
MARIFLOW
A WORKFLOW MANAGEMENT SYSTEM FOR MARITIME INDUSTRY

Asuman Dogac, Catriel Beeri∗, Arif Tumer, Murat Ezbiderli, Nesime Tatbul, Cengiz
Icdem, Guray Erus, Orhan Cetinkaya and Necip Hamali

Software Research and Development Center, Faculty of Engineering
Middle East Technical University (METU), 06531 Ankara Turkiye

asuman@srdc.metu.edu.tr

∗ Institute of Computer Science, Hebrew University
91904 Jerusalem Israel

beeri@cs.huji.ac.il

Abstract

The aim of MARIFlow Project is to provide a prototype of an architecture
for automating and monitoring the flow of control and data over the Internet
among different organisations. This "electronic medium", capable of
delivering value-added services to the participants, encompasses many
different technological areas: from communication to security, databases,
transaction support and agents. The project will make use of these
technologies to produce a workflow management system. In particular, the
goal of the project is to develop an adaptable workflow engine through
which the activities of the different participants in the maritime industry can
be harmonised, combined, and expanded through better tracking of
functional dependencies and documents, improved data access and handling,
and lower administrative overheads.

The MARIFlow system is based on data-centric approach, that is, execution
of activities on a host machine is triggered by arrival of data, and generates
further data that is sent to participants in the process, where upon arrival may
trigger further activities. Nevertheless, the important characteristic of such
processes is distribution, not just in terms of geography, but also in terms of
ownership, responsibility and autonomy. This paper also addresses the
important issues such as security of the documents as well as the tracking of
data and documents, for monitoring purposes.

1 Introduction

Workflow systems, in general, provide for declarative means for specifying
the control flow among activities and extensive research and development,
both in the academia and in the industry have contributed to various aspects
of the workflow system in making a mature technology - Alonso (1995),
Georgakopoulos (1995), Miller (1997), Ming Shan (1998), Dayal (1998),
Muth (1998), Sheth (1998), Vossen (1998), Alonso (1998), Cichocki and
Rusinkiewicz (1998), and Dogac (1998). However in most of the systems,
data flow is restricted to the parameters of the involved activities often
disconnected from the description of the flow itself. In other words, the
workflow management systems as used by industry today, use a process
centric approach. Thus, they lack a mechanism with which it is possible to
define the source of data, control its flow over the net, and identify and
possibly invoke the activities that make use of it. The workflow engine to be
developed as part of this project will address these crucial issues with a
special emphasis on the ease of use, maintenance, and customization to the
needs of maritime industry.

In maritime industry, materials used in shipbuilding or repairs need to be
certified by a classification society. In current practice, the material is
checked while it is at the production plant and the "quality data", related to
this material, is delivered to the classification society. If the quality data
fulfills the requirements, a paper certificate is issued and delivered to the
production plant as well as to the customer. Once issued the certificate
follows the material to the main shipyard or to one of the subcontractors
from where it is eventually added to the ship’s documentation file. The
certificate is checked at every production stage as well as at ship’s handover
and at each survey during ship’s life cycle. In an industry involving the flow
of large amount of paper documents among different organizations, this is a
slow, expensive, tedious, error-prone and very limiting process, which in
some cases can hinder the ability to improve the service quality. In this work
we describe an architecture that provides for automating and monitoring the
flow of control and data over the Internet among different organizations and
companies with special attention to maritime industry.

In the MARIFlow system, the higher order process is defined through a
graphical user interface, which is then mapped to a textual language called
FlowDL. FlowDL allows indicating the source of the documents, their
control flow and the activities that make use of these documents. A process
definition in FlowDL is executed through co-operating agents, called
MARCAs (MARIFlow Co-operating Agents), that are automatically
initialized at each site that the process executes. The initiation of agents and
monitoring facilities are managed through Java programs which can be used
by authorized users through Web. The main Web page through which the
tools can be started is shown in Figure 1.

MARCAs are responsible for handling the activities at their sites, routing the
documents in electronic form, according to the process description among
other MARCAs, keeping track of process information by logging activities,
and providing for the security and authentication of documents during
communication.

Figure 1. MARIFlow MARCA Tools Web Page

The overall system should be immune to failures, and the processing power
should be distributed such that it will not generate a serious bottleneck built
around a single machine, which is accessed extensively. The participants of
the workflow system should decide and behave on their own rather than
being invoked or commanded by other programs in a centralized fashion.
These requirements necessitate an agent-based architecture for the workflow
system, where independent entities capable of completing complex
assignments without intervention are used rather than tools that must be
manipulated by a user.

In the MARIFlow system, the responsibilities of MARCAs in order to
support the requirements given above are defined as follows:

• A MARCA receives messages through a persistent queue and evaluates
them to decide what action to take. The persistent queue is necessary so
that the agent does not lose its state after a program crash, site failure
etc.

• It persistently stores the documents it receives. If the organization that
the MARCA resides on has a firewall mechanism, it is also MARCA’s
responsibility to pass the documents to the in-house system, get the

resulting documents from the system and forward them to the related
agents as specified in the process definition.

• Process related information should be stored persistently for further
monitoring purposes. Therefore it is MARCA’s responsibility to direct
related information to a database through its JDBC interface.

• A process definition is compiled at a host and through a special MARCA
the information is distributed over the system to other MARCAs
necessary for the given workflow definition at initialization phase. That
special MARCA is also responsible for data warehousing for monitoring
purposes.

This paper is organized as follows: In Section 2, the general architecture of
the system is described. This section introduces the MARIFlow Cooperating
Agents (MARCAs), the FlowDL workflow definition language, monitoring
of the workflow processes along with an example definition for maritime
industry to illustrate to details of the architecture. Section 3 describes how
security and authentication of documents are handled in MARIFlow. The
availability and scalability issues are discussed in Section 4. In Section 5, the
work that remains to be done is described namely the persistency of the
messages to recover from failures and compensation of activities. Finally,
Section 6 concludes the paper.

2 The Architecture of the System

2.1 An Overview of the Architecture

Figure 2 gives an overview of the general architecture of the MARIFlow
system. Each organization may have in-house applications inside a firewall
protected from unauthorized access. MARCAs exist on a host machine
outside the firewall relative to the site network. The MARIFlow agent
informs in-house applications when necessary through internal process
initiator and is responsible for sending and receiving documents and process
related information through the firewall mechanism.

In MARIFlow an inter-enterprise workflow is defined graphically where the
workflow designer specifies domains, tasks and process information which
are used in building the process definition. The graphical representation of
the process definition is mapped to FlowDL, the language used in
MARIFlow, and from that definition the specifications for each MARCA is
generated. The compilation of the process definition is done on the
coordinating MARCA, which is installed in one of the sites. The behavioral
structure, obtained from the process definition, for each MARCA is then
transmitted to corresponding agent and MARCAs become available for
distributed workflow management. It should be noted that this transmission

along with the communication at instance level should be realized through
persistent queues in order to survive through system crashes and other
problems.

2.2 MARIFlow Cooperating Agents: MARCAs

A workflow instance in MARIFlow is executed by co-operating agents
called MARCAs. There is exactly one MARCA at each site participating to
the workflow execution and it handles all the activities running at its site. At
initialization, once in their life time, the sites download the generic MARCA
template from a given URL. At compilation time the guards of activities
within the responsibility of a MARCA are determined according to the
process definition. Guards are special mechanisms based on intertask
dependencies - Attie (1993), Singh (1996). They are logical expressions for
significant events of activities of a MARCA like "start" or "terminate".
MARCAs evaluate these guards with the messages that they receive to
decide on their actions. In other words, guards inform the MARCA when to
execute a certain activity. A detailed formal description of obtaining guard
expressions from a given workflow specification is given in Dogac (1998).
All of the information about guard structures is obtained from the process
definition at the initialization phase of the MARCA.

Figure 2. An Overview of the Architecture

There is a special MARCA in the workflow system called the coordinating
MARCA. A workflow definition is realized through the coordinating

MARCA and compiled only once. During this compilation, guard structure
for each MARCA participating the system along with the interactions with
the other MARCAs are obtained and the MARCAs are initialized with this
information by the coordinating MARCA. A single MARCA residing on a
host is capable of handling multiple workflow definitions and multiple
instances of a given workflow at a certain time. All messages are
differentiated by unique workflow id obtained from the definition and
instance ids that are automatically assigned by the system for each instance
generated.

MARIFlow agents communicate with each other through TCP/IP over the
Internet. Network concurrent accesses to a single port is handled by Java’s
Net Package by assigning dynamic ports for each request. Simple message
buffering and queuing are also provided by this package. These queuing
facilities have been extended to persistent queue implementation and
transactional agent communication for safe and consistent transmission.

Figure 3. Graphical User Interface for Process Control inside the Firewall

MARCAs communicate with each other through an Agent Communication
Language, which is specific to MARIFlow agents, hence they do not
communicate with agents in the outside world. This is because
communicating with outside world agents is not necessary within the scope
of the work. During a session, each message is preceded by an activity
identifier along with workflow and instance ids. This information is

necessary to identify how a received document or message should be
managed according to the activity identifier.

A MARCA sends a document and process related information inside the
firewall through an e-mail. Since the content of the documents may be
binary, they are encoded prior to the attachment by traditional mime base64
encoding used in e-mail messages.

A program inside the firewall processes the incoming mail and extracts the
documents, process related information, workflow and instance ids, the
activity that will use this document inside the firewall and displays this
information through a GUI as shown in Figure 3. When a document arrives
through an e-mail it is shown in the Incoming Documents list of the
interface. When a document is highlighted (i.e. selected), the activity that
will use this document appears in the Activity box. The Activate in-house
Cycle button may be used to start the given activity provided that API of the
activity is available. Send back to MARCA button is used to transfer the
document selected in the Outgoing Documents list to the MARCA outside if
the related information form of the document is filled via the interface
displayed when Generate Process Info button is used.

We have chosen to send the response back to MARCA through e-mail
mechanism to be system independent as much as possible, since some
firewall architectures disallow packet transmission in both directions. The
reader program for the mailbox is based upon POP3 and receives the
messages through the POP3 server port. This choice is also an effort to be
system independent in MARIFlow since POP3 is independent of the
structure of the mailbox in different operating system implementations.

2.3 Workflow Definition Language: FlowDL

In MARIFlow system, a workflow process definition is given in FlowDL as
a collection of blocks, tasks and other sub-processes as well as some explicit
declarations and commands to specify Internet domain addresses, sources of
documents, process specific information to be used for monitoring the
document flow, and activities for further processing on the documents. The
term activity is used to refer to a block, a task, or a (sub)process.

FlowDL contains several kinds of blocks, which are used to define different
kinds of flow types in the process definition: the activities that run in
parallel, in serial or under conditions etc. These blocks along with the
declarations done in the process definition code define the whole workflow
system. The blocks types encapsulate the workflow primitives defined in
Hollingsworth (1996), which are sequential, AND-split, AND-join, OR-split,
OR-join and repeatable task.

In MARIFlow, an inter enterprise workflow is defined graphically by using
the tool as shown in Figure 4. This tool allows the workflow designer to

make the declarations, specify domains, tasks and process information.
Afterwards, different types of blocks can be generated and added to the
workflow by using the declarations in order to preserve consistency. The
workflow definition is mapped to the textual FlowDL language. When this
definition is parsed, the guards of each MARCA participating the system are
generated and the agents are initialized with this information. The guards
provide for the behavioral definitions of the MARCAs.

Figure 4. Graphical User Interface for Process Definition in MARIFlow

The advantages brought by block structured FlowDL language can be
summarized as follows:

• The current workflow specification languages are unstructured and/or
rule based, as noted in Sheth (1996). Unstructured languages make
debugging/testing of a complex workflow difficult and rule based ones
become inefficient when they are used for specification of large and

complex workflow processes due to the large number of rules and
overhead associated with rule management. FlowDL avoids these
disadvantages through its block-structured nature.

• A block structured language confines the inter-task dependencies to a
well-formed structure that in turn proves extremely helpful in
generating the guards of activities for distributed scheduling of a
workflow.

• Blocks not only clearly define the data and control dependencies among
tasks but also present a well-defined recovery semantics through
compensation for a failed or aborted block.

In addition to activities, there are also assignment statements in FlowDL
which access and update workflow relevant data. In this way the workflow
designer has the ability to assign values to variables. Note that these
variables are used in conditional and loop blocks.

2.4 Monitoring of Workflow Processes

Each MARCA stores all the messages it receives in a persistent log so that
after a crash or a site failure the MARCA can be brought back to a consistent
state by using the information in the log. The MARCAs also store additional
process related information specified by the workflow designer through
FlowDL inside the database system. Since Java is used in coding the
MARIFlow system, a Java native JDBC interface is used for database
connectivity. Consequently any database with a JDBC interface can be used
by the MARCA.

Each MARCA sends a copy of the information it stores to the coordinating
MARCA. Thus coordinating MARCA constitutes a data warehouse site for
monitoring information. This site is available to any authorized user on the
Internet through a Web interface and may further be replicated for
availability purposes.

The authorized user can track the flow of a process instance through a
graphical user interface as shown in Figure 5 by giving the process instance
identifier and the workflow definition it belongs to. The Web interface reads
the process definition of the selected workflow from the database, and
produces a graphical representation from that information, with different
colors for each block type and with lines connecting the blocks showing the
flow of data and messages. Also the interface reads the instance information
from the coordinating MARCA’s database and reflects it on the graph so that
the user can see the instant state of the process instance on the screen, along
with the finished, on going and yet to be started activities.

The information kept in the database system of the coordinating MARCA
can be queried through Java Applets directly from the Web.

The advantages of this monitoring architecture are as follows:

• It provides for high availability since the data is stored both in the
MARCAs locally in a distributed manner and also in a data warehouse in
a centralized manner.

• Authorized user can query the data warehouse from anywhere on the
Internet by using a simple Web browser.

• Response to monitoring queries will be fast since data is obtained from a
single store rather than performing distributed query processing.

Figure 5. Graphical Monitoring Interface of the MARIFlow System

The databases of each MARCA can also be queried locally by authorized
users.

2.5 The Certification Process Definition

The following is an example workflow defined in FlowDL reflecting a
business scenario for a certification process in maritime industry:

PROCESS Certification ();

ACTIVITY archive (IN document arch_document);

ACTIVITY convert_qlty_data (IN document quality_data

OUT document convted_q_d);

ACTIVITY convert_certificate(IN document certificate

OUT document convted_cert);

ACTIVITY issue_certificate (IN document conv_quality_data

IN document product_spec OUT document certificate);

ACTIVITY delete_from_archive();

ACTIVITY cancel_converted_data();

ACTIVITY cancel_certificate();

DOMAIN_DEFINITION {

salzgitter_ag.de szag;

germanlloyd.org gl;

balance_bremen.de bal;

isisanisi.com isisan;

}

struct process_info {

string order_no;

string material_no;

string customer_name;

string supplier_name;

string class_society_name;

string certificate_number;

}

DEFINE_PROCESS MARIFlow ()

{

szag SENDS (quality_data) TO bal GENERATES (order_no

material_no customer_name supplier_name

class_society_name);

AND_PARALLEL {

SERIAL {

START convert_qlty_data (IN quality_data OUT

convted_q_d) AT bal COMPENSATED BY

cancel_converted_data();

bal SENDS (convted_q_d) TO gl AND isisan;

START archive (IN convted_q_d) AT isisan NON_VITAL

COMPENSATED BY delete_from_archive();

}

isisan SENDS (prod_spec) TO gl;

}

START issue_certificate (IN convted_q_d IN prod_spec OUT

certificate) AT gl GENERATES (certificate_number)

COMPENSATED BY cancel_certificate();

gl SENDS (certificate) TO bal;

START convert_certificate (IN certificate OUT convted_cert)

AT bal;

bal SENDS (convted_cert) TO szag AND isisan;

AND_PARALLEL {

START archive (IN convted_cert) AT szag NON_VITAL

COMPENSATED BY delete_from_archive();

START archive (IN convted_cert) AT isisan NON_VITAL

COMPENSATED BY delete_from_archive();

}

}

Example 1. An Example Workflow Definition for the Maritime Industry

The process starts when the steel company (szag) sends the "quality data" to
a service company (bal) to be transformed into EDIFACT (Electronic Data
Interchange for Administration, Commerce and Transport) standard. Then
within the scope of a block the following activities run in parallel:

• At bal, "quality_data" is converted into EDIFACT standard by invoking
"convert_qlty_data" activity. The document produced, "convted_q_d", is
sent to gl and isisan. At isisan, the arrived document is archived by
invoking archive activity. Note that the block that comprises these
activities is a SERIAL block where the items in the block are executed
sequentially.

• The steel user (isisan) sends the product specification document to the
classification society (gl).

Once gl receives the converted quality data, its system is notified to start the
"issue_certificate" process. When the issued certificate, "certificate", is
generated and delivered to the MARCA outside the firewall, it is transferred
to bal again for conversion to EDIFACT standard and this document is sent
to szag and isisan. Afterwards "archive" activities at isisan and szag are
started and executed in parallel for converted certificate, "convted_cert".
This completes the cycle of one instance in Certification process definition.

The guard structures for each MARCA is generated when the process
definition is parsed and process tree is created as in Figure 6. The guards
evaluate to true when the necessary messages and/or documents arrive at
MARCAs either from the network or from the inside firewall application.
Hence the necessary action is taken such as an activity is started or the
execution through the blocks continues. In the running example, when
"prod_spec" arrives at gl the guard still evaluates to false since for the guard
to evaluate to true the arrival of document "convted_q_d" is also necessary.
Therefore, only when both of the documents arrive at gl the guard evaluates
to true and the necessary course of action is taken, that is, the
"issue_certificate" task is invoked, to create the "certificate".

For monitoring purposes, each MARCA stores the following process related
information persistently in a database system: order_no, material_no,

customer_name, supplier_name, class_society_name and certificate_number.
Note that the activity responsible for providing a specific piece of
information, such as order_no, or certificate_number is obtained through the
GENERATES statement of the activities. For example the activity "START
issue_certificate (IN convted_q_d IN prod_spec OUT certificate) AT gl
GENERATES (certificate_number);" declares that certificate_number will
be produced by this activity.

Figure 6. Process Tree of the Example Process Definition

Some example queries that can be readily answered by the database system
include: Status of a certificate given its number, status of all certificates for a
given steel order, number of certificates issued by the classification society
etc. These queries can be executed through the User Interface specialized for
this process definition, using any World Wide Web Browser capable of
running Java Applets. Figure 7 depicts a customized GUI available for the
MARIFlow project.

3 Authentication and Authorisation

Conducting business over a public network, like the Internet, requires
mechanisms for authentication of messages, for authorization to access data
and execute operations, and for privacy and security in general. We discuss
briefly some of the requirements in our application domain, and how they
relate to our software architecture.

Clearly, activities that are performed inside a company’s firewall are
irrelevant to our scenario; a company may use whatever mechanisms it
chooses. Specific requirements arise with respect to company-to-company
operation, to distributed intra-company operation, and to the overall
operation of the MARCA network. We consider each in turn.

An example of a company-to-company operation is sending a quality
document from a manufacturer to a classification company. In our scenario,

this involves three companies, since a service company translates the
document before being sent to the classification society. When a set of
companies are involved in a well-defined business procedure, they naturally
want the details to be protected from potential competitors. The obvious
solution is to encrypt documents inside the firewall, using a scheme that is
common to all involved parties. Such encryption also provides
authentication of the sender of a message that can easily be verified by the
receiver. Finally, an unauthorized receiver will not be able to read a
message.

A common situation in our scenario is that representatives of the
classification society are present in manufacturing sites, as part of the
certification process. These representatives need access to documents of
materials and parts, from their society’s repository. Although this is an intra-
company operation, it is similar in nature to the previous case. An intra-
company scheme can be used to encrypt documents before they are passed
outside the firewall. An encryption of the request for a document from a
field agent can provide authentication, as well as privacy, since the message
contents, namely the actual request, is then also not easily available to
external entities.

Figure 7. A monitoring Interface specific to the given Example Definition

In both situations above, as the MARCAs need to know the sources and
destinations of messages, and the process to which they belong to, such
details will have to be provided additionally to the encrypted message. As
the MARCA system is outside the firewall, it cannot participate in the
internal encryption scheme. To further increase the level of protection and of
authentication, i.e., the certainly regarding the sources of received messages;
the MARCAs use an independent encryption scheme. While this provides a

reasonable degree of protection against casual listeners, clearly it does not
provide the same level as the internal schemes, simply because the
MARCAs are outside the firewalls, hence their code is open for analysis.
Nevertheless, we believe that the solution is satisfactory, given the additional
level of protection and authentication provided by the intra company
systems. The alternative, namely the development of a trusted authority to
manage protection and authentication schemes for all involved companies,
requires both further research, such as development of virtual firewall for
clusters of companies, as well as a rather drastic change in business
procedures.

4 Availability and Scalability

When a site goes down, restarting the MARCA is under the responsibility of
the Operating System’s start up control. The site’s start up control is to
analyze the persistent logs of the MARCA and start a new instance using
these stable logs created before the site crash. However, there is need for a
further mechanism to prevent any Operating System related problem.

In MARIFlow, for each MARCA installed there is a background process at
that site, called the "rescue process". The rescue process is responsible for
monitoring the lifetime of the agent and checks the MARCA at specific time
intervals through a predetermined socket. A thread of the MARCA listens to
this socket and responds to the signals. If the MARCA does not respond to
this process for a given period of time, the process starts sending signals
more frequently. If the MARCA still does not respond, after sending a bunch
of signals the process assumes that the MARCA is not functional. The two
possibilities in this case are the MARCA could be blocked or it could be
dead. When the rescue process is unable to find the OS process that belongs
to this MARCA (i.e., it is dead), it instantiates a new MARCA by the help of
the persistent logs related with the state of the agent.

Otherwise if the MARCA is blocked, it is necessary to kill the old instance
prior to installation of a new instance. Since the logs are persistent it is
possible to recover the state of the MARCA killed and hence the site does
not suffer from any inconsistencies.

For the described mechanism to work correctly it is necessary to make sure
that rescue process stays alive. Therefore, just as the rescue process checks
to see that the MARCA stays alive, the MARCA also checks to ensure that
the rescue process stays alive by signaling the rescue process at predefined
time intervals. It is MARCA who re-instantiates the rescue process when it
dies.

5 Future Work

The current prototype of the system does not yet include the mechanisms for
the following issues:

5.1 Compensation

Compensation activities are used to logically undo the effects of the
activities with which they are associated - Dayal (1991). They are used when
a failure occurs in the system and the system should be taken to a stable state
before the failure. On the other hand, workflow processes are long-running
activities consisting of many nested sub-activities. In an activity hierarchy,
the failure of a sub-activity may cause its parent or higher level ancestors to
abort. However, it is not acceptable to roll all the finished activities back in
case of failures. A hierarchical approach to failure handling which allows for
partially rolling back to the nearest point in process history tree where it is
possible to restart execution is required. Moreover, failures should be
handled in a timely and efficient fashion. Chen and Dayal (1996) provide
such a mechanism that can be adapted into the MARIFlow system. It
provides a failure handling mechanism consisting of two phases. When a
sub-activity T fails, it is necessary to determine the impact of that failure on
the ancestors of T by finding out the highest level ancestor that should be
aborted. The root of the activity sub-tree to be logically undone upon T’s
failure is called the Logical-Undo Root(LUR) of T. Every activity in an
activity hierarchy has a corresponding LUR, which may be one of the
following:

• the closest non-vital ancestor since its failure can be ignored by its
parent,

• the closest ancestor with a contingency activity (children of a
contingency block),

• the closest ancestor without a parent, which may be the top-level process
or a compensation activity.

Bottom-up searching for LUR in the process tree constitutes the first phase
of the approach. After the LUR is found, the effects of the activities in the
sub-tree with LUR as the root are removed in a top-down fashion. Applying
the undo operation top-down provides a timely reaction to a failure by
halting the activities in scope of LUR promptly. In this second phase, starting
from the LUR, the finished activities are compensated (if they have
compensation activities) taking the semantics of the blocks that enclose them
into consideration. The approach also allows compensations to be made as
high level as possible since compensating a high-level activity is more
general than compensating a lower-level activity. After this two-phased

algorithm is applied to the activity hierarchy, the execution restarts and rolls
forward from the next activity after LUR.

5.2 Exception Handling

Hagen and Alonso (1998) propose a flexible approach to exception handling.
In this approach, the business logic is separated from exception handling
logic, which makes it easier to keep track of each. Exception handling code
is separated from the normal code, which also provides reusability of
components in addition to simplicity.

In Hagen and Alonso (1998), exceptions are treated as separate objects. Each
has a name and parameters. Each exception type should be registered with
the system giving its name and interface. Also, each one has a category that
indicates the behavior of the handler with which it is associated. An
exception handler is a special process that is started when an exception has
been signaled. At the beginning, workflow components (activities),
exceptions and handlers each handling an associated exception are defined in
the system. Then, a workflow process is composed using these components.
This component architecture approach provides both reusability and
flexibility where different components can be used in different combinations
in different workflow definitions. However, the approach does not have a
solution for handling unpredictable events that may occur at execution time.
All the exception cases and their handlers are given at the beginning.

6 Conclusions

In this paper we described an architecture for a workflow system for
document flow over the Internet realized through cooperating agents. The
architecture provides for the declarative specification and automatic
generation of the application rather than producing large amounts of
application specific code by the help of block structured nature of the
workflow definition language.

The system attempted to bring solutions to user interaction through the Java
based Web interfaces, reliable and automated document and data transfers
through a distributed agent based architecture and it is more resistant to
localized failures than that of centralized systems. The block structured
nature of the language avoids unreachable states in the workflow execution
and also the deadlocks - Alonso (1995). The system also proposes an
adaptable design and implementation so that the engine will run in different
platforms ranging from a small set of personal computers to high end
workstations and mainframes by the universal programming language Java.

The architecture is general enough to be applied to any domain however the
example application is provided for maritime industry and therefore some of

the user interfaces are customized accordingly. Nevertheless the core of the
system, workflow specification, communication details and database
activities are suitable for any kind of domain definition thanks to the layered
architecture.

The first prototype of the system including the details that are worked
around in this paper is available. The issues like compensation and exception
handling are yet to be tackled.

References

G. ALONSO, R. GUNTHOR, M. KAMATH, D. AGRAWAL, A. El
ABBADI, C. MOHAN, (1995), "Exotica/FDMC: A Workflow Management
System for Mobile and Disconnected Clients", Parallel and Distributed
Databases, The Netherlands.

G. ALONSO, C. HAGEN, H. SCHEK, M. TRESCH, (1998), "Towards a
Platform for Distributed Application Development", in Workflow
Management Systems and Interoperability, NATO ASI Series, A. Dogac, L.
Kalinichenko, T. Ozsu, A. Sheth (Eds), Springer-Verlag pp. 195-221.

P. C. ATTIE, M. P. SINGH, A. SHETH, M. RUSINKIEWICZ, (1993),
"Specifying and Enforcing Intertask Dependencies", Proceedings of the 19th

VLBD, Dublin, Ireland

Q. CHEN, U. DAYAL, (1996), "A Transactional Nested Process
Management System", in Proceedings of 12th International Conference on
Data Engineering, New Orleans, LA.

A. CICHOCKI, M. RUSINKIEWICZ, (1998), "Migrating Workflows", in
Workflow Management Systems and Interoperability, NATO ASI Series, A.
Dogac, L. Kalinichenko, T. Ozsu, A. Sheth (Eds), Springer-Verlag pp. 339-
355.

U. DAYAL, M. HSU, R. LADIN, (1991), "A Transactional Model for Long-
Running Activities", Proceedings of the 17th International Conference on
Very Large Data Bases, Barcelona

U. DAYAL, Q. CHEN, TAK W. YAN, (1998), "Workflow Technologies
Meet the Internet", in Workflow Management Systems and Interoperability,
NATO ASI Series, A. Dogac, L. Kalinichenko, T. Ozsu, A. Sheth (Eds),
Springer-Verlag pp. 423-438.

A. DOGAC, E. GOKKOCA, S. ARPINAR, P. KOKSAL, I. CINGIL, B.
ARPINAR, N. TATBUL, P. KARAGOZ, U. HALICI, M. ALTINEL,
(1998), "Design and Implementation of a Distributed Workflow
Management System: METUFlow", in Workflow Management Systems and
Interoperability, NATO ASI Series, A. Dogac, L. Kalinichenko, T. Ozsu, A
Sheth (Eds), Springer-Verlag pp. 61-91.

D. GEORGAKOPOULOS, M. HORNICK, A. SHETH, (1995), "An
Overview of Workflow Management: From Process Modeling to Workflow
Automation Infrastructure", Distributed and Parallel Databases, Ahmed K.
Elmagarmid (Ed-in-chief), Volume 3, Number 2, pp. 119-153.

C. HAGEN, G. ALONSO, (1998), "Flexible Exception Handling in the
OPERA Process Support System", 18th International Conference on
Distributed Computing Systems (ICDCS 98), Amsterdam, The Netherlands.

D. HOLLINGSWORTH, (1996), "The Workflow Reference Model",
Technical Report TC00-1003, Workflow Management Coalition, Accessible
via: http://www.aiai.ed.ac.uk/WfMC/

J. MILLER, D. PALANISWAMI, A. SHETH, K. KOCHUT, H. SINGH,
(1997), "WebWork: METEOR2’s Web-based Workflow Management
System", Journal of Intelligent Information Systems, The Netherlands

P. MUTH, D. WODTKE, J. WEISSENFELS, G. WEIKUM, A. DITTRICH,
(1998), "Enterprise-Wide Workflow Management Based on State and
Activity Charts", in Workflow Management Systems and Interoperability,
NATO ASI Series, A. Dogac, L. Kalinichenko, T. Ozsu, A. Sheth (Eds),
Springer-Verlag pp. 281-303.

MING-CHIEN SHAN, J. DAVIS, W. DU, Y. HUANG, (1998), "HP
Workflow Research: Past, Present, and Future", in Workflow Management
Systems and Interoperability, NATO ASI Series, A. Dogac, L. Kalinichenko,
T. Ozsu, A. Sheth (Eds), Springer-Verlag pp. 92-106.

A. SHETH, D. GEORGAKOPOULOS, S. JOOSTEN, M. RUSINKIEWICZ,
W. SCACCHI, J. WILEDEN, A. WOLF, (1996), "Report from the NSF
Workshop on Workflow and Process Automation in Information Systems",
SIGMOD Record, 25(4):55-67

A. SHETH, K. KOCHUT, (1998), "Workflow Applications to Research
Agenda: Scalable and Dynamic Work Coordination and Collaboration
Systems", in Workflow Management Systems and Interoperability, NATO
ASI Series, A. Dogac, L. Kalinichenko, T. Ozsu, A. Sheth (Eds), Springer-
Verlag pp. 35-60.

M. SINGH, (1996), "Synthesizing Distributed Constrained Events from
Transactional Workflow Specifications", in Proceedings of the 12th

International Conference on Data Engineering (ICDE’96), New Orleans

G. VOSSEN, M. WESKE, (1998), "The WASA Approach to Workflow
Management for Scientific Applications", in Workflow Management Systems
and Interoperability, NATO ASI Series, A. Dogac, L. Kalinichenko, T.
Ozsu, A. Sheth (Eds), Springer-Verlag pp. 145-164.

