be consistent with the control��ow graph� Since we use a hyperNodeDAG
to represent the control��ow� if a ��level hyperGraph is consistent with this graph
it should be acyclic also intuitively� i�e�� it should contain no cycles involving its
hyperNodes or simple nodes� In this case we name this graph as a ��level hyperDAG�
A denition of a ��level hyperDAG is provided in 	���

In the following we provide a path denition for a hyperNodeDAG�

De�nition ��� �A Path in a HyperNodeDAG	 In a hyperNodeDAG G �
�S�E�� a path is a sequence �e�� e�� ���� ek� of edges such that ei � hsi� si��i 	
hSi� Si��i � E� where i � �� ���� k and si� si�� are the abstractions of the nodes
Si� Si�� � S respectively� A path connecting the nodes s� and sk�� is denoted as
hs�� sk��i�path� �

A path denition makes it possible to identify a sequence of individual and con�
ceptual activities which are executed one after another� For example� consider the
conditional branches in a work�ow specication� The possible �ows between a split
activity and a join activity can be specied as a set of paths between these activities�

In the following denition� we distinguish initial� nal� rst� and last nodes of
a hyperNodeDAG� These nodes shall correspond to the specialized activities of
a work�ow� Initial and nal nodes are simple nodes for which hyperNodes that
include them and themselves have no predecessors and no successors respectively�
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Furthermore� if there is a unique initial or a unique nal node they are called as
rst and last nodes respectively� As we provide later in this section� we require a
control��ow to include unique initial and nal activities� i�e�� it should include a
rst and a last activity�

De�nition ��� �Initial� Final� First� Last Nodes	 A simple node �in � S of a
hyperNodeDAG G � �S�E� is called initial� if indegree��in� � �� and for any Sa
such that �in � Sa� indegree�Sa� � �� A simple node �fin � S of a hyperNodeDAG
G � �S�E� is called �nal� if outdegree��fin� � �� and for any Sa such that �in �
Sa� outdegree�Sa� � �� If initial ��nal� node of a hyperNodeDAG G � �S�E� is
unique� it is the �rst �last� node of S� denoted as �f ��l�� �

As mentioned previously� work�ow activities can be executed sequentially or in
parallel� In representing control��ow� the node where the control splits into multiple
parallel activities is referred to as split node� The node where control merges into
one activity is referred to as join node� We introduce split and join nodes into
a hyperNodeDAG denition to model these issues� the resulting graph is called a
split�join hyperNodeDAG�

De�nition ��� �Split� Join Nodes� Split�Join HyperNodeDAG	 A split node
of a hyperNodeDAG G � �S�E� is a simple node S��s� �i�e�� �s � S� for which
indegree��s� 
 � and outdegree��s� � �� A join node of G � �S�E� is a simple
node S��j� �i�e�� �j � S� for which indegree��j� � � and outdegree��j� 
 �� A
split�join hyperNodeDAG G � �S�E� is a hyperNodeDAG for which the following
conditions hold�

� There exist a rst and a last element�

� If there is a split element this must be the rst element� and there must corre�
spond a join element to this� and this should be the last element�

� For any restriction G�Sa�� where Sa � S the conditions above hold� �

In a control��ow graph� a split node from where control splits into two or more
�ows in order to execute activities in parallel is called an and�split node� After
the termination of all activities involved in these �ows� control merges into a join
activity and execution continues from this activity� A split node where a decision
is made upon which branch to take when encountered with multiple branches is
called an or	xor�split node� Some of the branches following an or�split node� and
exactly one of the branches following an xor�split node are selected for execution�
This selection may depend on a condition� In our model� truth value of a condition
is determined by an or�xor�split node �i�e�� activity� and according to this value a
branch �or some branches� are selected for execution� In this case� we name this
condition as a test condition and associate it with the branch for which it is veried�
More specically� if s is an or�xor�split node and j is the corresponding join node�
each of the branches between them is represented through a path between s and
j� i�e�� hs� ji�pathi� and if a test condition T is used to select a branch� we label
the corresponding hs� ji�pathi with T � If a condition is not associated with a path
we assume that its label is true� i�e�� corresponding branch is selected for execution
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Figure ��	 A Labeled Split�Join HyperNodeDAG

unconditionally� Furthermore� since some of the branches are selected for parallel
execution starting from an or�split node� at least one of the test conditions of these
branches should be true at a time� Similarly� exactly one of the test conditions of
the branches following an xor�split node should be true�
Having dened adequate tools and setting the necessary background� a formal
denition of a work�ow can be provided� A work�ow is dened as a ��tuple with
elements representing its activities� control and data��ow and constraints graphs�

De�nition ��� �Work�ow	 A work�ow W is a tuple W � �N�CF�DF� IC�BC��
where

� N is a nested hyperSet whose base�N� � T � S � J � ff� lg where T is the set of
individual activities� S is the set of split activities� J is the set of join activities�
and f and l are the �rst and last activities respectively� and they are the virtual
activities indicating the start and termination of a work�ow respectively�

� CF � �N�ECF � L� TC� is a labeled split�join hyperNodeDAG on N correspond�
ing to the control��ow� The labels L is a mapping from S to fand� or� xorg
representing the types of split nodes� The labels TC is a mapping from every
hs� ji�path in CF to fT�� T�� ���� Ti� ���� Tng� where s � S is an or�xor�split activity�
j � J is the corresponding join activity� and Ti is a test condition� The following
condition holds for every hs� ji�path starting from a common or�xor�split activ�

ity s� If L�s� � or then �
outdegree�s�
i�� TC�hs� ji�pathi� � true� and if L�s� � xor

then �
outdegree�s�
i�� TC�hs� ji�pathi� � true� where � denotes xor operator�

� DF � �T�EDF � is a DAG indicating the data��ow such that DF is consistent
with CF �

� IC � �VIC � EIC � LIC� is a labeled ��level hyperDAG representing inter�activity
constraints graph�

� BC � �VBC � EBC � CLBC � V LBC� is a labeled ��level hyperDAG representing
basic constraints graph� �

In the following an example is provided to clarify the denition of work�ow�
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Example ��� Figure �� demonstrates a sample labeled split�join hyperNodeDAG
which corresponds to a control��ow� In this graph� N � fa� b� fc� d� e� f� g� fh� i� j� k�
lg�mg� ng� and T � fb� d� e� f� g� i� j� kg� S � fc� hg� J � fl�mg� f � a� l � n�
Furthermore� L�c� � xor� L�h� � and� and TC�hc�mi�path�� � T�� TC�hc�mi�
path�� � T�� TC�hc�mi�path�� � T�� �

In the above work�ow denition� main components of a work�ow are formalized�
Other properties of work�ows such as assignment of agents to activities� assignment
of users to roles etc� are not taken into account in the formalization� since they are
out of the scope of the main focus of this work� Last two components of a work�ow
denition� namely inter�activity constraints graph �IC� and basic constraints graph
�BC� constitute our basic building blocks to develop a correctness theory for a
concurrent execution of work�ows� Semantics and construction of these graphs are
discussed in the following section�

� Correctness of Activities and Work�ows

In this section we formalize the work�ow correctness in the presence of concurrency�
A work�ow involves several activities each of which is performed by an agent�
These activities access resources which denote the set of all objects constituting the
work�ow environment� We dene the correct execution of activities in terms of their
input and output specications which are the set of constraints on the work�ow
environment� These constraints can be classied into two categories in general�
namely basic constraints and inter�activity constraints which are formally dened as
rst�order logic formulas� The constraints that should be satised when an activity
starts constitute the input condition of the activity� An output condition of an
activity on the other hand imposes a constraint upon the work�ow environment in
which a work�ow system must nd itself after the execution of this activity�

In order to represent an interleaved execution of work�ows we introduce a com�
plete execution history and use the input and output conditions to dene the cor�
rectness of this history� A complete execution history is correct if input condition
of every activity involved in this history is correct when the activity starts and if
the basic constraints that hold when the history starts also hold at the end of the
history� We then provide a theorem which states that a complete execution history
is correct if the inter�activity constraints are preserved in the required intervals and
activities that require correctness of related basic constraints are prevented from
executing during the intervals where these constraints do not hold� Inter�activity
constraints and basic constraints are represented through inter�activity constraints
graph and basic constraints graph which are used in formalizing the intervals among
activities where an inter�activity constraint should be maintained and the intervals
where a basic constraint remains invalid respectively�
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In the following� we provide some basic denitions and notations used in repre�
senting activity and work�ow semantics and in dening the correctness of work�ows�
We begin by dening the state of the work�ow environment�

De�nition �� �Work�ow Environment� State of the Work�ow Environ�
ment	 Let RM � �ni��RM

i be the set of transactional and non�transactional
resource managers involved in a work�ow system� The set of all variables �objects�
controlled by RM i is denoted by Oi� O � �ni��O

i denotes the set of all objects of
the work�ow environment� and dom�oi� represents the domain of an object oi� A
state �or valuation� of a work�ow environment is a function St � O  St�� where

St� � �
size�O�
i�� dom�oi� � dom�o��� dom�o�� � ���� dom�osize�O��� and � denotes

the cartesian product� We use St� to represent the set of all possible states� �

An activity t is a mapping from St� to St�� i�e�� t � St�  St�� The resulting
work�ow environment state after an activity t is applied to state St is denoted as
t�St�� However� this denition of an activity is not su�cient for our purposes since
we require some semantic knowledge to dene correctness of activities� Activity se�
mantic is dened in terms of constraints on the work�ow environment as mentioned
previously�

As specication languages� rst�order logic has been the dominant choice for the
expression of constraints� Therefore� to represent constraints over the objects of the
work�ow environment we use First�Order Logic �FOL� formulas which are denoted
by calligraphic letters A�����Z � More information on FOL formulas can be found in
	����

Notation
 Let F be a FOL formula and St be a particular state of the work�ow
environment� We use notation St j�F to mean that F is true for the state St� If F
is false in St this is represented as St �j�F � We denote the set of states that satisfy
a formula F as F�St�� i�e�� F�St� � fSt j St j� Fg� The set of objects �variables�
involved in a formula F is represented as O�F��

Now� we can give the formal denition of a work�ow activity in terms of its
parameters� objects accessed� and its specication�

De�nition �� �Activity	 An activity t is a tuple t � �IP�OP�RS�WS�AS��
where IP is the set of input parameters� OP is the set of output parameters� RS is
the set of objects read by t� WS is the set of objects updated by t� AS is the activity
speci�cation� �

In the above denition� we assume that WS � RS� The last item� specication
of an activity� is claried through the following denition�

De�nition �� �Speci�cation of an Activity	 A speci�cation of an activity t is
a tuple AS�t� � �It� Ot�� where It and Ot are the set of FOL formulas on O �i�e��
objects of the work�ow environment�� It � �iIt�i� where It�i � It� is called the
input speci�cation or input condition of t and Ot � �jOt�j � where Ot�j � Ot� is
called the output speci�cation or output condition of t� �
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In the above denition� It �Ot� is obtained by taking conjunction of all formulas
in the set It �Ot�� An activity is said to be correct with respect to a specication
AS�t� � �It� Ot� if any terminating execution of t starting from an initial state St
satisfying It ends in some nal state St� � t�St� satisfying Ot� i�e�� ��St � St��
� ��St j� It� � �t�St� j� Ot��� The activities are assumed to be correct and
deterministic by intuition� More information about formal specication of programs
�e�g�� activities� can be found in Hoare 	���� and Dijkstra�s works 	���� Related work
includes modal and temporal logics 	����
An output condition of an activity imposes a constraint upon the work�ow en�
vironment in which work�ow system must nd itself after the execution of this
activity� The following example demonstrates this situation�

Example �� The output condition of WithdrawFromStock �shortly tWFS� ac�
tivity whose purpose is to withdraw required raw materials of type mi from the
stock is dened as follows�

OtWFS
� �quantity�mi�

� � quantity�mi�� required�mi��� ���

OtWFS
states that available amount of mi is decremented by required�mi�� �

The input condition characterizes the set of all initial states such that the ter�
mination of an activity will leave the system in a nal state satisfying the output
condition� In other words� input condition of an activity represents the states of the
work�ow environment in which the activity can be executed correctly� Depending
on the validity of the input condition� the following three possibilities can occur
	���� ��� Activation of t leads a nal state satisfying Ot� ��� activation of t leads
a nal state satisfying �Ot� ��� activation of t does not lead a nal state� i�e�� ac�
tivity fails to terminate properly� Since an activity t is designed correctly and it is
executed in isolation� if its input condition is satised then the execution of t yields
in rst possibility� However� if the input condition is not satised the execution
of t may result in any of three possibilities� What constitutes the input condition
of an activity is described later after possible constraints in a work�ow system are
introduced� The following is an example to input condition of an activity�

Example �� Input condition of tWFS activity states that su�cient amount of raw
material of type mi should be available in the stock�

ItWFS
� �quantity�mi� � required�mi��� ���

Note that� in order to satisfy the output condition in Formula �� this input condi�
tion must be true prior to execution of tWFS � �

Intuitively� the following conditions should hold to execute an activity t correctly�

� t should read consistent �correct� values of objects in a work�ow environment�
hence� these consistent values should be displayed to the users and�or used to
update other �or same� objects�

� If the correct execution of an activity depends on the validity of constraints
that are set or veried by preceding activities� these constraints should still be
valid prior to the execution of t�
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In the following� we discuss these two conditions in detail� We start by describing
what should be understood from correctness of a work�ow environment� Correct
states of a work�ow environment are represented through basic constraints�

De�nition �� �Basic Constraints	 A basic constraint Bi is a FOL formula de�
ned on the objects of the work�ow environment� The set of all basic constraints
are represented as B and called as the basic constraints of the work�ow system�
B � �iBi� where Bi � B� partition the set of all possible states St� into two dis�
joint sets� B�St� and St��B�St�� First is the set of correct states in which all basic
constraints hold� and second is the set of incorrect states in which one or more basic
constraints are violated� �

Thus� basic constraints specify the correct states of the work�ow environment as
the following examples demonstrate�

Example �� Suppose that a basic constraint of the stock databases in the order
processing example is dened as follows�

B� � ��wj��quantity�mi�j� � Mi�� ���

where quantity�mi�j� represents the amount of raw material mi in the stocks of
warehouse j� and w is the total number of di�erent warehouses in the enterprise�
Total amount of raw material mi currently residing at the stocks is denoted as Mi�
Notice that� B� does not prevent entering new raw materials of type mi into stocks
or withdrawing them for production� yet B� implies that �raw materials should
neither be created or destroyed during the transfer of these raw materials between
the stocks of di�erent warehouses by a WarehouseAllocation work�ow�� �

Example �� Suppose that balance of unpaid bills of a customer has a predened
upper limit� Thus� a basic constraint is dened as follows�

B� � ���ci � customerList� � �unpaidBalance�ci� 
 Ui��� �
�

where customerList denotes the customers of the manufacturing enterprise� and
unpaidBalance�ci� and Ui denote the balance of unpaid bills and the upper limit
of a particular customer ci respectively� B� implies that �orders invoked by a cus�
tomer should not cause an overdraft�� �

These examples demonstrate that basic constraints require activities to be de�
signed and�or arranged properly in a control��ow in order to rationally update a
work�ow environment� so that these basic constraints are not violated during their
execution� For example� activities of Billing work�ow should be designed properly�
so that balance of unpaid bills of a customer does not cause an overdraft� The
restrictions induced by basic constraints in the design of a work�ow are claried
later in this section through Denition ����
Some activities require that some of the basic constraints must hold to execute
them correctly� Thus these basic constraints are involved in the input conditions of
these activities� The set of basic constraints to be involved in the input condition
of an activity t is denoted as B�t�� and dened as follows�

��Bi � B� � ��O�Bi� � RS�t� �� ��� �Bi � B�t���� ���
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According to Formula � if an object involved in a basic constraint Bi is also an
element of the read set of t �i�e�� RS�t��� Bi is included in the input condition of t� So
activity t accesses correct states of objects in the work�ow environment� otherwise
t may produce incorrect results or update work�ow environment erroneously�
The following example demonstrates a case in which a basic constraint is included
in the input condition of an activity�

Example � Consider the basic constraint B� �Formula ��� and StockControl
work�ow and its WarehouseEvaluation �shortly tWE� activity which evaluates
the available raw materials of type mi in the stocks of all warehouses� This infor�
mation is printed as a report later� Since O�B���RS�tWE� � �wj��quantity�mi�j��
�i�e�� all quantity�mi� objects in w warehouses� B� should be an element of basic
constraints involved in the input condition of tWE � i�e�� B� � B�tWE�� Since tWE

should see a correct state related to amount of raw material mi in the stocks and
B� describes the corresponding set of correct states� B� must hold for the correct
execution of tWE activity� �

Assume that an incorrect state is also acceptable for a particularWarehouseEval�
uation activity� Hence a report about approximate quantity of a raw material in
the stocks is allowed� In this case� basic constraint B� can be excluded from B�tWE�
although implied by the Formula �� In this way� �exibility in the specication of
incorrect but acceptable states for an activity t can be achieved� This approach
resembles the isolation levels provided by some database management systems 	����
Although activities are usually execution�atomic �i�e�� isolated� steps by their na�
ture� there may be semantic dependencies between them that must be observed and
preserved� For example� an activity may cause that a constraint to be satised on
the work�ow environment after its termination� and a successor activity may be ex�
ecuted with the assumption of the validity of this constraint� Furthermore� another
activity may evaluate a constraint and determine its truth value� and this value
may be used in the work�ow specication to allow branching� Activities relying on
the selected branch are likely to require validity of the constraint associated with
their branch when they are executing� Both cases impose dependencies between
activities� We represent such dependencies between individual activities as a set of
inter�activity constraints on the work�ow environment�

De�nition � �Inter�activity Constraints	 Let W � �N�CF�DF� IC�BC� be
a work�ow� and ti and tj be the particular activities of this work�ow� i�e�� ti �
base�N�� tj � base�N�� The inter�activity constraints between ti and tj � denoted
as Cfti�tjg� is a set of constraints on the work�ow environment which satisfy the
following conditions�

��� ti precedes tj in CF �

��� ��D � Cfti�tjg� � �D � Itj ��

��� ��D � Cfti�tjg� �F � Oti� � �F � D�� �

In the above denition� if a constraint F in the output condition of a preceding
activity ti implies a constraintD in the input condition of a successor activity tj � the
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latter constraint is included in the set of inter�activity constraints between these
two activities� Note that we require implication instead of equivalence between
constraints F � and D� This is due to the fact that� validity of F already guarantees
the validity of D� and D is the constraint that is involved in the input condition of
the successor activity� Thus the inclusion of the less restrictive constraint D in the
set of inter�activity constraints is enough�

Notation
 If the conditions in Denition ��� hold we say that constraint D is
emanating from activity ti and incoming to activity tj � We use these terms to
provide the reader the ability to pictorially imagine the constraint relations between
activities� The set of inter�activity constraints incoming to and emanating from an
activity tj are denoted as Cin�tj� and Cout�tj� respectively and dened as follows�
Cin�tj� � �iCfti�tjg� Cout�tj� � �kCftj �tkg� We denote the set of all inter�activity
constraints in a work�ow as C� i�e�� C � �jCin�tj� � �jCout�tj��
The following examples present some inter�activity constraints in the order pro�
cessing example�

Example �� Consider CheckStock �shortly tCS� and WithdrawFromStock
�tWFS� activities� tCS checks whether the required amount of raw material of type
mi �i�e�� required�mi�� to manufacture a particular part is available in the stock�
Thus the current value of quantity�mi� �e�g�� n� is determined and using this value
the missing raw materials �i�e�� missing�mi�� that should be ordered from external
vendors are calculated� Ordered raw materials are inserted into stock through
InsertStock �tIS� activity of V endorOrder work�ow� Thus the output condition
of tCS� and input and output conditions of tIS are dened as follows�

OtCS � ��quantity�mi� � n� � �missing�mi� � required�mi�� n��� ���

ItIS � �quantity�mi� � n�� ���

OtIS � ��quantity�mi�
� � quantity�mi� �missing�mi�� �

�quantity�mi�
� � required�mi���� ���

where quantity�mi�
� is the new quantity of mi when tIS is completed� Since out�

put condition of tCS implies input condition of tIS � i�e�� OtCS � ItIS � and output
condition of tIS implies input condition of tWFS �Formula ��� i�e�� OtIS � ItWFS

�
the constraints �quantity�mi� � n�� and �quantity�mi� � required�mi�� are in�
cluded in the sets CftCS�tISg� and CftIS �tWFSg respectively� In other words� if n
particular materials of type mi are available in tCS � at least this amount of ma�
terial should be available in the corresponding tIS also� so quantity�mi� becomes
larger than or equal to required�mi� after the insertion of missing materials into
stock� Required�mi� materials should remain in the stock� so ItWFS

holds when
tWFS is executed� Notice that �quantity�mi� � n� is an element of Cin�tIS�� and
Cout�tCS�� and �quantity�mi� � required�mi�� is an element of Cin�tWFS�� and
Cout�tIS�� Furthermore� both of these constraints are elements of C� �

The following is also an example from order processing work�ow to further clarify
inter�activity constraints�
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Example ��ConsiderGetProcessP lan work�ow� and its SelectBestCells �tSBC�
activity� tSBC evaluates the manufacturing cells in the factory and selects the
required number of the best qualied cells to manufacture a particular part� Thus�

OtSBC � ���celli � qualifiedCells��cellj � �cells� qualifiedCells�� �

�rank�celli� � rank�cellj���� ���

where qualifiedCells� and rank�celli� denote the set of selected cells� and rank of
a particular cell respectively� The rank is obtained by evaluating qualications�
workload� capacity� etc� of a particular cell� Cells denotes the set of all operational
cells in the factory� Since the selected best cells should remain so until the work
is actually assigned to them in the corresponding Assign �tA� activities� the input
condition of a tA activity for celli should be dened as follows�

ItA�celli� � ���cellj � �cells� qualifiedCells�� � �rank�celli� �

rank�cellj���� ����

Since OtSBC � ItA�celli� � Formula �� should be an element of CftSBC �tA�celli�g
� �

In order to represent inter�activity constraints graphically in a work�ow� we use
a special graph� namely inter�activity constraints graph which is a labeled ��level
hyperDAG dened in Section 
� In this way� inter�activity constraints can be rep�
resented in the way control and data��ow are represented�
Let W � �N�CF�DF� IC�BC� be a work�ow� inter�activity constraints between
the activities of W are represented as a labeled ��level hyperDAG IC � �VIC � EIC �
LIC�� where VIC and EIC denote the nodes and edges respectively� VIC is a hyper�
Set� and for any Sa � VIC � Sa � base�N�� and for any hSa� Sbi � EIC � Sa � base�N�
and Sb � base�N�� LIC are the labels of the edges and it is a mapping from the
edges in EIC to the inter�activity constraints in C� For a given set of inter�activity
constraints between activity pairs� if there is a constraint F between ti and tj �
this is represented through an edge hti� tj �Fi in IC� If a constraint F emanat�
ing from an activity ti is incoming to more than one activity� these activities are
grouped into a hyperSet S�ti�F� and this situation is represented through the edge
hti� S�ti�F��Fi� The following example demonstrates the construction of an inter�
activity constraints graph�

Example �� Let C � fF��F��F��F��F	�F
�F�g� and Cft��t�g � fF�g� Cft��t�g �
fF�g� Cft��t�g � fF��F��F�g� Cft��t�g � fF��F�g� Cft��t�g � fF	g� Cft��t�g �
fF	g� Cft��t�g � fF
g� Cft	�t
g � fF�g� Therefore� as explained above� t� and t�
are grouped into a hyperSet and ht�� ft�� t�g�F�i is included in IC� Eventually� IC
corresponding to C is obtained as depicted in Figure ��� �

Note that IC is consistent with control��ow graph �CF � due to Condition � of
Denition ����
An inter�activity constraints graph can be simplied by removing redundant edges
from it� In general if an edge covers another edge in an inter�activity constraints
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Figure �
	 Relations Between
Inter�activity� Basic� and Ex�
tensional Constraints

graph and constraint of the former edge implies the constraint of the latter edge�
the latter edge can be removed from the graph� This is due to the fact that if rst
inter�activity constraint is valid between the executions of activities in its source
and sink� validity of second constraint is automatically guaranteed� Furthermore�
some inter�activity constraints can be removed from an inter�activity constraints
graph through human intervention� If invalidity of an inter�activity constraint is
acceptable for a particular activity� the edge corresponding to this constraint can
be excluded from the graph by a work�ow designer� This is similar to exclusion
of some basic constraints from the input condition of an activity� Details of the
simplication process and elimination of constraints are provided in 	���
We use an inter�activity constraints graph to develop a correctness criterion for
work�ows� Since inter�activity constraints contribute to the input condition of an
activity� constraints in an IC graph should be preserved between the nodes of the
graph during execution of the work�ow since only activities are isolated not the
whole work�ow�
Up to this point� we have dened basic constraints and inter�activity constraints�
Having dened these two types of constraints� we can now formally provide the
semantic of an input condition of an activity t as follows�

It � ��iBi� � ��jFj� � ��kGk�� ����

where Bi � B�t�� and Fj � Cin�t�� and Gk � G�t�� Intuitively� input condition
of an activity is the conjunction of the basic constraints� inter�activity constraints�
and constraints in G�t� which are required to execute this activity correctly� G�t�
is composed of a set of constraints to execute t correctly which are not included
in neither in B�t� nor in Cin�t� as depicted in Figure ��� Therefore constraints
in G�t� refer to state information which is not transferred from preceding activ�
ities or can not be represented through basic constraints� For example� consider
WithdrawFromStock activity �shortly tWFS� and its input condition which is de�
ned in Formula �� Furthermore� suppose that a CheckStock activity is not placed
before it in the control��ow� therefore quantity of missing materials can not be
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determined and inserted into stock before the execution of tWFS � In this case�
�quantity�mi� � required�mi�� is not in B�tWFS� and Cin�tWFS�� This type of
constraints are called as an extensional constraints� and included in the set G�t� as
depicted in Figure ���
Later in this section we discuss the cases in which the constraints in the input
condition of an activity are violated and therefore its correct execution is sacriced�
To detect these violations we are interested in whether an activity maintains a
constraint� The following denition is provided to formalize this issue�

De�nition �� �Preserve Function	 Let t be an activity and F be a FOL formula
on the work�ow environment� Preserve�t� F� is a three�valued function which is
dened as follows�

��� Preserve�t�F� � true ��� if ��St � St�� � ��St j� F���t�St� j� F��� In this
case we say that �t preserves F��

��� Preserve�t�F� � false ��� if ��St � St�� � ��St j� F���t�St� �j� F��� In this
case we say that �t falsies �or invalidates� F��

��� Preserve�t�F� � may be ����� if ��St � St�� � ��St j� F���t�St� �j� F��� In
this case we say that �t may falsify �or may invalidate� F�� �

Intuitively� Preserve�t�F� � � or ��� requires that WS�t��O�F� �� �� Result of
Preserve�t�F� is not always binary since the e�ects of an activity on the state of
the work�ow environment may depend on the actual values of its input parameters
and�or the current values of variables in O�F�� Thus an activity may not falsify
some of the constraints depending on the actual instantiation of these parameters
and variables� The following is a simple example to demonstrate this situation�

Example �� Let F� � �x� � x��� and F� � �x� � x��� and t� � increment�x���
t� � decrement�x��� t� � increment�x��� t� � decrement�x��� Assume that
dom�x��� and dom�x�� are equal to the same totally ordered set with respect to
a relation �� Preserve�t�F�� � � for t � ft�� t�g� Preserve�t�F�� � ��� for
t � ft�� t�g� Preserve�t�F�� � � for t � ft�� t�� t�� t�g� �

According to the approach described above� we would like to check activities to
see whether they always preserve a constraint F � But� the recent results in the
related literature show that it is almost impossible to automatically determine the
value of Preserve for a given activity and a constraint� As noted in 	���� for transac�
tions specied as select�project�join expressions of relational algebra and constraints
specied as FOL formulas� it is undecidable to check if a given transaction preserves
a given constraint� Therefore� we simply assume that a work�ow system adminis�
trator and�or work�ow designers can specify the value of Preserve�t�F��
As discussed previously� basic constraints specify the correct states of the work�ow
environment� Invalidation of basic constraints may be permissible by the individual
activities� yet this situation imposes some restrictions ��� on the execution of the
work�ow in which an activity that invalidates �or may invalidate� a basic constraint
resides� and ��� on the execution of activities which require accessing correct states�
Since basic constraints represent these correct states� if they are violated during a
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work�ow execution they should be resatised again prior to the termination of
this execution� Otherwise the work�ow environment is left in an incorrect state�
Therefore� a work�ow should be designed properly so that� if it includes an activity
which falsies �or may falsify� a basic constraint then it should include another
activity �or possibly a set of activities� which certainly guarantees revalidation of
this basic constraint� Furthermore� if the same basic constraint is involved in the
input condition of another activity� execution of this activity should be prevented
between the executions of former and latter activity �or activities�� To capture
these issues we have dened a validating set of activities for a basic constraint�

De�nition �� �And� Or�Validating Sets	 Let W � �N�CF�DF� IC�BC� be a
work�ow� and B be the set of basic constraints of the work�ow system� Further�
more� let ti � T � where V S � T � and T represents the individual activities in N �
V S is an and�validating set for B � B if the following conditions hold�

��� Preserve�ti�B� � � or ����

��� ��tj � V S� � �ti precedes tj in CF ��

��� �jOtj � B� where tj � V S�

��� ��tj � V S� � ��kOtk �� B�� where tk � �V S � tj��

V S is an or�validating set for B � B if the following conditions hold�

��� Conditions �� and � above�

��� ��tj � V S� � �Otj � B�� �

Informally� V S is an and�validating set for B if B is a basic constraint which is
�or may be� invalidated by ti� and validated collectively by the elements of V S�
Condition 
 guarantees that execution of activities in a subset of an and�validating
set V S is not a su�cient condition for the validation of B� and therefore V S is the
minimum set of activities to validate B� If the execution of at least one element of
a set of activities �V S� is a su�cient condition for the validation of B we call V S
as the or�validating set for B�

Notation
 We denote the set of basic constraints which are �or may be� invalid
between ti and activities of an and�validating set V S as SBfti�V S�andg� The set of
basic constraints which are �or may be� invalid between ti and at least one activity
of an or�validating set V S is denoted as SBfti�V S�org�
In the following� we clarify these denitions through examples�

Example ��� Consider the WarehouseAllocation work�ow in Figure �� Output
conditions of RetrieveMaterial �tRM �� and UpdateMaterialLocation �tUML� ac�
tivities of a WarehouseAllocation work�ow are dened as follows�

OtRM�wj �
� �quantity�mi�j�

� � quantity�mi�j�� n�� ����

OtUML�wk�
� �quantity�mi�k�

� � quantity�mi�k� � lk�� ����
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where wj represents the source warehouse� and wk represents a warehouse k in

destList� i�e�� wk � destList� and �
size�destList�
k�� lk � n� Since after n raw ma�

terials of type mi are withdrawn from the stock of warehouse j� B� �Formula ��
is no longer true of the work�ow environment state� However� B� is resatised
after the termination of the corresponding tUML activities which distribute with�
drawn amount to stocks at di�erent warehouses in destList� In this case tUML�wk�

activities for each warehouse k constitute an and�validating set for B�� since af�
ter the termination of all activities in this set B� is satised again� and therefore
SB

ftRM�wj �
��
size�destList�

k��
tUML�wk�

�andg
� fB�g� �

The following is an example to an or�validating set for a basic constraint�

Example ��� Consider Billing work�ow and its UpdateUnpaidBalance �tUUB��
RejectShipping �tRS�� and MoreCredit �tMC� activities �Figure ��� Their output
conditions are dened as follows�

OtUUB � �unpaidBalance�ci�
� � unpaidBalance�ci� � b� ��
�

OtRS � ��unpaidBalance�ci�
� � unpaidBalance�ci�� b� �

�orderStatus � rejected�� ����

OtMC
� ��U�i � Ui � c� � �U�i � unpaidBalance�ci���� ����

where U�i denotes the new upper limit after tMC is terminated� If a customer
ci does not pay the bill of an ordered product� her�his balance of unpaid bills
�i�e�� unpaidBalance�ci�� is updated in tUUB activity �Formula �
 above�� Since
Preserve�tUUB �B�� � ���� basic constraint B� �Formula 
� may be invalid at this
moment� In this case either shipping of ordered product is rejected �or delayed� and
unpaidBalance�ci� is decremented in tRS activity �Formula ���� or if responsible
branch of the enterprise grants more credit to this customer� her�his upper limit
�Ui� is incremented in tMC activity� thus Ui � unpaidBalance�ci� holds �Formula
���� Observe that B� is certainly satised after the termination of either tRS or
tMC activity� Therefore tRS and tMC activities constitute an or�validating set for
B�� and SBftUUB�ftRS�tMCg�org � fB�g� �

As the previous examples demonstrate activities of an and�or�validating set guar�
antee revalidation of a basic constraint� Yet to achieve this� there is a prerequisite
which is a natural outcome of our denition of activity semantic� Input condi�
tions of activities of an and�or�validating set should hold when they are executed�
Only in this way Condition � for an and�validating set� and Condition � for an
or�validating set in Denition ��� can be satised� To achieve this� required inter�
activity constraints between the activity which �may� invalidate a basic constraint
and activities in the corresponding validating set should be preserved� The following
example demonstrates this requirement�

Example ��� In the manufacturing example� a product is composed of parts and
parts are further composed of raw materials� Therefore consistency of technical
data� i�e�� design information belonging to a product and its constituting parts is an
essential requirement in a manufacturing process� To state this� a basic constraint
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of the system is dened as follows�

B� � ���prodi � products��partj � parts� � ��partj � P �prodi���

Consistent�design�prodi�� design�partj����� ����

Acording to B�� design of a product� i�e�� design�prodi�� should be consistent with
designs of its constituting parts� i�e�� design�partj�� where partj � P �prodi�� Let
UpdatePartDesign �shortly tUPartD� and UpdateProductDesign �tUProdD� be two
activities whose output conditions are dened as follows�

OtUPartD � ��design�partj�
� � design�partj� � �� �

Consistent�design�prodi� � F ���� design�partj�
��� ����

OtUProdD � ��design�prodi�
� � design�prodi� � F ���� �

Consistent�design�prodi�
�� design�partj��� ����

where design�partj�
� and design�prodi�

� represent new designs� tUPartD changes
design of a part by �� and tUProdD updates corresponding product through a func�
tion F ���� so that the consistency of designs for product and its part is achieved
again after tUProdD� i�e�� OtUProdU � B�� In order to get the above result� however�
input condition of tUProdD should include the constraintConsistent�design�prodi��
F ���� design�partj��� That is� prior to execution of tUProdD� change made in
design�partj� must remain the same �i�e�� no other activities change the design of
the part�� so update of design�prodi� by F ��� should make the design of product
consistent with its part again� Note that� the output condition of tUPartD also
includes this constraint since this part is redesigned with the assumption that the
product design will change accordingly� As a result� the constraint Consistent
�design�prodi� � F ���� design�partj�� is included in the set of inter�activity con�
straints between tUPartD� and tUProdD� i�e�� it is an element of CftUPartD �tUProdDg� �

In Denition ���� it is assumed that if a basic constraint is �or may be� invali�
dated by a previously executed activity� its revalidation is guaranteed by successor
activities in control��ow� However� this invalidation can be prevented through
the execution of a preceding activity or a set of activities� More precisely� if
Preserve�t�B� � ��� invalidation of B by the execution of t can be prevented
by the execution of some preceding activities in control��ow� thus Ot � B 	��� The
details are omitted here due to space limitations�
The presented examples provide su�cient guidance for work�ow designers� so if
their work�ow specication includes an activity which �may� invalidates a basic
constraint they should also include other activities conforming to the denitions of
validating sets or prevent this invalidation by placing preceding activities�
We formally represent and�or�validating sets and intervals at which the basic
constraints are �or may be� invalid during the execution of a work�ow W � through
a labeled ��level hyperDAG BC � �VBC � EBC � CLBC � V LBC�� where VBC � and
EBC represent nodes� and edges respectively� VBC is a hyperSet� and for any
Sa � VBC � Sa � T and for any hSa� Sbi � EBC � Sa � T and Sb � T � Recall that
T is the set of individual activities of W � CLBC and V LBC are the labels of edges
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Figure ��	 Basic Constraints Graph

in EBC � CLBC is a mapping from EBC to negated elements of B� where B is the
set of basic constraints of the work�ow system� and V LBC is a mapping from EBC
to fand� org denoting the types of validating sets� EBC is constructed through the
use of following principles�

� ��B � B� � ��B � SBfti�V S�andg� � �hti� V S��B� andi � EBC���

� ��B � B� � ��B � SBfti�V S�org� � �hti� V S��B� ori � EBC���

According to these principles� if V S is an and�validating set or an or�validating set
for B this situation is represented by the edges hti� V S��B� andi and hti� V S��B� ori
respectively� Note that if V S includes more than one activity it is represented as
a hyperSet in BC� If V S has one element� this element is represented with a
simple node� and since type of V S �i�e�� and�or� is immaterial in this case� label
of the edge incoming to V S representing its type is omitted� Furthermore BC is
consistent with control��ow graph �CF � due to Condition � of Denition ���� The
following example demonstrates the construction of a basic constraints graph using
the principles above�

Example ��� Let B � fB��B��B��B��B	�B
�B�g� and SBft��ft��t�g�andg � fB�g�
SBft��ft��t�g�org � fB��B�g� SBft��t�g � fB��B	g� SBft��t�g � fB	g� The corre�
sponding basic constraints graph BC is depicted in Figure ��� �

We use basic constraints graph in conjunction with inter�activity constraints
graph to develop the notion of correct execution of work�ows� To dene a correct�
ness criterion we need the denition of a complete execution history of work�ow
instances� In the following� the denition of a complete execution of a work�ow is
provided which is then used in dening the history�
In Section 
� control��ow of a work�ow is formalized as a labeled split�join hyperN�
odeDAG� In this graph� or�xor�split nodes cause some activities of the work�ow not
to take place in the actual execution� This is due to the fact that after the execution
of an or�xor�split node a decision is made upon which branch to take� To dene the
parts of a work�ow which are actually executed at run�time� namely a complete
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execution of a work�ow� the following algorithm is provided� In this algorithm�
G � �TG� EG� LG� TCG� is a labeled split�join hyperNodeDAG which is local to the
algorithm itself� The split�join hyperNodeDAG CE � �NCE � ECE� is the resulting
complete execution graph for a given control��ow graph� CF � �N�ECF � L� TC��

Algorithm �� �Complete Execution Generation Algorithm	

procedure PathGenerate�G�

begin

�� f � first�G�����������size�TG��� where G � �TG� EG� LG� TCG��
�� l� last�G�����������size�TG���
� if f is a split node then
�� case LG�f� of

begin
�� and 
 for every hf� li�path � EG do ECE � ECE � hf� li�path�
�� or 
 for some hf� li�path � EG do ECE � ECE � hf� li�path�
�� xor 
 for exactly one hf� li�path � EG do ECE � ECE � hf� li�path�

end
�� else ECE � ECE � hf� li�path
end

program main

begin

�� NCE � �� ECE � ��
�� PathGenerate�CF��
� for every node �CE � NCE and �CE � hyper�N� do
�� PathGenerate�CF ��CE��
end

The procedure PathGenerate accepts a labeled split�join hyperNodeDAG G as
an input� In Steps ���� each hyperNode of G is replaced with an abstract simple
element� thus it results in a simple DAG� First and last elements of the DAG are
assigned to f and l respectively� If f is an and�split node all paths connecting it to
l are included in CE� if f is an or�split node some of the paths connecting it to l
are included in CE� if f is an xor�split node exactly one of the paths connecting it
to l is included in CE� If f is not a split node� single hf� li�path is included in CE�

The main program which calls procedure PathGenerate is also provided above�
After initialization� this main program executes PathGenerate for control��ow�
CF � For every node �CE included in CE after this step �i�e�� �CE � NCE�� if
this node corresponds to a hyperNode in CF � PathGenerate is called with the
restriction of CF to this node �i�e�� CF ��CE�� as the input� The program executes
until there is no element in CE corresponding to a hyperNode in CF � In this way�
a complete execution is generated in a top�down fashion�
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In the following� a complete execution of a work�ow is formally dened as an
outcome of the main program above�

De�nition �� �Complete Execution of aWork�ow	 LetW � �N�CF�DF� IC�
BC� be a work�ow� and CF � �N�ECF � L� TC� be its control��ow� where CF itself
is thought as a single node at an abstract level� A Complete Execution of W de�
noted as CE � �NCE � ECE� is a split�join hyperNodeDAG which can be generated
through the Complete Execution Generation Algorithm �Algorithm ����� �

Notice that there could be many complete executions that can be generated from
the control��ow graph using Algorithm ���� The following example demonstrates
the generation of a complete execution from a given control��ow�

Example ��� Consider the control��ow graph �CF � in Figure ��� One of the com�
plete executions that is generated from CF � e�g�� CE� � �NCE� � ECE��� can be de�
ned as follows� NCE� � fa� b� fc� g� fh� i� j� k� lg�mg� ng� andECE� � fha� bi� hb� ��i�
h��� ni� hc� gi� hg� ���i� h����mi� hh� ii� hh� ji� hh� ki� hi� li� hj� li� hk� lig� where �� �
fc� g� fh� i� j� k� lg� mg� and ��� � fh� i� j� k� lg� �

As stated previously� basic constraints can be violated during a work�ow execu�
tion� yet as one of the essential conditions to preserve them all complete executions
must satisfy the criteria given in the following denition�

De�nition �� �Validation Complete Control�Flow	 Let W � �N�CF�DF�
IC�BC� be a work�ow� and BC � �VBC � EBC � CLBC � V LBC� be its basic con�
straints graph� CF is a Validation Complete Control�Flow if the following condi�
tions hold for every complete execution CEi � �NCEi � ECEi� of W �

��� ��ht� V S��B� andi � EBC� � ��t � base�NCEi��� �V S � base�NCEi����

��� ��ht� V S��B� ori � EBC� � ��t � base�NCEi��� �V S � base�NCEi� �� ���� �

Conditions � and � state that if an activity �t� does not preserve a basic con�
straint �i�e�� Ot �� B�� then every complete execution �CEi� including this activity
must contain activities which validate this basic constraint again �i�e�� activities
of the corresponding and�validating set or at least one activity of corresponding
or�validating set�� This property must be ensured by the work�ow designers� Note
that� if Preserve�t�B� � ��� and invalidation of B is prevented by the preceding
activities then Ot � B� In this case� t is not placed in BC�
The following example claries the denition above�

Example ��WarehouseAllocation �Example ������ and Billing �Example �����
work�ows have validation complete control��ows� since intuitively every complete

execution of WarehouseAllocation work�ow includes the activities in �
size�destLit�
k��

tUML�wk� if it includes tRM�wj �� and every complete execution of Billing work�ow
includes either tRS or tMC activity in the case B� is falsied by tUUB � �

A work�ow environment can be left in an incorrect state due to incorrect in�
terleavings during the execution of activities of the same or di�erent work�ows
even these individual work�ows have validation complete control��ows� Further�
more inter�activity constraints can be invalidated and therefore input conditions of
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Table �	 Relations De�ned on Time Intervals

Relation Condition

TIi and TIj intersect ��END�TIi� � START �TIj���
��END�TIj� � START �TIi��

TIi covers TIj �START �TIi� � START �TIj���
�END�TIj� � END�TIi��

some activities may be false when they are executed� Both situations sacrice the
correctness of work�ows� Before introducing a correctness notion� we provide a for�
mal denition of concurrent execution of work�ows� namely a complete execution
history of work�ows� To specify interleavings of work�ows and their constituting
activities clearly in this denition� time intervals are associated with them during
execution�
Assuming a model consisting of a fully ordered set of points �instants� of time�
a time interval TI is an ordered pair of points which represents its endpoints�
i�e�� TI � 	START �TI�� END�TI��� where START �TI� and END�TI� denote
the start�point and end�point of TI respectively� Two relations between the time
intervals� namely intersect and cover are presented in Table �� In this table� TIi and
TIj represent two arbitrary time intervals� TIi and TIj intersect� which is denoted
as TIi � TIj �� �� if they have at least a common point of time� If TIi covers TIj
this is denoted as TIi � TIj � These relations are used later in this section� More
information about time intervals and relations between them can be found in 	���
After introducing time intervals and required relations among them� the following
denition of the complete execution history of work�ows is presented�

De�nition ��� �Complete Execution History of Work�ows	 A Complete
Execution History CH � �TCH � ECH � LCH� dened over a set of complete work�
�ow executions CE� fCE�� CE�� ���� CEng� where CE�� CE�� ���� CEn are gener�
ated from control��ows of a set of work�ows W � fW��W�� ����Wmg� is a labeled
split�join hyperNodeDAG� where

� TCH � �ni��NCEi�fsCH � jCHg� where sCH and jCH denote the split and join
nodes of CH respectively� and sCH � jCH are equal to fCH and lCH �rst and
last nodes of CH� respectively�

� ECH � ��ni��ECEi� � ��
n
i��fhsCH � NCEii� hNCEi � jCHig��

� LCH is the labels of the nodes� i�e�� each node is labeled with its time interval
TI � For a simple node S� TIS � 	start�S�� end�S��� where start�S� and end�S�
denote the time instants when the activity is started and terminated respec�
tively� For a hyperNode S� TIS � 	min�START �TISi���max�END�TISi����
where Si is a simple or a hyperNode of S �i�e�� Si � S�� �

In the following denition� a correctness criterion for a complete execution history
of work�ows is presented� In this denition� a correct complete execution history
is characterized by referring to the properties of the work�ow environment state at
particular time instants� Intuitively� for an innite sequence � � �� �� �� ��� of time
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instants there is a corresponding sequence St�� St�� St�� ��� of work�ow environment
states� The notation Stevent is employed to denote a particular work�ow environ�
ment state at the time instant with which the event is associated� For example�
Ststart�t� denotes the state when activity t is started� If a constraint F holds at the
time instant at which event occurs� this situation is represented as Stevent j� F �

De�nition ��� �Correct Complete Execution History	 A Complete Execu�
tion History CH � �TCH � ECH � LCH� is correct if the following conditions hold�

��� ��t � base�TCH�� � �Ststart�t� j� It��

��� �Ststart�fCH � j� B� � �Stend�lCH� j� B�� where fCH and lCH are the rst and
last nodes of CH respectively� and B � �iBi where Bi � B� and B is basic
constraints of the work�ow system� �

Condition � states that when an activity t involved in the history is started its in�
put condition It should hold� Notice that since the individual activities are isolated�
validity of their input conditions when they are started is a su�cient condition to
execute them correctly� According to Condition �� if the basic constraints of the
work�ow system are true when the history is started they should be true after the
termination of the history�

After dening a correctness notion for a complete execution history of work�ows
the ways correctness can be sacriced are illustrated in the following paragraphs�
If the execution of activities of work�ows are interleaved� correctness of a complete
execution history can be violated in two ways�

� Input condition of an activity t may be false when t is executed �i�e�� Ststart�t�
�j� It��

� Although basic constraints are true when the complete execution history is
started� they may be false when it is terminated �i�e�� Stexecute�lCH � �j� B��

Input condition of an activity �Formula ��� can be violated in three ways� ��� An
inter�activity constraint F � Cin�t�� or ��� a basic constraint B � B�t�� or ��� an
extensional constraint G � G�t� may not be true when t is executed� The following
two examples demonstrate the rst case�

Example ���Consider the CheckStock �tCS�� InsertStock �tIS�� andWithdraw�
FromStock �tWFS� activities� and the inter�activity constraints F� � �quantity
�mi� � n�� and F� � �quantity�mi� � required�mi�� given in Example ���� Re�
member that F� � CftCS �tISg� and F� � CftIS �tWFSg� Since raw materials of type
mi may be withdrawn from the stock by the concurrently executing tWFS activity
of some other work�ows� F�� and F� may be invalidated between the tCS � and
tIS activities� and corresponding tWFS activity� This situation is depicted in the
following�

F1

WithdrawFromStock2
WithdrawFromStock1

F2

InsertStock1

1CheckStock
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Suppose that tCS� sees n � �� raw materials in the stock and required�mi� � ����
therefore �� raw materials are ordered from vendors and inserted into stock through
tIS� activity� After this� if a tWFS� activity of another instance of OrderProcessing
work�ow withdraws �� raw materials of same type� input condition of tWFS� �i�e��
quantity�mi� � ���� is invalidated� �

Example ��� Consider SelectBestCells �tSBC� and Assign �tA� activities� and
the inter�activity constraint F� � ���cellj � �qualifiedCells�� � �rank�celli� �
rank�cellj��� dened in Example ���� Recall that F� � CftSBC �tA�celli�g

� Since
other tA activities might concurrently assign a work to a preselected cells they can
invalidate F�� This situation is depicted as follows�

3F

AssignAssign1(cell )1 1 (cell )21 Assign2 (cell )1
SelectBestCells

Suppose that available cells are evaluated in tSBC� � and cell� and cell� are selected�
If tA��cell�� assigns a heavy work to cell�� and degrades its previously assessed rank�
cell� may become a worse selection for the assignment of the work in tA��cell��� Thus
input condition of tA��cell�� may be invalid when it is executed� �

The following example demonstrates a situation in which a basic constraint in�
volved in the input condition of an activity is falsied�

Example ��� Consider Examples ��� and ����� and note that basic constraint
B� is false between RetrieveMaterial�wj� �shortly tRM�wj ��� and corresponding
UpdateMaterialLocation�wk� �tUML�wk�� activities for every wk � destList� If a
WarehouseEvaluation �tWE� activity is executed between these activities it exe�
cutes incorrectly� since its input condition includes B�� This situation is demon�
strated in the following�

1B

(w 3 )

(w2 )RetrieveMaterial

WarehouseEvaluation

UpdateMaterialLocation(w1)

UpdateMaterialLocation
1

1

1

2

Suppose that tRM��w�� retrieves ���� raw materials of type mi from the stock of
warehouse w� and these materials are distributed to stocks of warehouses w�� and
w� through tUML��wk� activities� If tWE� activity is executed between them it
misses the raw materials being transferred and an incorrect amount of raw material
mi is reported� �

The preceding examples demonstrate the possible violations of input conditions�
Now� we discuss the cases in which basic constraints may remain false after the
termination of a complete execution history�
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Note that validation completeness �Denition ���� is an essential requirement to
preserve basic constraints in a complete execution history� thus if a basic constraint
is invalidated by an activity it is revalidated by the execution of activities in its
validating set� Yet to achieve this� the input conditions of activities in the vali�
dating set must hold when they are executed �Example ������ If input conditions
of activities in a validating set are falsied� revalidation of a basic constraint fails�
Thus� although work�ows having validation complete control��ows are involved in
a complete execution history� a work�ow environment can be left in a state where
basic constraints do not hold� The following example demonstrates this situation�

Example ��� Suppose that a basic constraint B	 is dened as follows�

B	 � ���celli � cells� � ���capacityMode�celli� � Normal��

�workload�celli� 
 Ci�� � ��capacityMode�celli� �Max��

�Ci � workload�celli� 
 MAXi���� ����

The intuition behind this constraint is as follows� A manufacturing cell �celli� can
work in normal �Normal� or maximum �Max� capacity modes� If celli works in
Normal mode� its workload should be equal or less than a predetermined upper
limit Ci� In Max mode� its workload should be between Ci and MAXi� Employing
cells in Normal load is more desirable� and transferring a part of a workload to other
available cells is possible� Consider the following executions of related activities�

B
5

1 (cell1) ChangeMode

Assign (cell1)2 ChangeMode2 (cell1)

TransferWork (cell1)1

Assume that MAX� � ���� C� � ���� and current workload of cell� is 
���
TransferWork��cell�� �shortly tTW��cell��� transfers a part of cell��s workload �i�e��
���� to other available cells� In this case� B	 is invalidated and ChangeMode��cell��
�tCM��cell��� should be executed to change mode of cell� fromMax to Normal� No�
tice that to guarantee validation of B	� inter�activity constraint

F� � �workload�cell�� 
 C�� ����

must hold when tCM��cell�� is executed� Thus� cell� works in Normal capacity
mode with workload � ���� and therefore B	 is revalidated after the termination of
tCM��cell��� This situation is similar to one presented in Example ����� Consider the
executions of activities which belong to another work�ow instance� Suppose that
Assign��cell�� �tA��cell��� assigns a work to cell� in amount of ���� and therefore
the resulting workload is 
��� Since this workload requires Max capacity mode
tCM��cell�� is executed to validate B	� and capacityMode�cell�� is madeMax� Note
that the activities presented belong to work�ows having validation complete control�
�ows� At the end of these executions� the resulting capacityMode is Normal and
current workload is equal to 
��� Thus B	 is still invalid� This is due to tA��cell��
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is invalidated F� which is required for the correct execution of tCM��cell��� �

As discussed through the preceding examples� although individual activities of
a work�ow are executed in isolation� work�ow correctness may be violated due to
improper interleavings� Thus� proper concurrency control mechanisms are required
to ensure correctness of a complete execution history� A concurrency control mech�
anism can guarantee that when tj is executed Itj is true if it does not permit any
activity that falsies constraints in Cfti�tjg to be executed between ti and tj for
di�erent tis� Furthermore� if a basic constraint involved in Itj is invalidated by
a previously executed activity� execution of tj should be delayed until this basic
constraint is satised again by the activities of corresponding validating set� Reval�
idation of a basic constraint can be ensured by the validation completeness property�
and guaranteeing correctness of input conditions of activities in a validating set�
Extensional constraints �i�e�� G�tj�� involved in the input condition of an activity
may be falsied by the activities which are terminated even before the beginning
of work�ow in which tj participates� and remain invalid for an uncertain time�
Therefore� ensuring their validity like inter�activity or basic constraints through a
concurrency control mechanism is not possible� A possible way to achieve this is
that� a work�ow designer places preceding activities in the control��ow to check
these constraints� and if they evaluate to false either they are validated by proper
activities or tj is excluded from the execution history through conditional branches�
Placing CheckStock and InsertStock activities before the WithdrawFromStock is an
example to the rst case� In this way� extensional constraints can be transformed
to inter�activity constraints and their validity can be ensured like other constraints�
If this design requirement is not taken into consideration by work�ow designers�
activity itself should verify extensional constraints� and if they evaluate to false�
the activity should be removed from the execution history �e�g�� by aborting it��
The essential design requirements which provide for the correctness of a complete
execution history of work�ows and hence must be ensured by the work�ow designers
can be summarized as follows� ��� Control��ow of work�ows must be validation�
complete� ��� proper inter�activity constraints must be introduced between the
activities which invalidate and later revalidate a basic constraint� ��� extensional
constraints must be transformed to inter�activity constraints� thus G�tj� � ��
Theorem ��� provides the concurrency control requirements explained above in a
formal manner� To specify the intervals where the basic constraints are �or may be�
invalid� and where inter�activity constraints should be preserved at run�time in the
theorem� time intervals �TIE� are associated with the edges of a basic constraints
graph �BC�� and inter�activity constraints graph �IC� in the following�

� If E is an edge of an IC then� TIE � 	START �TIsource�E��� END�TIsink�E����
i�e�� TIE is denoted by the start of time interval associated with the source node
and end of time interval associated with the sink node of E�

� If E is an edge of a BC� and V LBC � and then� TIE � 	START �TIsource�E���
END�TIsink�E����

� If E is an edge of a BC� and V LBC � or then� TIE � 	START �TIsource�E���
min�END�TISi���� and Si � sink�E�� i�e�� TIE is denoted by the start of
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time interval associated with the source node� and minimum end�point of time
intervals associated with the elements of the sink node of E� This is due to the
fact that once an activity in sink�E� is terminated� validity of a basic constraint
is ensured�

Theorem �� �Correctness of a Complete Execution History	 Let CH �
�TCH � ECH � LCH� be a complete execution history dened over a set of complete
executions CE � fCE�� CE�� ���� CEng� where CE�� CE�� ���� CEn are generated
from a set of work�owsW � fW��W�� ����Wmg having validation complete control�
�ows� Wi � W is represented as Wi � �Ni� CFi� DFi� ICi� BCi�� where ICi �
�VICi � EICi � LICi�� and BCi � �VBCi � EBCi � CLBCi � V LBCi�� CH is correct if the
following conditions hold�

��� Ststart�fCH� j� B�

��� ��Wi � W� �E � EBCi � �tx � base�TCH�� � �TIE � ��xfTItx j �CLBCi�E� �
Itxg� � ���

���a� ��Wi � W��E � EICi � �tx � base�TCH�� � �TIE � ��xfTItx j Preserve�tx�
LICi�E�� � �g� � ���

���b� ��Wi � W� �E � EICi � �tx � base�TCH�� � ���Preserve�tx� LICi�E�� �
���� � �TIE � TItx �� ��� � �Stend�tx� j� LICi�E���� �

In the following� these conditions are explained to clarify them�

��� Basic constraints �i�e�� B � �iBi� where Bi � B� should hold when complete
execution history �CH� is started �i�e�� when its rst activity� fCH � is started��

��� If E � htj � V S � ftk� tl� ���g� CLBCi�E� � �Bn� V LBCi�E� � and�ori is an
edge in BCi �where BCi a basic constraints graph of a work�owWi � W �� and
if �CLBCi�E� � Bn is involved in the input condition of another activity tx
�i�e�� Bn � Itx�� time intervals associated with E �TIE� and tx �TItx� should
not intersect�

���a� If E � htj � ftk� tl� ���g� LICi�E� � Fi is an edge in ICi �where ICi is an inter�
activity constraints graph of a work�ow Wi � W �� and if another activity tx
falsies F �i�e�� Preserve�tx�F� � ��� TIE and TItx should not intersect�

���b� If E � htj � ftk� tl� ���g� LICi�E� � Fi is an edge in ICi� and tx may falsify
F �i�e�� Preserve�tx�F� � ����� F should be still valid when tx is terminated�
Notice that� if tx does not participate in CH �e�g�� by removing it from CH��
this condition automatically holds�

Proof
 To prove this theorem� we show that if the conditions stated in Theorem
��� are true� the conditions in the denition of a correct complete execution history
�i�e�� Denition ����� hold�

��� As a rst step� it is proved that ��t � base�TCH�� � �Ststart�t� j� It� is true�
Assume that ��tx � base�TCH�� � �Ststart�tx� �j� Itx�� To achive this� at least
one of the conditions below should hold�
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� Ststart�tx� �j� Bi� where Bi � B�tx��

� Ststart�tx� �j� Fj � where Fj � Cin�tx��

� Ststart�tx� �j� Gk� where Gk � G�tx��

Remember that the constraints constituting an input condition are the elements
of B�tx� �Cin�tx� �G�tx� �Formula ���� Trivially� Condition � of Theorem ���
prevents rst case� second case is not possible due to Conditions ��a and ��b� It
is guaranteed that the last case does not occur by work�ow design�

��� In this step� it is proved that �Ststart�fCH � j� B� � �Stend�lCH� j� B� holds�
First part of the formula is true by assumption �i�e�� Condition � of Theorem
����� Assume that Stend�lCH� �j� B� to achieve this Otx �� B should hold for a
tx � base�TCH�� In this case� however� activities of an and�or�validating set are
present in CH due to validation completeness property �Denition ����� It has
been already proved that validity of input conditions of activities in a validating
set are guaranteed� Thus� B is certainly validated prior to the termination of
CH by these activities�

Thus� if the conditions of Theorem ��� are true� correctness of CH is guaranteed� �

�� Constraint Based Concurrency Control �CBCC� Mechanism

In this section� a Constraint Based Concurrency Control �CBCC� mechanism for
work�ows based on the correctness notion developed in Section � is proposed�
In Section � it is shown that� if the conditions of Theorem ��� hold� correctness
of a complete execution history of work�ows is guaranteed� Validity of these condi�
tions can indeed be guaranteed through a Constraint Based Concurrency Control
mechanism to control activity interleavings in such a way that inter�activity con�
straints are preserved and accesses to work�ow environment on which the basic
constraints do not hold are prevented� In this mechanism� activities acquire and
release locks on inter�activity and basic constraints in two di�erent modes� and
certain inter�activity constraints are evaluated within an activity� To achieve this�
CBCC mechanism employees three stages for the execution of an activity� ��� Lock�
ing stage before the actual execution of an activity� ��� Certication �evaluation�
stage before the actual termination of an activity� ��� Lock releasing stage after
an activity terminates� Activities acquire locks on the relevant constraints in the
locking stage by issuing lock requests to CBCC mechanism� The lock compatibility
table for inter�activity and basic constraints is given in Table �� �Y� means that
the locks do not con�ict and �N� means the locks con�ict�
An inter�activity constraint F can be locked by an activity tx in one of the
following modes�

� Shared
 This mode of lock is acquired when tx intends to preserve F until a
set of other activities terminate� i�e�� F � Cout�tx��

� Exclusive
 This mode is used when tx falsies F � i�e�� Preserve�tx�F� � �� All
inter�activity constraints in a work�ow management system which are falsied
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Table 
	 The Lock Compatibility Table
for Inter�activity and Basic Constraints

Existing

Requested Shared Exclusive

Shared

Exclusive

Y

N

Mode

N

Y

by tx constitute the set F �tx�� Note that not only inter�activity constraints
within a work�ow in which tx resides� but also all inter�activity constraints of
other work�ows are considered for this set�

If F is to be preserved in the interval between activity tj and a set of activities
ftk� tl� ���g� and if another activity tx that falls in this interval falsies F � tx should
be delayed until F is unlocked by the every activity in ftk� tl� ���g� Therefore� the
shared lock taken by tj con�icts with the exclusive lock taken by tx� as indicated
in Table �� Furthermore if F is to be preserved in the interval between activities
tj and ftk� tl� ���g� and again F is to be preserved in another interval between tm
and ftn� to� ���g� both tj and tm lock F in shared mode and clearly there is no
need for these shared locks to be in con�ict� as indicated in Table �� Note that
we use the term �exclusive lock� di�erently than its conventional meaning in that�
two exclusive locks on the same constraint do not con�ict with each other in our
approach as opposed to traditional exclusive locks�
It should be noted that some of the inter�activity constraints may be falsied by

tx� i�e�� Preserve�tx�F� � ���� which constitute the set LF �tx�� For the activities
that may falsify inter�activity constraints� we prefer to use an optimistic scheme
rather than locking with the intention of increasing the performance� since there
is a probability that the activity will not falsify these constraints� If a constraint
in this set is already locked in shared mode to be maintained when tx is executed�
this constraint is evaluated in the certication stage and if it evaluates to false� tx
is rolled back and resubmitted to work�ow management system�
A basic constraint B can be locked by tx in one of the following modes�

� Shared
 If tx requires the correctness of B� i�e�� B � B�tx�� a shared lock is
acquired�

� Exclusive
 If tx invalidates �or may invalidate� B� i�e�� B � ��V SSBftx�V S�and�

org�� an exclusive lock is required�

An activity tx �may� falsify a basic constraint B to be revalidated by the activities
of and�or�validating sets as explained in Section �� Therefore the activities that
require the correctness of B in this interval should not be allowed to execute� For
this reason� tx obtains an exclusive lock on B� On the other hand the activity that
requires the correctness of B acquires a shared lock� The shared lock con�icts with
the exclusive lock as indicated in Table �� It is clear that the activities that require
correctness of B do not con�ict with each other�
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���� CBCC Algorithms

In this section� the algorithms employed by CBCC mechanism are described� In
these algorithms� data structures IC� BC for every work�ow� and B�tx�� F �tx��
LF �tx� for every activity are required� A Constraint Editor in conjunction with a
rst�order constraint specication language 	��� �
� can be used by an administrator
and�or work�ow designers to dene these data structures�

������ Algorithm for Activity Start

Any activity tx needs an exclusive lock for every inter�activity constraint it falsies
to start �Steps ��� of Algorithm ����� This is possible only when there is no other
activity that has a shared lock on F � in other words no other activity wants to
preserve F � Furthermore� tx also needs to acquire shared locks for all the basic
constraints involved in its input condition �i�e�� B�tx�� �Steps ���� A lock for a
constraint B in B�tx� is granted to tx if there is no invalidating activity that has an
exclusive lock on B� After this step� every inter�activity constraint emanating from
tx in the inter�activity constraints graph �IC� �i�e�� elements of Cout�tx�� are locked
in the shared mode in Steps ���� tx can acquire a shared lock on F � Cout�tx�
if no other invalidating activity for F has an exclusive lock on F � Recall that F
may be incident to more than one activity� and these activities are grouped into
a hyperSet S�tx�F�� This is represented by the edge htx� S�tx�F��Fi in IC� Since
F should be preserved until the termination of all the activities in the hyperSet
S�tx�F�� it is necessary to obtain a shared lock for each of the activities in this set�
i�e�� size�S�tx�F�� locks are acquired� A con�icting lock can then only be allowed
when all these locks are released� In Steps ����� exclusive locks are acquired on
the basic constraints which are invalidated by tx which is only possible if there are
no shared locks on B� That is� since tx is invalidating B� there should not exist
any activity that requires the correctness of B� If V S is an and�validating set for
B and if it contains more than one activity� tx acquires an exclusive lock on B for
each activity of V S� that is the number of locks acquired is size�V S�� If V S is an
or�validating set� tx acquires a single lock since the termination of the rst activity
of V S guarantees validity of B�
Inter�activity constraints which may be falsied by tx� i�e�� LF �tx� are handled
in an optimistic manner� Note that all the constraints in LF �tx� may not be ac�
tive� that is� it may be the case that for some constraints in LF �tx�� there is no
activity requiring these constraints to hold� We include all the active constraints in
ActiveICS set and all the constraints in this set are already locked in the shared
mode� The intersection of LF �tx� and ActiveICS sets gives us the set of constraints
denoted as ALF �tx�� that are both active when tx has started and also has to be
validated when tx terminates �Step ���� Since new shared locks can be acquired on
the elements of LF �tx� � ActiveICS by other activities before the activity termi�
nates� constraints in PLF �tx� � LF �tx� � ActiveICS �i�e�� non�active constraints
which are in LF �tx�� are locked in exclusive mode� Furthermore� operations in
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Step �� are executed atomically �i�e�� in a critical section�� In this way� further
constraints that may be falsied by tx are prevented from becoming active after
the set of constraints that will be validated are determined�

Algorithm ��� �Algorithm for Activity Start	

begin
�� for every F � F �tx� do
�� ExclusiveLock�F��
� for every B � B�tx� do
�� SharedLock�B��
�� for every F � Cout�tx� do
�� SharedLock�F� with Counter � size�S�tx�F���
�� for every B � ��V SSBftx�V S�andg� do
�� ExclusiveLock�B� with Counter � size�V S��
�� for every B � ��V SSBftx�V S�org� do
��� ExclusiveLock�B��

���

�
���
ALF �tx�� �LF �tx� � ActiveICS��
PLF �tx�� �LF �tx��ActiveICS��
for every F � PLF �tx� do

ExclusiveLock�F�

�
���

end

After successfully acquiring all the necessary locks as indicated in the Algorithm
���� an activity can be scheduled for execution�

������ Algorithm for Activity End

An activity terminates when all of its operations are complete� But prior to ter�
mination� an evaluation algorithm �Algorithm ���� is executed to check whether an
active inter�activity constraint is falsied by the execution of this activity� This
is achieved in Step � by evaluating the constraints in ALF �tx� in parallel by the
routine EvalInParallel� once a constraint evaluates to false� EvalInParallel ter�
minates immediately and returns false� In this case� the activity tx is rolled backed
and resubmitted to work�ow management system� Note that all the locks acquired
by tx should be released� If ALF �tx� is empty� Algorithm ��� is not executed�

Algorithm ��� �Algorithm for Activity End	

begin
�� if �EvalInParallel�ALF �tx�� � false� then
�� Rollback�tx�� Resubmit�tx�
end
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����� Algorithm For Activity Post�Processing

After an activity tx is terminated� all locks acquired by tx on the constraints in
PLF �tx�� F �tx�� and B�tx� are released in Steps ���� ��� and ��� of Algorithm
�� respectively� Inter�activity constraints incident to tx �i�e�� Cin�tx�� which are
locked by other activities are released in Steps ���� If tx is in an and�validating
set �V S� of a basic constraint B� one of the previously acquired exclusive locks by
the invalidating activity of B is released in Steps ����� If tx is the rst terminating
activity of an or�validating set� a corresponding lock is released Steps ������

Algorithm ��� �Algorithm for Activity Post�Processing	

begin
�� for every F � PLF �tx� do
�� Unlock�F��
� for every F � F �tx� do
�� Unlock�F��
�� for every B � B�tx� do
�� Unlock�B��
�� for every F � Cin�tx� do
�� Unlock�F��
�� for every B � ��tiSBfti�V S�andg� where tx � V S or tx � V S do
��� Unlock�B��
��� for every B � ��tiSBfti�V S�org� where tx � first�V S� do
��� Unlock�B�
end

���� Correctness of the CBCC Mechanism

To prove that a complete execution history �CH� generated by CBCC mechanism
is correct we show that the conditions of Theorem ��� hold for CH � The following
properties about time intervals are used in the proof� Note that � and � denote
cover and intersect relations between the time intervals respectively�

� ��TIi � TIj� � �TIj � TIk �� ���� �TIi � TIk �� ���

� ��TIi � TIj� � �TIi � TIk � ���� �TIj � TIk � ���

Theorem ��� Any complete execution history �CH� generated by CBCC mecha�
nism is correct�

Proof


��� Condition � of Theorem ��� holds due to the assumption�

��� Assume that Condition � of Theorem ��� does not hold� hence TIE �TItx �� �
in CH for an edge E � htj � V S � ftk� tl� ���g��Bn� and�ori in BCi� and an
activity tx where Bn � B�tx� � Itx � The interval between the time when an
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exclusive lock on Bn is acquired with counter by tj and the time when the last of

these locks are released is denoted as TI
XL�Bn�
E in the case where V S is an and�

validating set� Same notation is used to denote the interval between the time
instances where a single lock is acquired by tj and released by the rst activity of
an or�validating set V S� Similarly� the interval between the time when a shared

lock is acquired and released on Bn by tx is denoted as TI
SL�Bn�
tx � Since activities

acquire locks before they start and release after they complete� TI
XL�Bn�
E � TIE

and TI
SL�Bn�
tx � TItx � Since exclusive and shared locks on a basic constraint

con�ict� it is guaranteed that TI
XL�Bn�
E � TI

SL�Bn�
tx � �� Yet� due to rst

property above ��TI
XL�Bn�
E � TIE� � �TIE �TItx �� ���� �TI

XL�Bn�
E �TItx ��

��� Furthermore� according to second property� ��TI
SL�Bn�
tx � TItx� � �TI

SL�Bn�
tx

� TI
XL�Bn�
E � ��� � �TItx � TI

XL�Bn�
E � ��� Observe that the right hand

sides of two formulas contradict each other� hence our presumption is false and
Condition � of Theorem ��� holds�

���a� We start with proving that if Preserve�tx�F� � � then TIE � TItx � � is
guaranteed in CH for an edge E � htj � ftk� tl� ���g�Fi in ICi� We denote the
interval between the time when a shared lock on F is acquired with counter by

tj and the time when the last of these locks are released as TI
SL�F�
E � Similarly�

the interval between the time when an exclusive lock is acquired and released on

F by tx is denoted as TI
XL�F�
tx � Again� TI

SL�F�
E � TIE and TI

XL�F�
tx � TItx �

Since exclusive and shared locks on an inter�activity constraint con�ict� it is

ensured that TI
SL�F�
E � TI

XL�F�
tx � �� With the similar observations as in

Condition � of this proof� Condition ��a of Theorem ��� holds�

���b� We conclude with proving that if Preserve�tx�F� � ���� TIE � TItx �� �
implies F holds after tx is terminated� Depending on the execution sequences
of tj and tx two possibilities can occur�

� tj acquires a shared lock on F before tx acquires an exclusive lock on F � F is
certainly logged intoALF �tx� and if tx falsiesF � EvalInParallel�ALF �tx��
returns false and tx is removed from CH �i�e�� rolled backed�� hence
TIE � TItx � ��

� tx acquires an exclusive lock on F before tj acquires a shared lock on F � tj
can not lock F in shared mode after Step �� of Algoritm ��� and before tx
terminates� since tx already locked F in exclusive mode in Step ��� Hence
TIE � TItx � ��

Thus� a complete execution history generated by CBCC mechanism is correct� �

���� Discussion

There are several alternatives to implement a constraint based concurrency control
mechanism� In the following� some of these alternatives are discussed�
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� Conservative� In this approach� activities that are certainly or likely to falsify
basic and inter�activity constraints are determined in advance �i�e�� in design�
time�� and possible invalidations of inter�activity constraints and accesses to
states on which the basic constraints do not �or may not� hold are prevented
conservatively� For example� proposed CBCC mechanism can be classied into
this category if activities try to acquire locks on the inter�activity constraints
which they may falsify in addition to constraints which they certainly falsify in
Steps ��� of Algorithm ���� Also Step �� of Algorithm ���� and Algorithm ��� be�
come unnecessary in this case� Since this conservative technique is based solely
on locking� we call it as the Constraint Locking Concurrency Control �CLCC�
mechanism� In CLCC mechanism� constraints themselves are no longer neces�
sary� but can be represented through some simple data items just for locking
purposes� It should also be noted that� if such a technique is not implemented
in a work�ow system� it is possible to acquire locks manually on virtual data
items using the same principles�

� Optimistic� In this approach� activities validate their input conditions� This
requires additional operations for the verication of these conditions� Optimistic
technique is very similar to concurrency control mechanism of ConTract model
	���� however the input conditions we check are well�dened interms of inter�
activity and basic constraints� If input condition of an activity evaluates to false�
a con�ict resolution algorithm can be executed to correct the input condition
violation or to relax the requirements in the input condition� An inevitable
result may be abortion of the activity and compensation of some previously
terminated activities�

� Dynamic�conservative� The approach employed by the CBCC mechanism can be
classied into this category�

In the optimistic technique� if con�ict resolution algorithm requires rollback of
the activity this may cause �possibly cascading� compensation of previously termi�
nated activities which may be a very costly process 	

� ���� In addition� overhead
of validation of every input condition should not be ignored� CLCC and CBCC
techniques guarantee that input condition of an activity is true when it is exe�
cuted� thus neither input condition validation nor compensation of other activities
to resolve con�icts are required in these techniques� In addition� CBCC mechanism
provides some activities to be executed and terminated if they pass certication
process although these activities and consequently successor activities would be
blocked by the CLCC mechanism� Furthermore� in the optimistic technique it is
necessary to check the constraints themselves� however in CLCC mechanism these
constraints can be represented by some simple data items just for locking purposes�
In CBCC mechanism on the other hand� only the inter�activity constraints which
may be falsied by the activities are needed in the validation phase� In Section ��
�
a comparison of the performance characteristics of these techniques is provided�

It should be noted that� proposed CBCC and CLCC mechanisms may result in
deadlocks like any other locking�based concurrency control mechanism� since ac�
tivities may be blocked indenitely� Therefore� special algorithms are required to
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handle deadlocks� There are three well known types of methods for handling dead�
locks� prevention� avoidance� and detection and resolution 	���� We have developed
a deadlock avoidance technique for CBCC and CLCC mechanisms in which po�
tential deadlock situations are detected in advance �i�e�� in design�time� and it is
ensured that they will not occur at run�time by imposing additional restrictions
on the interleavings of activities� Since concurrency control dependencies among
activities are known in advance� possible deadlock situations can be detected in
design�time in CBCC and CLCC mechanisms� Detailed explanation and formal
foundation of this approach are presented in 	�� due to space limitations�

���� Performance Analysis

In this section� a performance comparison of the CBCC� CLCC mechanisms and
optimistic technique which is similar to concurrency control mechanism of ConTract
model 	��� is given� The simulation is realized in GPSS 	���� In the experiments�
average response time of a work�ow instance �avgResT ime� is measured by aver�
aging response times of �� work�ow instances� Response time is dened as the time
between the generation and termination of a work�ow instance�
In the simulation� there are a total of �� di�erent basic and inter�activity con�
straints in the system� It should be noted that� the total number of constraints are
kept small so that the possibility of con�icts among activities is high� In this way�
the performances of the methods can be observed in a very high con�ict case� For
each activity� the number of constraints that should be considered �i�e�� locked or
evaluated� is randomly chosen from the interval 	��maxCons� where maxCons
denotes the maximum number of constraints per activity and is given a priori� In
the CLCC mechanism� each activity tries to obtain a lock on all of its constraints�
Note that� some of the constraints which may be falsied by an activity are eval�
uated at the activity end instead of being locked in the CBCC mechanism� The
evaluation cost per constraint is taken as constant for simplicity �i�e�� � simulation
time units�� If a constraint evaluates to false the activity is aborted and restarted
later� In the optimistic technique� the constraints are evaluated when the activity
starts and once a constraint evaluates to false the activity is aborted and preceding
activities are compensated� The result of the evaluation is randomly determined as
true or false with the probability of �� and �� respectively� It should be noted
that this fraction favors the optimistic technique rather than the CBCC mechanism�
because in the CBCC mechanism a small fraction of constraints goes through the
validation as opposed to all constraints in the optimistic method� Also in favor of
the optimistic technique� the compensation cost is chosen as close to the maximum
duration of just one activity� i�e�� �� simulation time units� although in reality this
cost is much higher since compensation of more than one activity is more probable�
The graph in Figure �
 shows the average work�ow instance response times
�avgResT ime� of three techniques for di�erent maximum number of constraints
per activity �maxCons�� The experiment results can be summarized as follows�
All techniques provide their best avgResT imes when maxCons is small� i�e�� in
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	�� ��� This is expected since when maxCons � � the probability of con�icts
among activities is low� and consequently the number of blocked or compensated
activities is small�

When maxCons � �� CBCC and CLCC techniques provide better avgResT imes
than optimistic technique� For example� when maxCons is equal to half of the total
number of constraints in the system �e�g�� around ��� avgResT ime provided by the
optimistic technique becomes worse than two times of avgResT ime provided by
CBCC mechanism� i�e�� ���
 vs� 
��� simulation time units� This is due to fact
that� the number of compensated activities increases in the optimistic technique
with the increasing number of constraints �maxCons� which implies higher rate of
con�icts� In CBCC mechanism� however� abortion of an activity does not lead to
compensation of previous activities� only the activity itself is retried later�

When maxCons � �� CBCC mechanism starts to perform better than CLCC
mechanism� For example� when maxCons � �� CBCC mechanism provides ap�
proximately �� faster avgResT ime than CLCC technique� Since not all the con�
straints are locked in the CBCC mechanism� the probability of delays due to locking
is lower than that of CLCC mechanism� This di�erence becomes more visible when
maxCons is larger�

Performance results presented indicate that the CBCC mechanism results in lower
average work�ow instance response times in almost all cases except when max�
imum number of constraints that should be considered per activity �maxCons�
is very small �e�g�� �� or such a constraint does not exist� If maxCons is small�
avgResT imes provided by the compared techniques are almost the same�

After observing that the performance of the optimistic technique is not good in
a high con�ict case� additional experiments are conducted to compare the per�
formances of CBCC and CLCC techniques for di�erent evaluation costs� These
experiment results are presented in 	���
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�� Conclusions

Concurrency control aspects of work�ow systems is addressed in this work� which
is very important for some work�ow applications where mission critical operations
require the consistent view of the execution environment 	����
The fundamental issue of correctness criterion specic to work�ow systems is de�
ned through inter�activity constraints and basic constraints by using the semantic
work�ow information available at design�time� A concurrency control technique�
namely Constraint Based Concurrency Control �CBCC� mechanism� based on this
criterion is dened which uses the concept of locking in conjunction with validation
with a fundamental di�erence from the database locking� the constraints rather
than data items are locked� We have shown that� with a proper constraint locking
and validation mechanism� the inter�activity constraints that should remain valid
are preserved� and the activities that need basic constraints to hold are prevented
from executing in the intervals where these constraints do not hold� It is also possi�
ble to use a more conservative approach in which the activities acquire locks instead
of going through a validation phase� We call this technique as Constraint Locking
Concurrency Control �CLCC� mechanism� These techniques are simple to imple�
ment� and the performance analysis indicate that the suggested techniques have
better performance than an optimistic approach based on the constraints �similar
to ConTract 	����� Note that when a work�ow designer does not require the correct�
ness to be preserved� some of the constraints may not be enforced� In this respect�
it is possible to apply an isolation mechanism similar to isolation levels in databases
	��� by allowing the work�ow designer to customize the constraints graphs accord�
ing to the correctness requirements of work�ow application� For these reasons� we
believe that the CBCC and CLCC techniques have practical importance�
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