A Component-based Workflow System with
Dynamic Modifications *

Pinar Koksal Ibrahim Cingil Asuman Dogac

Software Research and Development Center
Department of Computer Engineering
Middle East Technical University (METU)
06531 Ankara Turkiye

asuman@srdc.metu.edu.tr

Abstract. Adapting to changes in its environment dynamically is a
very important aspect of workflow systems. In this paper, we propose
a component-based workflow system architecture specifically designed
for this purpose. To allow for easy modification of workflow instances,
an instance is designed as an object that contains all the necessary data
and control information as well as its execution history. This feature fa-
cilitates to dynamically modify the process definition on instance basis at
run time. The system is designed to consist of functional components like,
Basic Enactment Service, History Manager, Workflow Monitoring Tool,
Dynamic Modification Tool, etc. The clients of the system are coded
as network-transportable applets written in Java so that the end user
can activate workflow system components by connecting to the Work-
flow Domain Manager over the Internet. In this paper we also present
a workflow process definition language FLOWpyr, its graphical repre-
sentation FLOWgrapr and a workflow process modification language
FLOW s and illustrate how the modification process is handled.

1 Introduction

A workflow is defined as a collection of processing steps (activities) organized
to accomplish some business processes. An activity can be performed by one or
more software systems or machines, by a person or a team, or a combination
of these. In addition to collection of activities, a workflow defines the order of
activity invocations or condition(s) under which activities must be invoked (i.e.
control flow) and data-flow between these activities. Activities within a workflow
can themselves again be a workflow.

It is widely recognized that one of the basic characteristics that workflow sys-
tem should provide is flexibility. In a fast-changing environment, companies need
to constantly refine their processes in order to effectively meet the constraints

* This work is partially being supported by Middle East Technical University, the
Graduate School of Natural and Applied Sciences, Project Number: AFP-97-07.02.08
and by the Scientific and Technical Research Council of Turkey, Project Number:
197E038.

and opportunities proposed by new technology, new market requirements, and
new laws. Furthermore, in particular in the first execution of a process, un-
planned situations not considered in the design could urge for a modification of
the workflow definition [4].

Change in business processes can arise due to three main reasons [22]: Pro-
cess Improvement, which involves performing the same business process with in-
creased efficiency, e.g., organizational restructuring. Process Innovation, which
involves performing the business process in a radically different way. Process
Adaptation, which involves adapting the process for unforeseen change, e.g. pass-
ing of a new law or handling a special case in student admission.

One of the most challenging issues in the modification of workflows is the
management of executions started with the old workflow model. Simple solutions,
such as letting the processes finish according to the old model or aborting them,
are often inconvenient or impossible to be applied, depending on the notification
of the change and the nature of the workflow.

In this paper, we propose a component-based workflow system architecture
specifically designed for adapting the business processes to changes in its en-
vironment dynamically. We also present a workflow process definition language
FLOWpy, its graphical representation FLOWgrapy and a workflow process
modification language FLOW s Afterwards we illustrate how the modification
process is handled.

The paper is organized as follows: In Section 2, related work is presented.
Section 3 provides the system architecture, namely FLOWpr, FLOWgrapH
and component-based workflow architecture. Handling dynamic modifications
is described in Section 4. The syntax of FLOW;; and an example are also
provided in this section. Finally, the paper is concluded with Section 5.

2 Related Work

[4] focuses on workflow modifications involving the flow structure, i.e., the def-
inition of the sequence in which activities should be executed within a process.
They propose a complete, minimal and consistent set of primitives that allow
generic modification of a workflow, preserving syntactical correctness criteria
both when they are applied to a static workflow description and to dynamic
workflow instances. Then a taxonomy of policies to manage evolution of running
instances when the corresponding workflow schema is modified, is introduced.

Three main policies have been devised to manage workflow instance evolu-
tion:

— Abort: All workflow instances of old schema are aborted.

— Flush: All existing instances terminate following the old schema. When all
instances are finished, new instances can start following the new schema.

— Progressive: Different decisions for different instances are taken, according
to instance’s state or its history. Multiple schema versions may exist at the
same time. It is the workflow administrator that should analyze running

instances of old workflow schema, and for each of them, define which policy
should be applied.

In [17], Liu et.al. propose a handover policy specification language. A han-
dover policy is specified to migrate current running instances of a workflow model
to the new workflow model. When a handover policy is applied to an evolution
of a workflow model, the running instances may be executing at any task of
the old specification. Therefore, different instances may require different han-
dover strategies. A handover policy is defined by a set of handover statements.
Three handover aspects of a running instance are described in each handover
statement: current position, history and action to be taken. Three actions are
supported: rollback, change-over and go-ahead.

In [19], [20], a formal foundation for the support of dynamic structural
changes of running workflow instances is presented. Based upon a formal work-
flow model, ADEPT, a complete and minimal set of change operations, ADEPT-
flew is defined. ADEPT ., comprises operations for inserting tasks as well as
whole task blocks into a workflow graph, for deleting them, for fast forwarding
the progress of a workflow by skipping tasks, for jumping to currently inactive
parts of a workflow graph, for serializing tasks that were previously allowed to
run in parallel, and for the dynamic iteration and the dynamic rollback of a
workflow respectively of a workflow region.

The structural changes are managed differently according to whether an ap-
plied change must be preserved until the completion of the workflow (permanent
change), or whether it is only of temporary nature (temporary change). If it is
a temporary change, then the change should be undone at the next iteration.

In [21], the authors use the clinical application domain to explain and to
elaborate the functionality needed to support dynamic workflow changes in an
advanced application environment using ADEPT e, In [19] and [20], they have
only considered the adhoc changes, that do not affect the original workflow
template. However in [21], issues related to the adaptations in the definition of a
workflow type are also addressed and migrating the running workflow instances
from the old template to the new one is discussed.

[10] presents a formal definition of a dynamic change, and a mathematical
approach to its analysis. They use a Petri net formalism to analyze structural
change within workflow procedures. Two types of dynamic changes are defined:
immediate, i.e., changes done on a region take effect immediately, and quasi-
immediate, i.e., both the old and the new change regions are maintained in
the new region. Quasi-immediate change ensures that tokens already in the old
change region will finish their progression in the old region.

In [12], changes are differentiated at four different levels: structure level, task
level, resource level and system level. Structure level changes affect the interde-
pendencies and sequences of tasks, task level changes are concerned with modifi-
cations of individual tasks, resource level changes are concerned with changes of
workflow resources, and system level changes refer to adjustments of a concrete
execution environment. The authors claim that this separation is very useful for
allocating responsibility and controlling change right.

The authors also mention about two popular approaches concerning the
adaptation of workflow models; meta-model approach and open-point approach.
Meta-model approaches utilize meta-models to determine the structures and
types of constituent components of workflow models. A set of primitives is usu-
ally defined with which change operations can be performed to a workflow model
or even a certain model instance. Open-point approaches set up special points
in a workflow model, where adaptation can be made. The concept of adaptation
is often generalized, including provision of multiple choices for users, binding of
certain resources at runtime, or provision of an open interface through which
the late-modeling can be made. A major deficiency of open-point approaches is
that they have difficulties to deal with certain structural changes. The approach
that have been discussed in [12], supports both the meta-model and open-point
approaches.

In [22], the following classes of change for workflows are identified:

— Flush: All current instances are allowed to complete according to the old
process model.

Abort: An ongoing workflow could be deliberately aborted when the process
model is changed.

— Migrate: The change affects all current and new instances.

Adapt: This class of change includes cases of errors and exceptions, where
the process model does not change, but some instances have to be treated
differently because of some exceptional and unforeseen circumstances.
Build: Building of a new process is also a class of process change. The differ-
ence is that the starting point is not a detailed pre-existing model, but an
elementary description.

The authors in [22], differentiate between two aspects of the workflow model:
The build time aspect relates to the semantics of the process, and is captured
by the process model. The run time aspect relates to process instances, and
is handled by the process execution model. Then a simple formalization of a
workflow, as a directed acyclic graph, is introduced by giving the necessary
definitions formally.

After the workflow model is described, a three-phase methodology for dy-
namic modification is proposed which consists of defining, conforming to and
effectuating the modification.

In [18], a family of activity-split and activity-join operations with a notion of
validity are described. The Transactional Activity composition Model (TAM) as
a concrete underlying environment for the specification of workflows with well
defined semantics, is adopted, since TAM has a simple and effective facility fea-
ture to allow activity designers to specify the behavioral composition of complex
activities and a wide variety of activity interaction dependencies declaratively
and incrementally. In the paper, first, basics for activity restructuring operations
are described on the TAM. Afterwards, two groups of activity restructuring op-
erations, namely activity-split and activity-join operations, to allow users or ap-
plications to dynamically modify the set of concurrent activities while they are
in progress are introduced.

In [14], first, the requirements of workflow evolution are identified. The dif-
ferent propagation strategies of workflow schema changes to their workflow in-
stances that have to be provided by a WFMS are given:

— Lazy propagation: A workflow schema is changed without any impact on
currently enacting instances. The new workflow schema version becomes only
relevant for all new workflow instances.

— Eager propagation: Workflow schema changes are propagated immediately
to all workflow instances of the changed workflow definition.

— Selective propagation: Workflow schema changes are propagated immediately
to a selected set of workflow instances of the changed workflow definition.

— Local modifications and upward propagation: The propagation is applied to
exactly one workflow instance in order to locally customize the workflow
structure for a special case or to locally adjust it. This strategy is also useful
in the case of processes which cannot be planned completely in advance.

— Merging: When changes have to be applied to different workflow variants,
some mechanisms are required which support merging of different workflow
specifications.

The process modeling, described in [14], is based on object-oriented modeling
techniques. Workflow schema and workflow instance elements are modeled as
first level objects and their relationships are explicitly maintained. The workflow
schema and instance elements are tightly integrated. Workflow schema changes
immediately affect all instances since the workflow engine will schedule the task
according to the changed schema. To support lazy and selective propagation as
well as local modifications of a workflow instance, the schema versioning is used.

3 Component-based Workflow System Architecture:
METUFlow,

3.1 METUFlow; Process Definition Language: FLOWDL,

METUFlow, has a block structured specification language, namely METUFlow,
Process Definition Language (FLOW p,). FLOW p, describes the tasks involved
in a business process and the execution and data dependencies between these
tasks. FLOW pr, has also a graphical user interface developed through Java which
allows defining a workflow process by accessing METUFlow, from any computer
that has a Web browser [25]. This feature of METUFlow, makes it possible to
support mobile users.

The WIMC have identified a set of six primitives with which to describe
flows and hence construct a workflow specification [13]. With these primitives it
is possible to model any workflow that is likely to occur. These primitives are:
sequential, AND-split, AND-join, OR-split, OR-join and repeatable task. These
primitives are all supported by FLOW py, through its block types. FLOW py, con-
tains eight types of blocks, namely, serial, and_parallel, or_parallel, xor_parallel,
for_each, contingency, conditional and iterative blocks. Of the above block types,

DEFINE_PROCESS OrderProcessing()

GetOrder (OUT productNo, OUT quantity, OUT dueDate, OUT orderNo,
OUT customerInfo)
EnterOrderInfo(IN productNo, IN quantity, IN dueDate, IN orderNo)
CheckBillofMaterial (IN productNo, OUT partList)
PAR_AND (part = FOR EACH partList)
SERIAL
DetermineRawMaterial (IN part.No, IN part.Quantity, OUT rawMaterial,
OUT required)
CheckStock(IN rawMaterial, IN required, OUT missing)
IF (missing > 0) THEN
VendorOrder (IN rawMaterial, IN missing)
WithdrawFromStock (IN rawMaterial, IN required)
GetProcessPlan(IN part.No, OUT processPlan, OUT noofSteps)
i:=0
WHILE (i < noofSteps)
Assign(IN processPlan[i].cellld, IN orderNo, IN part.No,
IN part.Quantity, IN rawMaterial, IN required)
END_WHILE
END_SERIAL
END_PAR_AND
AssembleProduct (IN productNo)

Billing(IN orderNo, IN productNo, IN quantity, IN customerInfo)

END_PROCESS

Fig. 1. Order Processing Example

serial block implements the sequential primitive. And_parallel block models the
AND-split and AND-join primitives. AND-split, OR-join pair is modeled by
or_parallel block. Conditional block corresponds to OR-split and OR-join prim-
itives. Finally, repeatable task primitive is supported by the iterative block.

A workflow process is defined as a collection of blocks, tasks and subpro-
cesses. A task is the simplest unit of execution. Processes and tasks have input
and output parameters corresponding to workflow relevant data to communi-
cate with other processes and tasks. The term activity is used to refer to a block,
a task or a (sub)process. Blocks differ from tasks and processes in that they
are conceptual activities which are used only to specify the ordering and the
dependencies between activities.

An order processing example in a highly automated manufacturing enter-
prise is provided using FLOWpy, [3], [8], [11], [15], [16]. An incoming customer
request causes a product order to be created and inserted into an order en-
try database by GetOrder and EnterOrderInfo activities respectively (Figure 1).
The next step is to determine required parts to assemble the ordered product
by CheckBillofMaterial activity. A part is the physical object which is fabricated
in the manufacturing system. For each part, DetermineRawM aterial activity
is executed to find out the raw materials required to manufacture that part,

and a CheckStock activity is initiated afterwards to check stock database for
the availability of these raw materials. If the required amounts of these raw
materials do not exist in the stock, they should be ordered from the external
vendors through VendorOrder. After all missing raw materials are obtained, re-
quired raw materials to fabricate the part is withdrawn from the stock to be sent
to the manufacturing cells. This is accomplished by WithdrawFromStock activ-
ity by decrementing the available amount of the withdrawn raw material (i.e.,
quantity(m)) in the stock database. The required steps to manufacture a part,
and the manufacturing cells where these steps are performed are obtained as a
result of GetProcessPlan. Actual manufacturing activity is initiated by assigning
the work to the corresponding cells for each step in Assign. Finally, manufactured
parts are assembled to form the product that the customer had ordered by the
activity AssembleProduct. Further downstream activities include a billing activ-
ity. Billing is responsible for collecting bills of ordered products. VendorOrder,
GetProcessPlan and Billing are also workflow processes which should be defined
in the same manner as OrderProcessing.

In METUFlows, there are five types of tasks. These are TRANSACTIONAL,
NON_TRANSACTIONAL, NON_TRANSACTIONAL with CHECKPOINT, US-
ER and 2PC_TRANSACTIONAL activities. USER activities are in fact NON_-
TRANSACTIONAL activities. They are specified separately in order to be used
by the worklist manager which handles the user-involved activities.

These activity types may have some attributes such as CRITICAL, NON_-
VITAL and CRITICAL_NON_VITAL. Critical activities can not be compen-
sated and the failure of a non_vital activity is ignored [7], [5]. Besides these
attributes, activities can also have some properties like retriable, compensat-
able, and undoable. A retriable activity restarts execution depending on some
condition when it fails. Compensation is used in undoing the visible effects of ac-
tivities after they are committed. Effects of an undoable activity can be removed
depending on some condition in case of failures.

The block structured nature of FLOW pr, prevents cyclic definitions and un-
reachable states. The further advantages brought by this language are summa-
rized in [8].

3.2 Graphical Representation of the FLOWDL, : FLOW GRAPH

METUFlows system has graphical tools to define a new process definition, to
modify the definition dynamically and to monitor the state of the instances, de-
scribed in detail in the next section. The same graphical representation, called
FLOWgRrAapH, is used at these tools. In FLOWggrapH, each block has a begin
and end nodes. For the AND PARALLEL, OR_PARALLEL, XOR_PARALLEL
and IF blocks, the join node is the end node. However SERIAL, CONTIN-
GENCY, WHILE, FOR_EACH blocks have their own end nodes. The repre-
sentation of the blocks in FLOWgRrapg can be seen in Figure 2.

In Figure 2, circles represent the activities. If the activity is a subprocess,
it is shown with a thicker circle. Also note that, since a process definition has

s

Aoy &
Y Y

SERIAL AND_PARALLEL OR_PARALLEL XOR_PARALLEL
BLOCK BLOCK BLOCK BLOCK

s

AR
I IR AT,

FOR_EACH FOR_EACH FOR_EACH CONTINGENCY WHILE
AND_PARALLEL OR_PARALLEL XOR_PARALLEL BLOCK BLOCK

Fig. 2. The representation of the blocks in FLOWgrapu

SERIAL _BLOCK characteristics although not defined explicitly, the begin and
end of a process are shown similar to that of SERIAL_BLOCK.

The graphical representation of the order processing example, described in
Section 3.1 is given in Figure 3.

3.3 Component-based Architecture

We have designed a workflow system architecture based on Internet and CORBA
with the following features:

— Each process instance is a CORBA object that contains all the necessary data
and control information as well as its execution history. This feature makes it
possible to dynamically modify the process definition on the instance basis at
run time, and to migrate the object in the network to provide load balancing.
It should be noted that with this architecture, a site failure affects only the
process instances running on that site.

— The system is designed to consist of functional components containing but
not restricted to: Basic Enactment Service, User Worklist Manager, Work-
flow Monitor, Workflow History Manager, Dynamic Modification Tool, Pro-
cess Definitions Library Manager, Reliable Message Queue Manager, and

GetOrder

GetProcessPlan
EnterOrderInfo
CheckBillofMaterial i-=0

A

DetermineRawM aterial)

Assign
CheckStock

VendorOrder é; AssembleProduct
WithdrawFromStock :
QO silling

A

Fig. 3. The representation of the order processing example in FLOWgrapy

Workflow Domain Manager. This component-based architecture makes it
possible to incorporate the functionality and thus the complexity only when
it is actually needed at run time by a process instance by downloading only
the necessary components which results in effective usage of system and net-
work resources. It is also possible to add new components or maintain and
upgrade the existing components of the system incrementally without effect-
ing the other parts of the system. The component-based architecture facili-
tates the replication to a great extent. Each site can download its own copy
of component server; also the Workflow Domain Manager can be replicated
at each site as a Site Manager. This provides for availability and prevents
network overhead.

The clients of the system are coded as network-transportable applets written
in Java so that the end user can acquire workflow components from the
Workflow Domain Manager over the network. Thus it is not necessary to have
the software pre-installed on the user machine. This promotes user mobility
further as well as easy maintenance of the system components which can be
upgraded transparently on the server side.

There are four basic components of the METUFlows system architecture
shown in Figure 4, as presented in the following:

1. Component-Server Repository: The components of the system are imple-
mented as CORBA objects that are invoked by Java applets. The Component-
Server Repository contains these applets. The Java applets are downloaded
to the client machine when a user through a Web browser accesses the Work-
flow Domain Manager and asks for a specific service. Thereon the Java ap-
plets interact with the user and direct the user requests to the appropriate

Component-Server Repository Workflow Domain

Monitoring Tool

| |
| |
| |
| |
| - Textual Process Definition Tool |
| - Graphical Process Definition Tool |
| - Process Animator |
| - Dynamic Modification Tool |
| |
| |
| |
| |
| |
| |
| |
| |

- Process Instance Monitoring Tool

- Workflow Domain Monitoring Tool \ o
- Basic Enactment Server . !
- Worklist Handler Workflow Domain Control Data |
- Authorization Server - URL of Component Server Repository |
- Activity Handler / Scheduler - URL of Workflow Process Definitions Library |
- History Handler —— - URL of Workflow Domain Permanent Storage |

- List of Active Process Instances |
- List of Active Component-Servers |
- List of Participating Sites |

Workflow Process Definitions Library : /'
I
I

Workflow Domain Manager

- Process Definition Tree

O e -

P

, History Manager |

WEB Browser | <> USER

Fig. 4. Basic components of the METUFlow, Architecture

CORBA objects. Some of the components of our system are listed in the
following:

— Workflow Process Definition Tool; to define new workflow processes.

— Workflow Dynamic Modification Tool; to modify previously defined work-
flow processes that are stored in the Workflow Process Definition Library
and/or a particular workflow process instance.

— Workflow Process Instance (WPI) Monitoring Tool; to trace workflow
process instances that have been initiated and extract run-time informa-
tion about the current execution status of an instance.

— Momnitoring and Measurement Tool; to collect and measure process enact-
ment data needed to improve subsequent process enactment iterations
as well as documenting what actions actually occurred in what order.

— FEnactment History Capture and Replay; to simulate the re-enactment
of a process graphically in order to more readily observe process state
transitions or to intuitively detect possible process enactment anomalies.

2. Workflow Process Definitions Library: Workflow definitions (i.e. process tem-
plates), organizational role definitions, participant-role assignments are durab-
ly stored in this library. Only Workflow Specification Tool and Dynamic

Modification Tool inserts or updates workflow process templates in this li-
brary. This library is maintained by the WFMS Library Manager.

Different workflow schema versions have to be managed and different prop-
agation strategies of workflow schema changes to their workflow instances
have to be provided by a WFMS in order to flexibly support the migra-
tion from one business process to an improved one, to support alternative
workflows for process variants, and to support adhoc changes of a workflow
[14]. When the workflow definition is modified permanently, the versions of
workflow definitions are stored, since:

— In some cases, it may be necessary to recover to the old workflow defini-
tion. For example, when it is observed that the new definition performs
worse than the old definition.

— It may be desired that more than one version of definitions are active
at the same time. That is, some instances are created from one version,
and some others from a different version of the definition.

In the METUFlow, architecture, to handle the versioning of definitions, a
definition tree is kept to provide the administrator the flexibility of modifying
a definition several times. During the modification, the administrator selects
one version, default being the last one. Thus new instances are created from
the default definition, if the version number of workflow definition is not
identified explicitly during the instance creation.

3. History Manager: The History Manager handles the database that stores
the information about workflow process instances which have been enacted
to completion to provide history related information to its clients (e.g. for
data mining purposes). It should be noted that the history of active process
intances are stored in the process instance object.

4. Workflow Domain Manager: The Domain Manager is the Web server of the
system. All clients access to the Domain Manager via their Web browsers and
in response to their authorized service requests, the Domain Manager down-
loads appropriate Java applets to the client which then handles subsequent
requests of the same client for that particular service which is provided by a
component server. If the client needs a different WFMS service, the Domain
Manager is then accessed again via the Web browser and another Java applet
is downloaded. The Domain Manager keeps runtime information such as list
of active process instances, active component servers, list of participating
sites, etc. for domain monitoring purposes.

The run-time system despite having a central control on a process instance
basis, brings out all the benefits of highly distributed environments. Each WPI
may execute at a different site. Component-Server Repository, Workflow Defini-
tion Library, Workflow Domain Control Data and Workflow Domain Manager
may all be replicated for better performance and availability. Each participat-
ing site may have its own replication of Workflow Domain Manager as the Site
Manager. Since no prior installation of any WFMS software is required on the
client side the system is highly dynamic and thus any component-server imple-
mentation may be upgraded at the server side without needing any changes on

the client side. In addition a site failure can be overcome simply by migrating
the instances to be executed on that site to another site/other sites. Detailed
work on the component-based workflow system architecture can be found in [6].

4 Handling Dynamic Modifications in METUFlow,

The set of running instances of a workflow definition can be called as instance
domain. The modifications can be applied to none of the instances, to a single
instance, to a set of instances, or to all of the instances of the instance domain
depending on the modification that has been done and what the modification
administrator, who has granted to make modifications on workflow definitions,
defines as the domain that the modifications are applied. For example, a modi-
fication can be applied on the instances which have passed a particular point on
the execution flow or a modification can not be applied to some of the instances
since they have passed the critical point. The administrator can indicate the
domain on which the modifications are applied. If the domain is not given, the
modification is applied to all of the instances.

The changes can be classified in two groups, as permanent and temporary
changes:

— For permanent changes, the workflow definition is changed permanently, so
that the new instances are created from the new definition by default. The
running instances may also be selectively migrated to the new definition.

— For temporary changes, the modification is only applied to the running in-
stances, but not to the workflow definition. For example, there may be some
user activities which are assigned to the users by adding the activity to their
worklists, in the workflow definition. If a user is absent temporarily, because
of illness for example, her/his activities can be assigned to another user who
takes the responsibility of the activities of the absent user.

In our system, dynamic modification of an instance and/or a workflow defi-
nition template can be initiated in two ways: either by a user or by means of a
special activity specified in the process definition as explained in the following;:

— A user via her/his Web browser may access the Workflow Domain Manager
and download the Dynamic Modification Tool which helps the administra-
tor make necessary changes on the workflow definition and/or the running
instances. Modifications on the workflow definition can only be done by au-
thorized users.

Dynamic Modification Tool asks the Authorization Server about the modi-
fication grant of the user whether the user can modify the definition, or not.
Three different grants can be given to the users according to their roles by
the Authorization Server:
o modify-permanently; given to the users, like system administrator, to
modify the workflow definition template and/or some/all of the process
instances in the instance domain.

o modify-temporarily-all; given to the users to modify some/all of the in-
stances in the instance domain temporarily. These users, who have this
type of grant, can not modify the workflow definition template.

o modify-temporarily-own; given to the users to modify only the instances
that they are the owners. These users also can not modify the workflow
definition template.

If the user has taken any one of the modification grants, s/he chooses a work-
flow definition to update. The information about definitions can be obtained
from Workflow Process Definition Library through Workflow Domain Man-
ager and the set of running instances can be obtained from the Workflow
Domain Control Data of the Workflow Domain Manager.

— Workflow process definition may contain a special activity called Workflow
Process Modification Activity (WPMA) that (when executed) automatically
invokes the WPI Dynamic Modification Tool on behalf of a user so that the
user can modify the process instance. The WPMA handles instance-specific
differences of the process definition when necessary. Each specification of the
WPMA activity results in a separate modification of the instance. A WPMA
initiated modification may not affect other instances of the same workflow
process or the workflow definition template.

After the modification process is initiated by any one of the ways described
above, the workflow definition is represented graphically using the FLOWggrapH-

The user can make the following modifications on this graphical definition
using the Dynamic Modification Tool:

A new activity can be defined, and inserted in the workflow definition.
New control dependencies can be given, or they can be changed.

— Conditions can be updated or a new one can be given.

— The values of workflow relevant data can be modified.

— Block types can be updated.

— A user or a role, assigned to a user activity, can be changed.

— Activities can be deleted.

In addition to these modifications and augmentations, the domain can be
specified to identify the instances that the modifications are to be applied, along
with the type of modification, whether permanent or temporary.

After all of the necessary information are gathered from the user, by going
through both the old and the new workflow definitions, the modification region
is determined. A modification region contains the minimum part of the definition
that includes all the modifications, that is, starts with the first modified activity
and ends with the last one. An example is given in Figure 5.

If the modification is to be applied to the running instances, the modification
region is checked for the critical points, if there are any in the workflow definition.
If the modification region is after the critical points in the execution flow, then all
the instances of this definition can be adapted to the new definition. However if
a critical point is after the modification region, execution states of the instances

P10 { P10 {

T1; T1;
T2; T2;
AND_PARALLEL { T6; —
T3; AND_PARALLEL { |
T4; T3; | Modification
} T4; | Region
TS; } |
} T7; -—-
T5;
}

Fig. 5. A Modification Region Example

should be checked. If their executions have passed the critical point and the
critical activity needs to be compensated to migrate the running instance to the
new definition, then the modification should be rejected for these instances. If
the critical point has not been executed yet, then the modification can be applied
to these instances.

The instances that the modification can be applied, are grouped according
to their execution states:

— The instances whose execution states has not reached to the modification
region yet, are directly adapted to the new definition.

— If the first activity of the modification region is running then this activity
is aborted, and these instances can continue their executions from the new
workflow definition.

— If the execution is either running in the modification region or has passed
the region, then the execution of these instances are held on. The activities
until the beginning of the modification region are rolled back according to
a compensation strategy. Afterwards their execution can continue using the
new schema. For an activity (if it is not a critical activity), if a compensa-
tion activity is not given, this means that there is no need to compensate
this activity during recovery. Also note that, critical activities can not be
recovered, therefore they do not have compensation activities.

Dynamic Workflows which have no pre-specified process definition can be
handled with another special activity called Dynamic Workflow Special Activity
(DWSA) that automatically invokes the Dynamic Modification Tool on behalf of
a user so that the user can specify the next activity to be executed. A dynamic
workflow process definition initially includes only one activity, the DWSA. When
this process is initiated, the DWSA invokes the Dynamic Modification Tool and
awaits the user to specify activities to be executed. When the user specifies the
next activity or activities, another DWSA is appended automatically such that
after the user-specified next activity(s) is executed, the DWSA will be invoked
again. The DWSA will not be appended only if the user explicitly indicates that

no more activities are to be specified in which case the termination of DWSA will
indicate the termination of the process instance. In this way a workflow process
can interactively be defined on-the-fly by a user and it is saved in the Workflow
Process Definition Library if the user specifies so at the terminating DWSA.

4.1 METUFlow; Modification Language: FLOW)\[,

The user who has a grant to modify a workflow definition or its running instances,
should provide:

— an action, the modification that should be made. The user can provide this
information using our modification language, FLOW,, as:

{ ADD | MODIFY | DELETE } { PROCESS <processname>> |
TASK <taskname> |
BLOCK <blkname> |
CONDITION AT <activityname> |
WRD <wrdname> | USER AT <activityname> |
ROLE AT <activityname> } [AS <new defn>]

— a place, where the modification is applied, can be given using FLOW 1, as:

[AFTER { <activityname> | <blkname> } | BEFORE { <activityname> |
<blkname> } | IN { <activityname> | <blkname> }]

— a domain that includes the instances to which the modification is applied,
by providing the object references or the execution states of the instances.
This information can be given using FLOW 5/, as:

DOMAIN [ALL | NONE] <processname>>

[WHICH OBJ_REF <comparison_op> objref |
BEFORE { <activityname> | <blkname> } STARTS |
AFTER { <activityname> | <blkname> } COMMITS |
AT { <activityname> | <blkname> } EXECUTING]

— the type of the modification, permanent or temporary, can be given as:

[PERMANENTLY | TEMPORARILY]

More than one modification statements can be combined with AND connec-
tor.

The user can use either our modification language, FLOW ., or graphical
dynamic modification tool to specify the modifications or additions.

After the modification of the processes, the modified process definition is
checked for the following:

— If a new activity is defined, its input parameters are checked whether they
have been defined or not, before the activity.

— Task, block and process names that appear in the ”place” or ”domain” part
of the FLOW 1, are checked whether they exist in the old definition or not.

— For DELETE and MODIFY statements, the validity of task names, block
names, conditions, role names, user names and wrd names are checked.

— For DELETE statements, it is checked that whether the deletion affects the
input and output parameters of other activities.

4.2 An Example

The manufacturer may decide to modify their billing process as requesting some
percentage of the total payment in advance before the manufacturing steps have
started. Therefore a new ”RequestPayment” activity may be added after the
activity ”"EnterOrderInfo”. Additional changes should be handled at the Billing
subprocess also. In METUFlow,, these modifications can be defined either graph-
ically by using the Dynamic Modification Tool, or textually by FLOW 1. The
FLOW ;1 statements for these modifications are as follows:

ADD TASK RequestPayment (IN int orderNo, IN int productNo,
IN int quantity, IN custumerStruct customerInfo,
OUT double amountPaid)
AFTER EnterOrderInfo
AND
MODIFY PROCESS Billing
AS Billing (IN int orderNo, IN int productNo, IN int quantity,
IN custumerStruct customerInfo, IN double amountPaid)
AND
MODIFY TASK Payment
AS Payment (IN int orderNo, IN int productNo, IN int quantity,
IN custumerStruct customerInfo, OUT double amount,
OUT int paymentStatus, IN double amountPaid)
DOMAIN ALL OrderProcessing
PERMANENTLY;

First FLOW 1, statement adds a new activity ”RequestPayment” after the
activity ”EnterOrderInfo”. Second and third statements add a new IN parameter
to the ”Billing” subprocess and the ”Payment” task respectively. The ”Request-
Payment” task should be written and the operation logic of the ”Payment” task
should also be changed accordingly. However from a workflow point of view, a
WFMS does not have the responsibility of providing these changes. This modifi-
cation is applied to all of the instances of the process ”OrderProcessing” and the
definition of the process is also modified permanently. This means that a new
version of the definition is created and stored in the Process Definitions Library.

5 Conclusion and Future Work

Business processes need to be constantly refined in order to effectively meet the
constraints and opportunities proposed by new technology, new market require-
ments, and new laws. Workflow Management Systems, which are used for the
development of business applications, should provide the facilities to manage
the dynamic modification of running instances to the modified definition. The
component-based architecture that we propose in this paper facilitates dynamic
modification on an instance basis and avoids process template modification prob-
lems by keeping the process definition for each instance separately. After The user
provides the modifications to the process definition either by using FLOW ;1 or
by using graphical modification tool, the Dynamic Modification Tool determines
on instance basis how the migration of instances to the new definition can be
handled, and without any further user interaction, the instances are migrated.

During the migration of the running instances to the new process definition,
sometimes the need may arise to rollback some of the committed tasks using
compensation tasks. In many situations there is no need to compensate all of
the tasks, since the modification region has not affected all of them. Therefore
during roll-back operation, the Modification Tool determines which tasks to be
compensated according to the modification region. To make this automatic, the
dependence between the tasks should be determined automatically. Our work
on determining task interdependencies according to the data and control flow
between them still continues.

References

1. N. Adam, V. Atluri, W. K. Huang; "Modeling and Analysis of Workflows Using
Petri Nets”, Journal of Intelligent Information Systems, Special Issue on Workflow
and Process Management, Volume 10, Issue 2, March 1998.

2. G. Alonso, and H. J. Schek; "Research Issues in Large Workflow Management
Systems”, Proc. of NFS Workshop on Workflow and Process Automation in In-
formation Systems: State-of-the-Art and Future Directions, Edited-by A. Sheth,
Athens, Georgia, May 1996.

3. 1. B. Arpinar, S. (Nural) Arpinar, U. Halici, and A. Dogac; ” Correctness of Work-
flows in the Presence of Concurrency”, Intl. Conf. on Next Generation Info. Tech.
and Sys., Israel, July 1997.

4. F. Casati, S. Ceri, B. Pernici, G. Pozzi, ”Workflow Evolution”, Data and Knowl-
edge Engineering, Volume 24, Issue 3, pp. 211-238, January 1998.

5. Q. Chen, U. Dayal, ” A Transactional Nested Process Management System”, Proc.
of the 12th Intl. Conf. on Data Engineering, New Orleans, Louisiana, USA, Febru-
ary 1996.

6. I. Cingil, A. Dogac, "A Component-based System Architecture for Adaptable
Workflow Systems”, Technical Report 98-2, Software Research and Development
Center, Dept. of Computer Engineering, Middle East Technical University, 1998.

7. U. Dayal, M. Hsu, R. Ladin, ”A Transaction Model for Long-running Activities”,
Proc. of the 17th Intl. Conf. on Very Large Databases, pages 113-122, September
1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Dogac, E. Gokkoca, S. Arpinar, P. Koksal, I. Cingil, I. B. Arpinar, N. Tatbul,
P. Karagoz, U. Halici, M. Altinel, ”"Design and Implementation of a Distributed
Workflow Management System: METUFlow”, In: [9].

A. Dogac, L. Kalinichenko, M. T. Ozsu, and A. Sheth (eds.), ” Advances in Work-
flow Management Systems and Interoperability”, Springer Verlag, 1998.

C. Ellis, K. Keddara, and G. Rozenberg, ” Dynamic Change Within Workflow Sys-
tems”, Proc. of the ACM Conf. on Organizational Computing Systems, 1995.

E. Gokkoca, M. Altinel, I. Cingil, N. Tatbul, P. Koksal, A. Dogac, ”Design and
Implementation of a Distributed Workflow Enactment Service”, Proc. of Intl. Conf.
on Cooperative Information Systems, Charleston, USA, June 1997.

Y. Han, A. Sheth, ”On Adaptive Workflow Modeling”, 4th Intl. Conf. on Informa-
tion Systems Analysis and Synthesis, Orlando, Florida, July 1998.

D. Hollinsworth, "The Workflow Reference Model”, Technical Report TC00-
1003, Workflow Management Coalition, December 1996. Accessible via:
http://www.aiai.ed.ac.uk/WfMC/.

G. Joeris, O. Herzog, ” Managing Evolving Workflow Specifications”, 3rd Intl. Conf.
on Cooperative Information Systems, COOPIS’98, New York, August 1998.

P. Karagoz, S. Arpinar, P. Koksal, N. Tatbul, E. Gokkoca, and A. Dogac, ” Task
Handling in Workflow Management Systems”, Intl. Workshop on Issues and Ap-
plications of Database Technology, Berlin, June 1998.

P. Koksal, S. Arpinar, and A. Dogac, ”Workflow History Management”, ACM
Sigmod Record, Vol. 27, No. 1, March 1998.

C. Liu, M. E. Orlowska, H. Li, ” Automating Handover in Dynamic Workflow En-
vironments”, CAIiSE 1998, pp. 139-157.

L. Liu, C. Pu, ”Methodical Restructuring of Complex Workflow Activities”, Intl.
Conf. on Data Engineering, ICDE ’98, 1998.

M. Reichert, P. Dadam, ” A Framework for Dynamic Changes in Workflow Man-
agement Systems”, in Proc. of DEXA’97, September 1997, Toulouse, France.

M. Reichert, P. Dadam, ” ADEPT_flex-Supporting Dynamic Changes of Workflows
Without Loosing Control”, in Journal of Intelligent Information Systems (JIIS),
Special Issue on Workflow and Process Management, Volume 10, Issue 2, March
1998.

M. Reichert, C. Hensinger, P. Dadam, ”Dynamic Workflow Changes in Clinical
Application Environments”, in Proc. of EDBT-Workshop, 1998.

S. W. Sadiq, M. E. Orlowska, ”On Dynamic Modification of Workflows”, Technical
Report, July 1998.

A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden,
A. Wolf, Report from the NSF workshop on workflow and process automation in
information systems, in ACM SIGMOD Record, 25(3):55-67, December 1996.

A. Sheth, K. Kochut, ”Workflow Applications to Research Agenda: Scalable and
Dynamic Work Coordination and Collaboration Systems”, in [9].

E. Turanalp, "Design and Implementation of a Graphical Workflow Definition
Tool”, Master Thesis, Department of Computer Engineering, Middle East Techni-
cal University, Ankara, Turkiye, 1997.

