
A Component�based Work�ow System with

Dynamic Modi�cations �

Pinar Koksal Ibrahim Cingil Asuman Dogac

Software Research and Development Center
Department of Computer Engineering

Middle East Technical University �METU�
����� Ankara Turkiye

asuman�srdc�metu�edu�tr

Abstract� Adapting to changes in its environment dynamically is a
very important aspect of work�ow systems	 In this paper
 we propose
a component�based work�ow system architecture speci�cally designed
for this purpose	 To allow for easy modi�cation of work�ow instances

an instance is designed as an object that contains all the necessary data
and control information as well as its execution history	 This feature fa�
cilitates to dynamically modify the process de�nition on instance basis at
run time	 The system is designed to consist of functional components like

Basic Enactment Service
 History Manager
 Work�ow Monitoring Tool

Dynamic Modi�cation Tool
 etc	 The clients of the system are coded
as network�transportable applets written in Java so that the end user
can activate work�ow system components by connecting to the Work�
�ow Domain Manager over the Internet	 In this paper we also present
a work�ow process de�nition language FLOWDL
 its graphical repre�
sentation FLOWGRAPH and a work�ow process modi�cation language
FLOWML and illustrate how the modi�cation process is handled	

� Introduction

A work�ow is de�ned as a collection of processing steps �activities� organized
to accomplish some business processes� An activity can be performed by one or
more software systems or machines� by a person or a team� or a combination
of these� In addition to collection of activities� a work�ow de�nes the order of
activity invocations or condition�s� under which activities must be invoked �i�e�
control �ow� and data��ow between these activities� Activities within a work�ow
can themselves again be a work�ow�

It is widely recognized that one of the basic characteristics that work�ow sys�
tem should provide is �exibility� In a fast�changing environment� companies need
to constantly re�ne their processes in order to e�ectively meet the constraints

� This work is partially being supported by Middle East Technical University
 the
Graduate School of Natural and Applied Sciences
 Project Number
 AFP������	��	��
and by the Scienti�c and Technical Research Council of Turkey
 Project Number

���E���	



and opportunities proposed by new technology� new market requirements� and
new laws� Furthermore� in particular in the �rst execution of a process� un�
planned situations not considered in the design could urge for a modi�cation of
the work�ow de�nition 	
��

Change in business processes can arise due to three main reasons 	���
 Pro�
cess Improvement� which involves performing the same business process with in�
creased e�ciency� e�g�� organizational restructuring� Process Innovation� which
involves performing the business process in a radically di�erent way� Process
Adaptation� which involves adapting the process for unforeseen change� e�g� pass�
ing of a new law or handling a special case in student admission�

One of the most challenging issues in the modi�cation of work�ows is the
management of executions started with the old work�owmodel� Simple solutions�
such as letting the processes �nish according to the old model or aborting them�
are often inconvenient or impossible to be applied� depending on the noti�cation
of the change and the nature of the work�ow�

In this paper� we propose a component�based work�ow system architecture
speci�cally designed for adapting the business processes to changes in its en�
vironment dynamically� We also present a work�ow process de�nition language
FLOWDL� its graphical representation FLOWGRAPH and a work�ow process
modi�cation language FLOWML� Afterwards we illustrate how the modi�cation
process is handled�

The paper is organized as follows
 In Section �� related work is presented�
Section � provides the system architecture� namely FLOWDL� FLOWGRAPH

and component�based work�ow architecture� Handling dynamic modi�cations
is described in Section 
� The syntax of FLOWML and an example are also
provided in this section� Finally� the paper is concluded with Section ��

� Related Work

	
� focuses on work�ow modi�cations involving the �ow structure� i�e�� the def�
inition of the sequence in which activities should be executed within a process�
They propose a complete� minimal and consistent set of primitives that allow
generic modi�cation of a work�ow� preserving syntactical correctness criteria
both when they are applied to a static work�ow description and to dynamic
work�ow instances� Then a taxonomy of policies to manage evolution of running
instances when the corresponding work�ow schema is modi�ed� is introduced�

Three main policies have been devised to manage work�ow instance evolu�
tion


� Abort� All work�ow instances of old schema are aborted�
� Flush� All existing instances terminate following the old schema� When all
instances are �nished� new instances can start following the new schema�

� Progressive� Di�erent decisions for di�erent instances are taken� according
to instance�s state or its history� Multiple schema versions may exist at the
same time� It is the work�ow administrator that should analyze running



instances of old work�ow schema� and for each of them� de�ne which policy
should be applied�

In 	���� Liu et�al� propose a handover policy speci�cation language� A han�
dover policy is speci�ed to migrate current running instances of a work�owmodel
to the new work�ow model� When a handover policy is applied to an evolution
of a work�ow model� the running instances may be executing at any task of
the old speci�cation� Therefore� di�erent instances may require di�erent han�
dover strategies� A handover policy is de�ned by a set of handover statements�
Three handover aspects of a running instance are described in each handover
statement
 current position� history and action to be taken� Three actions are
supported
 rollback� change�over and go�ahead�

In 	���� 	���� a formal foundation for the support of dynamic structural
changes of running work�ow instances is presented� Based upon a formal work�
�ow model� ADEPT� a complete and minimal set of change operations� ADEPT�

flex is de�ned� ADEPTflex comprises operations for inserting tasks as well as
whole task blocks into a work�ow graph� for deleting them� for fast forwarding
the progress of a work�ow by skipping tasks� for jumping to currently inactive
parts of a work�ow graph� for serializing tasks that were previously allowed to
run in parallel� and for the dynamic iteration and the dynamic rollback of a
work�ow respectively of a work�ow region�

The structural changes are managed di�erently according to whether an ap�
plied change must be preserved until the completion of the work�ow �permanent
change�� or whether it is only of temporary nature �temporary change�� If it is
a temporary change� then the change should be undone at the next iteration�

In 	���� the authors use the clinical application domain to explain and to
elaborate the functionality needed to support dynamic work�ow changes in an
advanced application environment using ADEPTflex� In 	��� and 	���� they have
only considered the adhoc changes� that do not a�ect the original work�ow
template� However in 	���� issues related to the adaptations in the de�nition of a
work�ow type are also addressed and migrating the running work�ow instances
from the old template to the new one is discussed�

	��� presents a formal de�nition of a dynamic change� and a mathematical
approach to its analysis� They use a Petri net formalism to analyze structural
change within work�ow procedures� Two types of dynamic changes are de�ned

immediate� i�e�� changes done on a region take e�ect immediately� and quasi�
immediate� i�e�� both the old and the new change regions are maintained in
the new region� Quasi�immediate change ensures that tokens already in the old
change region will �nish their progression in the old region�

In 	���� changes are di�erentiated at four di�erent levels
 structure level� task
level� resource level and system level� Structure level changes a�ect the interde�
pendencies and sequences of tasks� task level changes are concerned with modi��
cations of individual tasks� resource level changes are concerned with changes of
work�ow resources� and system level changes refer to adjustments of a concrete
execution environment� The authors claim that this separation is very useful for
allocating responsibility and controlling change right�



The authors also mention about two popular approaches concerning the
adaptation of work�ow models� meta�model approach and open�point approach�
Meta�model approaches utilize meta�models to determine the structures and
types of constituent components of work�ow models� A set of primitives is usu�
ally de�ned with which change operations can be performed to a work�ow model
or even a certain model instance� Open�point approaches set up special points
in a work�ow model� where adaptation can be made� The concept of adaptation
is often generalized� including provision of multiple choices for users� binding of
certain resources at runtime� or provision of an open interface through which
the late�modeling can be made� A major de�ciency of open�point approaches is
that they have di�culties to deal with certain structural changes� The approach
that have been discussed in 	���� supports both the meta�model and open�point
approaches�

In 	���� the following classes of change for work�ows are identi�ed


� Flush� All current instances are allowed to complete according to the old
process model�

� Abort� An ongoing work�ow could be deliberately aborted when the process
model is changed�

� Migrate� The change a�ects all current and new instances�
� Adapt� This class of change includes cases of errors and exceptions� where
the process model does not change� but some instances have to be treated
di�erently because of some exceptional and unforeseen circumstances�

� Build� Building of a new process is also a class of process change� The di�er�
ence is that the starting point is not a detailed pre�existing model� but an
elementary description�

The authors in 	���� di�erentiate between two aspects of the work�ow model

The build time aspect relates to the semantics of the process� and is captured
by the process model� The run time aspect relates to process instances� and
is handled by the process execution model� Then a simple formalization of a
work�ow� as a directed acyclic graph� is introduced by giving the necessary
de�nitions formally�

After the work�ow model is described� a three�phase methodology for dy�
namic modi�cation is proposed which consists of de�ning� conforming to and
e�ectuating the modi�cation�

In 	���� a family of activity�split and activity�join operations with a notion of
validity are described� The Transactional Activity composition Model �TAM� as
a concrete underlying environment for the speci�cation of work�ows with well
de�ned semantics� is adopted� since TAM has a simple and e�ective facility fea�
ture to allow activity designers to specify the behavioral composition of complex
activities and a wide variety of activity interaction dependencies declaratively
and incrementally� In the paper� �rst� basics for activity restructuring operations
are described on the TAM� Afterwards� two groups of activity restructuring op�
erations� namely activity�split and activity�join operations� to allow users or ap�
plications to dynamically modify the set of concurrent activities while they are
in progress are introduced�



In 	�
�� �rst� the requirements of work�ow evolution are identi�ed� The dif�
ferent propagation strategies of work�ow schema changes to their work�ow in�
stances that have to be provided by a WFMS are given


� Lazy propagation� A work�ow schema is changed without any impact on
currently enacting instances� The new work�ow schema version becomes only
relevant for all new work�ow instances�

� Eager propagation� Work�ow schema changes are propagated immediately
to all work�ow instances of the changed work�ow de�nition�

� Selective propagation�Work�ow schema changes are propagated immediately
to a selected set of work�ow instances of the changed work�ow de�nition�

� Local modi�cations and upward propagation� The propagation is applied to
exactly one work�ow instance in order to locally customize the work�ow
structure for a special case or to locally adjust it� This strategy is also useful
in the case of processes which cannot be planned completely in advance�

� Merging� When changes have to be applied to di�erent work�ow variants�
some mechanisms are required which support merging of di�erent work�ow
speci�cations�

The process modeling� described in 	�
�� is based on object�oriented modeling
techniques� Work�ow schema and work�ow instance elements are modeled as
�rst level objects and their relationships are explicitly maintained� The work�ow
schema and instance elements are tightly integrated� Work�ow schema changes
immediately a�ect all instances since the work�ow engine will schedule the task
according to the changed schema� To support lazy and selective propagation as
well as local modi�cations of a work�ow instance� the schema versioning is used�

� Component�based Work�ow System Architecture�

METUFlow�

��� METUFlow� Process De�nition Language� FLOWDL

METUFlow� has a block structured speci�cation language� namely METUFlow�

Process De�nition Language �FLOWDL�� FLOWDL describes the tasks involved
in a business process and the execution and data dependencies between these
tasks� FLOWDL has also a graphical user interface developed through Java which
allows de�ning a work�ow process by accessing METUFlow� from any computer
that has a Web browser 	���� This feature of METUFlow� makes it possible to
support mobile users�

The WfMC have identi�ed a set of six primitives with which to describe
�ows and hence construct a work�ow speci�cation 	���� With these primitives it
is possible to model any work�ow that is likely to occur� These primitives are

sequential� AND�split� AND�join� OR�split� OR�join and repeatable task� These
primitives are all supported by FLOWDL through its block types� FLOWDL con�
tains eight types of blocks� namely� serial� and parallel� or parallel� xor parallel�
for each� contingency� conditional and iterative blocks� Of the above block types�



DEFINE PROCESS OrderProcessing��

���

GetOrder�OUT productNo� OUT quantity� OUT dueDate� OUT orderNo�

OUT customerInfo�

EnterOrderInfo�IN productNo� IN quantity� IN dueDate� IN orderNo�

CheckBillofMaterial�IN productNo� OUT partList�

PAR AND �part � FOR EACH partList�

SERIAL

DetermineRawMaterial�IN part�No� IN part�Quantity� OUT rawMaterial�

OUT required�

CheckStock�IN rawMaterial� IN required� OUT missing�

IF �missing � �� THEN

VendorOrder�IN rawMaterial� IN missing�

WithdrawFromStock�IN rawMaterial� IN required�

GetProcessPlan�IN part�No� OUT processPlan� OUT noofSteps�

i���

WHILE �i � noofSteps�

Assign�IN processPlan	i
�cellId� IN orderNo� IN part�No�

IN part�Quantity� IN rawMaterial� IN required�

END WHILE

END SERIAL

END PAR AND

AssembleProduct�IN productNo�

���

Billing�IN orderNo� IN productNo� IN quantity� IN customerInfo�

���

END PROCESS

Fig� �� Order Processing Example

serial block implements the sequential primitive� And parallel block models the
AND�split and AND�join primitives� AND�split� OR�join pair is modeled by
or parallel block� Conditional block corresponds to OR�split and OR�join prim�
itives� Finally� repeatable task primitive is supported by the iterative block�

A work�ow process is de�ned as a collection of blocks� tasks and subpro�
cesses� A task is the simplest unit of execution� Processes and tasks have input
and output parameters corresponding to work�ow relevant data to communi�
cate with other processes and tasks� The term activity is used to refer to a block�
a task or a �sub�process� Blocks di�er from tasks and processes in that they
are conceptual activities which are used only to specify the ordering and the
dependencies between activities�

An order processing example in a highly automated manufacturing enter�
prise is provided using FLOWDL 	��� 	��� 	���� 	���� 	���� An incoming customer
request causes a product order to be created and inserted into an order en�
try database by GetOrder and EnterOrderInfo activities respectively �Figure ���
The next step is to determine required parts to assemble the ordered product
by CheckBillofMaterial activity� A part is the physical object which is fabricated
in the manufacturing system� For each part� DetermineRawMaterial activity
is executed to �nd out the raw materials required to manufacture that part�



and a CheckStock activity is initiated afterwards to check stock database for
the availability of these raw materials� If the required amounts of these raw
materials do not exist in the stock� they should be ordered from the external
vendors through VendorOrder� After all missing raw materials are obtained� re�
quired raw materials to fabricate the part is withdrawn from the stock to be sent
to the manufacturing cells� This is accomplished by WithdrawFromStock activ�
ity by decrementing the available amount of the withdrawn raw material �i�e��
quantity�m�� in the stock database� The required steps to manufacture a part�
and the manufacturing cells where these steps are performed are obtained as a
result of GetProcessPlan� Actual manufacturing activity is initiated by assigning
the work to the corresponding cells for each step in Assign� Finally� manufactured
parts are assembled to form the product that the customer had ordered by the
activity AssembleProduct� Further downstream activities include a billing activ�
ity� Billing is responsible for collecting bills of ordered products� VendorOrder�
GetProcessPlan and Billing are also work�ow processes which should be de�ned
in the same manner as OrderProcessing�

In METUFlow�� there are �ve types of tasks� These are TRANSACTIONAL�
NON TRANSACTIONAL� NON TRANSACTIONAL with CHECKPOINT� US�
ER and �PC TRANSACTIONAL activities� USER activities are in fact NON �
TRANSACTIONAL activities� They are speci�ed separately in order to be used
by the worklist manager which handles the user�involved activities�

These activity types may have some attributes such as CRITICAL� NON �
VITAL and CRITICAL NON VITAL� Critical activities can not be compen�
sated and the failure of a non vital activity is ignored 	��� 	��� Besides these
attributes� activities can also have some properties like retriable� compensat�
able� and undoable� A retriable activity restarts execution depending on some
condition when it fails� Compensation is used in undoing the visible e�ects of ac�
tivities after they are committed� E�ects of an undoable activity can be removed
depending on some condition in case of failures�

The block structured nature of FLOWDL prevents cyclic de�nitions and un�
reachable states� The further advantages brought by this language are summa�
rized in 	���

��� Graphical Representation of the FLOWDL � FLOWGRAPH

METUFlow� system has graphical tools to de�ne a new process de�nition� to
modify the de�nition dynamically and to monitor the state of the instances� de�
scribed in detail in the next section� The same graphical representation� called
FLOWGRAPH � is used at these tools� In FLOWGRAPH � each block has a begin
and end nodes� For the AND PARALLEL� OR PARALLEL� XOR PARALLEL
and IF blocks� the join node is the end node� However SERIAL� CONTIN�
GENCY� WHILE� FOR EACH blocks have their own end nodes� The repre�
sentation of the blocks in FLOWGRAPH can be seen in Figure ��

In Figure �� circles represent the activities� If the activity is a subprocess�
it is shown with a thicker circle� Also note that� since a process de�nition has



CONTINGENCY

BLOCK

WHILE

BLOCKAND_PARALLEL OR_PARALLEL

FOR_EACH FOR_EACH

XOR_PARALLEL

AND_PARALLEL OR_PARALLEL

BLOCKBLOCK

XOR_PARALLEL

BLOCK

IF_BLOCK

FOR_EACH

SERIAL

BLOCK

Fig� �� The representation of the blocks in FLOWGRAPH

SERIAL BLOCK characteristics although not de�ned explicitly� the begin and
end of a process are shown similar to that of SERIAL BLOCK�

The graphical representation of the order processing example� described in
Section ��� is given in Figure ��

��� Component�based Architecture

We have designed a work�ow system architecture based on Internet and CORBA
with the following features


� Each process instance is a CORBA object that contains all the necessary data
and control information as well as its execution history� This feature makes it
possible to dynamically modify the process de�nition on the instance basis at
run time� and to migrate the object in the network to provide load balancing�
It should be noted that with this architecture� a site failure a�ects only the
process instances running on that site�

� The system is designed to consist of functional components containing but
not restricted to
 Basic Enactment Service� User Worklist Manager� Work�
�ow Monitor� Work�ow History Manager� Dynamic Modi�cation Tool� Pro�
cess De�nitions Library Manager� Reliable Message Queue Manager� and



GetOrder

EnterOrderInfo

CheckBillofMaterial

DetermineRawMaterial

CheckStock

VendorOrder

WithdrawFromStock

GetProcessPlan

i:=0

Assign

AssembleProduct

Billing

A

A

Fig� �� The representation of the order processing example in FLOWGRAPH

Work�ow Domain Manager� This component�based architecture makes it
possible to incorporate the functionality and thus the complexity only when
it is actually needed at run time by a process instance by downloading only
the necessary components which results in e�ective usage of system and net�
work resources� It is also possible to add new components or maintain and
upgrade the existing components of the system incrementally without e�ect�
ing the other parts of the system� The component�based architecture facili�
tates the replication to a great extent� Each site can download its own copy
of component server� also the Work�ow Domain Manager can be replicated
at each site as a Site Manager� This provides for availability and prevents
network overhead�
The clients of the system are coded as network�transportable applets written
in Java so that the end user can acquire work�ow components from the
Work�ow Domain Manager over the network� Thus it is not necessary to have
the software pre�installed on the user machine� This promotes user mobility
further as well as easy maintenance of the system components which can be
upgraded transparently on the server side�

There are four basic components of the METUFlow� system architecture
shown in Figure 
� as presented in the following


�� Component�Server Repository� The components of the system are imple�
mented as CORBA objects that are invoked by Java applets� The Component�
Server Repository contains these applets� The Java applets are downloaded
to the client machine when a user through a Web browser accesses the Work�
�ow Domain Manager and asks for a speci�c service� Thereon the Java ap�
plets interact with the user and direct the user requests to the appropriate



WEB Browser

- Textual Process Definition Tool
- Graphical Process Definition Tool
- Process Animator
- Dynamic Modification Tool

- Workflow Domain Monitoring Tool
- Basic Enactment Server

- Process Instance Monitoring Tool

- Worklist Handler

- Activity Handler / Scheduler
- Authorization Server

- History Handler

Component-Server Repository

Workflow Process Definitions Library W
or

kf
lo

w
 D

om
ai

n 
M

an
ag

er

Workflow Domain Control Data
- URL of Component Server Repository
- URL of Workflow Process Definitions Library
- URL of Workflow Domain Permanent Storage
- List of Active Process Instances
- List of Active Component-Servers
- List of Participating Sites

History Manager

- Process Definition Tree

Monitoring Tool
Workflow Domain

USER

Fig� �� Basic components of the METUFlow� Architecture

CORBA objects� Some of the components of our system are listed in the
following


� Work�ow Process De�nition Tool� to de�ne new work�ow processes�

� Work�ow Dynamic Modi�cation Tool� to modify previously de�ned work�
�ow processes that are stored in the Work�ow Process De�nition Library
and�or a particular work�ow process instance�

� Work�ow Process Instance �WPI� Monitoring Tool� to trace work�ow
process instances that have been initiated and extract run�time informa�
tion about the current execution status of an instance�

� Monitoring and Measurement Tool� to collect and measure process enact�
ment data needed to improve subsequent process enactment iterations
as well as documenting what actions actually occurred in what order�

� Enactment History Capture and Replay� to simulate the re�enactment
of a process graphically in order to more readily observe process state
transitions or to intuitively detect possible process enactment anomalies�

�� Work�ow Process De�nitions Library�Work�ow de�nitions �i�e� process tem�
plates�� organizational role de�nitions� participant�role assignments are durab�
ly stored in this library� Only Work�ow Speci�cation Tool and Dynamic



Modi�cation Tool inserts or updates work�ow process templates in this li�
brary� This library is maintained by the WFMS Library Manager�
Di�erent work�ow schema versions have to be managed and di�erent prop�
agation strategies of work�ow schema changes to their work�ow instances
have to be provided by a WFMS in order to �exibly support the migra�
tion from one business process to an improved one� to support alternative
work�ows for process variants� and to support adhoc changes of a work�ow
	�
�� When the work�ow de�nition is modi�ed permanently� the versions of
work�ow de�nitions are stored� since


� In some cases� it may be necessary to recover to the old work�ow de�ni�
tion� For example� when it is observed that the new de�nition performs
worse than the old de�nition�

� It may be desired that more than one version of de�nitions are active
at the same time� That is� some instances are created from one version�
and some others from a di�erent version of the de�nition�

In the METUFlow� architecture� to handle the versioning of de�nitions� a
de�nition tree is kept to provide the administrator the �exibility of modifying
a de�nition several times� During the modi�cation� the administrator selects
one version� default being the last one� Thus new instances are created from
the default de�nition� if the version number of work�ow de�nition is not
identi�ed explicitly during the instance creation�

�� History Manager� The History Manager handles the database that stores
the information about work�ow process instances which have been enacted
to completion to provide history related information to its clients �e�g� for
data mining purposes�� It should be noted that the history of active process
intances are stored in the process instance object�


� Work�ow Domain Manager� The Domain Manager is the Web server of the
system� All clients access to the Domain Manager via their Web browsers and
in response to their authorized service requests� the Domain Manager down�
loads appropriate Java applets to the client which then handles subsequent
requests of the same client for that particular service which is provided by a
component server� If the client needs a di�erent WFMS service� the Domain
Manager is then accessed again via the Web browser and another Java applet
is downloaded� The Domain Manager keeps runtime information such as list
of active process instances� active component servers� list of participating
sites� etc� for domain monitoring purposes�

The run�time system despite having a central control on a process instance
basis� brings out all the bene�ts of highly distributed environments� Each WPI
may execute at a di�erent site� Component�Server Repository� Work�ow De�ni�
tion Library� Work�ow Domain Control Data and Work�ow Domain Manager
may all be replicated for better performance and availability� Each participat�
ing site may have its own replication of Work�ow Domain Manager as the Site
Manager� Since no prior installation of any WFMS software is required on the
client side the system is highly dynamic and thus any component�server imple�
mentation may be upgraded at the server side without needing any changes on



the client side� In addition a site failure can be overcome simply by migrating
the instances to be executed on that site to another site�other sites� Detailed
work on the component�based work�ow system architecture can be found in 	���

� Handling Dynamic Modi�cations in METUFlow�

The set of running instances of a work�ow de�nition can be called as instance
domain� The modi�cations can be applied to none of the instances� to a single
instance� to a set of instances� or to all of the instances of the instance domain
depending on the modi�cation that has been done and what the modi�cation
administrator� who has granted to make modi�cations on work�ow de�nitions�
de�nes as the domain that the modi�cations are applied� For example� a modi�
�cation can be applied on the instances which have passed a particular point on
the execution �ow or a modi�cation can not be applied to some of the instances
since they have passed the critical point� The administrator can indicate the
domain on which the modi�cations are applied� If the domain is not given� the
modi�cation is applied to all of the instances�

The changes can be classi�ed in two groups� as permanent and temporary
changes


� For permanent changes� the work�ow de�nition is changed permanently� so
that the new instances are created from the new de�nition by default� The
running instances may also be selectively migrated to the new de�nition�

� For temporary changes� the modi�cation is only applied to the running in�
stances� but not to the work�ow de�nition� For example� there may be some
user activities which are assigned to the users by adding the activity to their
worklists� in the work�ow de�nition� If a user is absent temporarily� because
of illness for example� her�his activities can be assigned to another user who
takes the responsibility of the activities of the absent user�

In our system� dynamic modi�cation of an instance and�or a work�ow de��
nition template can be initiated in two ways
 either by a user or by means of a
special activity speci�ed in the process de�nition as explained in the following


� A user via her�his Web browser may access the Work�ow Domain Manager
and download the Dynamic Modi�cation Tool which helps the administra�
tor make necessary changes on the work�ow de�nition and�or the running
instances� Modi�cations on the work�ow de�nition can only be done by au�
thorized users�
Dynamic Modi�cation Tool asks the Authorization Server about the modi�
�cation grant of the user whether the user can modify the de�nition� or not�
Three di�erent grants can be given to the users according to their roles by
the Authorization Server


� modify�permanently� given to the users� like system administrator� to
modify the work�ow de�nition template and�or some�all of the process
instances in the instance domain�



� modify�temporarily�all� given to the users to modify some�all of the in�
stances in the instance domain temporarily� These users� who have this
type of grant� can not modify the work�ow de�nition template�

� modify�temporarily�own� given to the users to modify only the instances
that they are the owners� These users also can not modify the work�ow
de�nition template�

If the user has taken any one of the modi�cation grants� s�he chooses a work�
�ow de�nition to update� The information about de�nitions can be obtained
from Work�ow Process De�nition Library through Work�ow Domain Man�
ager and the set of running instances can be obtained from the Work�ow
Domain Control Data of the Work�ow Domain Manager�

� Work�ow process de�nition may contain a special activity called Work�ow
Process Modi�cation Activity �WPMA� that �when executed� automatically
invokes the WPI Dynamic Modi�cation Tool on behalf of a user so that the
user can modify the process instance� The WPMA handles instance�speci�c
di�erences of the process de�nition when necessary� Each speci�cation of the
WPMA activity results in a separate modi�cation of the instance� A WPMA
initiated modi�cation may not a�ect other instances of the same work�ow
process or the work�ow de�nition template�

After the modi�cation process is initiated by any one of the ways described
above� the work�ow de�nition is represented graphically using the FLOWGRAPH �

The user can make the following modi�cations on this graphical de�nition
using the Dynamic Modi�cation Tool


� A new activity can be de�ned� and inserted in the work�ow de�nition�
� New control dependencies can be given� or they can be changed�
� Conditions can be updated or a new one can be given�
� The values of work�ow relevant data can be modi�ed�
� Block types can be updated�
� A user or a role� assigned to a user activity� can be changed�
� Activities can be deleted�

In addition to these modi�cations and augmentations� the domain can be
speci�ed to identify the instances that the modi�cations are to be applied� along
with the type of modi�cation� whether permanent or temporary�

After all of the necessary information are gathered from the user� by going
through both the old and the new work�ow de�nitions� the modi�cation region
is determined� A modi�cation region contains the minimum part of the de�nition
that includes all the modi�cations� that is� starts with the �rst modi�ed activity
and ends with the last one� An example is given in Figure ��

If the modi�cation is to be applied to the running instances� the modi�cation
region is checked for the critical points� if there are any in the work�ow de�nition�
If the modi�cation region is after the critical points in the execution �ow� then all
the instances of this de�nition can be adapted to the new de�nition� However if
a critical point is after the modi�cation region� execution states of the instances



P��� f P��� f
T�� T��

T
� T
�

AND PARALLEL f T�� ���

T�� AND PARALLEL f j
T�� T�� j Modification

g T�� j Region

T�� g j
g T�� ���

T��

g

Fig� �� A Modi�cation Region Example

should be checked� If their executions have passed the critical point and the
critical activity needs to be compensated to migrate the running instance to the
new de�nition� then the modi�cation should be rejected for these instances� If
the critical point has not been executed yet� then the modi�cation can be applied
to these instances�

The instances that the modi�cation can be applied� are grouped according
to their execution states


� The instances whose execution states has not reached to the modi�cation
region yet� are directly adapted to the new de�nition�

� If the �rst activity of the modi�cation region is running then this activity
is aborted� and these instances can continue their executions from the new
work�ow de�nition�

� If the execution is either running in the modi�cation region or has passed
the region� then the execution of these instances are held on� The activities
until the beginning of the modi�cation region are rolled back according to
a compensation strategy� Afterwards their execution can continue using the
new schema� For an activity �if it is not a critical activity�� if a compensa�
tion activity is not given� this means that there is no need to compensate
this activity during recovery� Also note that� critical activities can not be
recovered� therefore they do not have compensation activities�

Dynamic Work�ows which have no pre�speci�ed process de�nition can be
handled with another special activity called Dynamic Work�ow Special Activity
�DWSA� that automatically invokes the Dynamic Modi�cation Tool on behalf of
a user so that the user can specify the next activity to be executed� A dynamic
work�ow process de�nition initially includes only one activity� the DWSA� When
this process is initiated� the DWSA invokes the Dynamic Modi�cation Tool and
awaits the user to specify activities to be executed� When the user speci�es the
next activity or activities� another DWSA is appended automatically such that
after the user�speci�ed next activity�s� is executed� the DWSA will be invoked
again� The DWSA will not be appended only if the user explicitly indicates that



no more activities are to be speci�ed in which case the termination of DWSA will

indicate the termination of the process instance� In this way a work�ow process

can interactively be de�ned on�the��y by a user and it is saved in the Work�ow

Process De�nition Library if the user speci�es so at the terminating DWSA�

��� METUFlow� Modi�cation Language� FLOWML

The user who has a grant to modify a work�ow de�nition or its running instances�

should provide�

� an action� the modi�cation that should be made� The user can provide this
information using our modi�cation language� FLOWML as�

f ADD j MODIFY j DELETE g f PROCESS �processname� j
TASK �taskname� j
BLOCK �blkname� j
CONDITION AT �activityname� j
WRD �wrdname� j USER AT �activityname� j
ROLE AT �activityname� g �AS �new defn� �

� a place� where the modi�cation is applied� can be given using FLOWML as�

� AFTER f �activityname� j �blkname� g j BEFORE f �activityname� j
�blkname� g j IN f �activityname� j �blkname� g �

� a domain that includes the instances to which the modi�cation is applied�
by providing the object references or the execution states of the instances�
This information can be given using FLOWML as�

DOMAIN �ALL j NONE� �processname�

� WHICH OBJ REF �comparison op� objref j
BEFORE f �activityname� j �blkname� g STARTS j
AFTER f �activityname� j �blkname� g COMMITS j
AT f �activityname� j �blkname� g EXECUTING �

� the type of the modi�cation� permanent or temporary� can be given as�

�PERMANENTLY j TEMPORARILY�

More than one modi�cation statements can be combined with AND connec�

tor�

The user can use either our modi�cation language� FLOWML� or graphical

dynamic modi�cation tool to specify the modi�cations or additions�

After the modi�cation of the processes� the modi�ed process de�nition is

checked for the following�



� If a new activity is de�ned� its input parameters are checked whether they

have been de�ned or not� before the activity�

� Task� block and process names that appear in the �place� or �domain� part

of the FLOWML are checked whether they exist in the old de�nition or not�

� For DELETE and MODIFY statements� the validity of task names� block

names� conditions� role names� user names and wrd names are checked�

� For DELETE statements� it is checked that whether the deletion a�ects the

input and output parameters of other activities�

��� An Example

The manufacturer may decide to modify their billing process as requesting some
percentage of the total payment in advance before the manufacturing steps have
started� Therefore a new �RequestPayment� activity may be added after the
activity �EnterOrderInfo�� Additional changes should be handled at the Billing
subprocess also� In METUFlow�� these modi�cations can be de�ned either graph�
ically by using the Dynamic Modi�cation Tool� or textually by FLOWML� The
FLOWML statements for these modi�cations are as follows�

ADD TASK RequestPayment �IN int orderNo� IN int productNo�

IN int quantity� IN custumerStruct customerInfo�

OUT double amountPaid�

AFTER EnterOrderInfo

AND

MODIFY PROCESS Billing

AS Billing �IN int orderNo� IN int productNo� IN int quantity�

IN custumerStruct customerInfo� IN double amountPaid�

AND

MODIFY TASK Payment

AS Payment �IN int orderNo� IN int productNo� IN int quantity�

IN custumerStruct customerInfo� OUT double amount�

OUT int paymentStatus� IN double amountPaid�

DOMAIN ALL OrderProcessing

PERMANENTLY�

First FLOWML statement adds a new activity �RequestPayment� after the

activity �EnterOrderInfo�� Second and third statements add a new IN parameter

to the �Billing� subprocess and the �Payment� task respectively� The �Request�

Payment� task should be written and the operation logic of the �Payment� task

should also be changed accordingly� However from a work�ow point of view� a

WFMS does not have the responsibility of providing these changes� This modi��

cation is applied to all of the instances of the process �OrderProcessing� and the

de�nition of the process is also modi�ed permanently� This means that a new

version of the de�nition is created and stored in the Process De�nitions Library�



� Conclusion and Future Work

Business processes need to be constantly re�ned in order to e�ectively meet the

constraints and opportunities proposed by new technology� new market require�

ments� and new laws� Work�ow Management Systems� which are used for the

development of business applications� should provide the facilities to manage

the dynamic modi�cation of running instances to the modi�ed de�nition� The

component�based architecture that we propose in this paper facilitates dynamic

modi�cation on an instance basis and avoids process template modi�cation prob�

lems by keeping the process de�nition for each instance separately� After The user

provides the modi�cations to the process de�nition either by using FLOWML or

by using graphical modi�cation tool� the Dynamic Modi�cation Tool determines

on instance basis how the migration of instances to the new de�nition can be

handled� and without any further user interaction� the instances are migrated�

During the migration of the running instances to the new process de�nition�

sometimes the need may arise to rollback some of the committed tasks using

compensation tasks� In many situations there is no need to compensate all of

the tasks� since the modi�cation region has not a�ected all of them� Therefore

during roll�back operation� the Modi�cation Tool determines which tasks to be

compensated according to the modi�cation region� To make this automatic� the

dependence between the tasks should be determined automatically� Our work

on determining task interdependencies according to the data and control �ow

between them still continues�

References

�� N� Adam� V� Atluri� W� K� Huang� �Modeling and Analysis of Work�ows Using
Petri Nets�� Journal of Intelligent Information Systems� Special Issue on Work�ow
and Process Management� Volume �	� Issue 
� March �����


� G� Alonso� and H� J� Schek� �Research Issues in Large Work�ow Management
Systems�� Proc� of NFS Workshop on Work�ow and Process Automation in In

formation Systems� State
of
the
Art and Future Directions� Edited
by A� Sheth�
Athens� Georgia� May �����

�� I� B� Arpinar� S� �Nural� Arpinar� U� Halici� and A� Dogac� �Correctness of Work

�ows in the Presence of Concurrency�� Intl� Conf� on Next Generation Info� Tech�
and Sys�� Israel� July �����

�� F� Casati� S� Ceri� B� Pernici� G� Pozzi� �Work�ow Evolution�� Data and Knowl

edge Engineering� Volume 
�� Issue �� pp� 
��

��� January �����

�� Q� Chen� U� Dayal� �A Transactional Nested Process Management System�� Proc�
of the �
th Intl� Conf� on Data Engineering� New Orleans� Louisiana� USA� Febru

ary �����

�� I� Cingil� A� Dogac� �A Component
based System Architecture for Adaptable
Work�ow Systems�� Technical Report ��

� Software Research and Development
Center� Dept� of Computer Engineering� Middle East Technical University� �����

�� U� Dayal� M� Hsu� R� Ladin� �A Transaction Model for Long
running Activities��
Proc� of the ��th Intl� Conf� on Very Large Databases� pages ���
�

� September
�����



�� A� Dogac� E� Gokkoca� S� Arpinar� P� Koksal� I� Cingil� I� B� Arpinar� N� Tatbul�
P� Karagoz� U� Halici� M� Altinel� �Design and Implementation of a Distributed
Work�ow Management System� METUFlow�� In� ����

�� A� Dogac� L� Kalinichenko� M� T� Ozsu� and A� Sheth �eds��� �Advances in Work

�ow Management Systems and Interoperability�� Springer Verlag� �����

�	� C� Ellis� K� Keddara� and G� Rozenberg� �Dynamic Change Within Work�ow Sys

tems�� Proc� of the ACM Conf� on Organizational Computing Systems� �����

��� E� Gokkoca� M� Altinel� I� Cingil� N� Tatbul� P� Koksal� A� Dogac� �Design and
Implementation of a Distributed Work�ow Enactment Service�� Proc� of Intl� Conf�
on Cooperative Information Systems� Charleston� USA� June �����

�
� Y� Han� A� Sheth� �On Adaptive Work�ow Modeling�� �th Intl� Conf� on Informa

tion Systems Analysis and Synthesis� Orlando� Florida� July �����

��� D� Hollinsworth� �The Work�ow Reference Model�� Technical Report TC		

�		�� Work�ow Management Coalition� December ����� Accessible via�
http���www�aiai�ed�ac�uk�WfMC��

��� G� Joeris� O� Herzog� �Managing Evolving Work�ow Speci�cations�� �rd Intl� Conf�
on Cooperative Information Systems� COOPIS���� New York� August �����

��� P� Karagoz� S� Arpinar� P� Koksal� N� Tatbul� E� Gokkoca� and A� Dogac� �Task
Handling in Work�ow Management Systems�� Intl� Workshop on Issues and Ap

plications of Database Technology� Berlin� June �����

��� P� Koksal� S� Arpinar� and A� Dogac� �Work�ow History Management�� ACM
Sigmod Record� Vol� 
�� No� �� March �����

��� C� Liu� M� E� Orlowska� H� Li� �Automating Handover in Dynamic Work�ow En

vironments�� CAiSE ����� pp� ���
����

��� L� Liu� C� Pu� �Methodical Restructuring of Complex Work�ow Activities�� Intl�
Conf� on Data Engineering� ICDE ���� �����

��� M� Reichert� P� Dadam� �A Framework for Dynamic Changes in Work�ow Man

agement Systems�� in Proc� of DEXA���� September ����� Toulouse� France�


	� M� Reichert� P� Dadam� �ADEPT �ex
Supporting Dynamic Changes of Work�ows
Without Loosing Control�� in Journal of Intelligent Information Systems �JIIS��
Special Issue on Work�ow and Process Management� Volume �	� Issue 
� March
�����


�� M� Reichert� C� Hensinger� P� Dadam� �Dynamic Work�ow Changes in Clinical
Application Environments�� in Proc� of EDBT
Workshop� �����



� S� W� Sadiq� M� E� Orlowska� �On Dynamic Modi�cation of Work�ows�� Technical
Report� July �����


�� A� Sheth� D� Georgakopoulos� S� Joosten� M� Rusinkiewicz� W� Scacchi� J� Wileden�
A� Wolf� Report from the NSF workshop on work�ow and process automation in
information systems� in ACM SIGMOD Record� 
�������
��� December �����


�� A� Sheth� K� Kochut� �Work�ow Applications to Research Agenda� Scalable and
Dynamic Work Coordination and Collaboration Systems�� in ����


�� E� Turanalp� �Design and Implementation of a Graphical Work�ow De�nition
Tool�� Master Thesis� Department of Computer Engineering� Middle East Techni

cal University� Ankara� Turkiye� �����


