
1

An Open Electronic Marketplace through

Agent-based Workflows: MOPPET1

SENA ARPINAR, ASUMAN DOGAC AND NESIME TATBUL

Software Research and Development Center

Dept. of Computer Engineering, Middle East Technical University (METU)

06531 Ankara, Turkey

{nural,asuman,tatbul}@srdc.metu.edu.tr

Abstract

We propose an electronic marketplace architecture, called MOPPET, where the commerce

processes in the marketplace are modeled as adaptable agent-based workflows. The higher level of

abstraction provided by the workflow technology makes the customization of electronic commerce

processes for different users possible. Agent-based implementation, on the other hand, provides for

a highly reusable component-based workflow architecture as well as negotiation ability and the

capability to adapt to dynamic changes in the environment. Agent communication is handled

through Knowledge Query and Manipulation Language (KQML). A workflow-based architecture

also makes it possible for complete modeling of electronic commerce processes by allowing

involved parties to be able to invoke already existing applications or to define new tasks and to re-

structure the control and data flow among the tasks to create custom built process definitions.

In the proposed architecture all data exchanges are realized through Extensible Markup Language

(XML) providing uniformity, simplicity and a highly open and interoperable architecture.

Metadata of activities are expressed through Resource Description Framework (RDF). Common

Business Library (CBL) is used for achieving interoperability across business domains and domain

specific Document Type Definitions (DTDs) are used for vertical industries. We provide our own

specifications for missing DTDs to be replaced by the original specifications when they become

available.

Keywords: electronic marketplace, workflow, agent, Extensible

Markup Language (XML), Common Business Library (CBL).

1 This work is being partially supported by Middle East Technical University, Project Number:

AFP-97-07-02-08 and by the Scientific and Technical Research Council of Turkey, Project

Number: 197E038.

2

Introduction

Markets play a central role in the economy, facilitating the exchange of

information, goods, services, and payments. They have three main functions:

matching buyers and sellers; facilitating the exchange of information, goods,

services and payment associated with market transactions; and providing an

institutional infrastructure, such as legal and regulatory framework, that enables

the efficient functioning of the market [Y. Bakos, 1998].

Recent years have seen a dramatic increase in the role of information technology

in markets, both in traditional markets, and in the emergence of electronic

marketplaces, such as the maltitute of Internet-based online auctions. "eBay"

(http://www.ebay.com) is an example of a very successful marketplace where

over 2 million items are being auctioned in more than 1500 categories. Other

examples include “Bargain Finder” (http://bf.cstar.ac.com), developed by

Anderson Consulting as part of their Smart Store Virtual iniative, and "FireFly"

(http://www.agents-inc.com), from Agents Inc.

In spite of a quite a number of successful examples, Internet-based electronic

marketplaces are still at a formative stage. An open interoprable platform

exploiting the emerging standards and technologies is not there yet; the agent

technology has not been fully exploited and developed to cope with tremendous

amount of information available; the processes involved in electronic commerce

have not yet been automated to a desirable extent; and the services a marketplace

offers to its customers need to be improved.

In this paper, we propose an electronic marketplace architecture, called MOPPET

(METU OPen Electronic MarkeTplace) to address these issues. The features

offered by MOPPET are as follows:

1. Electronic commerce processes in the marketplace are modeled as workflow

processes, which are realized through agent-based components.

Many researchers as well as commercial companies have created agent-based

systems that support various aspects of electronic commerce such as online

3

shopping, virtual catalogs or electronic marketplaces. While these systems

provide interesting shopping experiences, they fall short in fully exploiting the

capabilities offered by the electronic medium.

These systems can not handle diversity of customer needs. As an example, a

customer may want to buy more than one related item and there can be

dependencies among the items and also compatibility requirements that stem

from the nature of these items. For example, s/he may want to buy a printer

together with a personal computer. This creates a dependency between the

computer and the printer. Also, for the specific software that s/he considers

there could be a certain amount of memory requirement. This illustrates a

compatibility requirement. In contrast, current systems are mostly designed to

handle one request at a time. For instance, a customer may buy an item by

searching several shops/stores but can not make several inquiries in one step

to buy several compatible and related items and/or services. Shopping carts

support several inquiries of a buyer however the buyer cannot give

dependencies among the items or the specific order of the related purchases.

Also, no support is provided for compatibility requirements. In our approach,

the dependencies expressed by the user are represented through control flow

dependencies. For expressing the compatibility requirements among items,

there is a need for a knowledge base to store the rules.

More importantly, most of the systems developed do not have enough

facilities to automate the business processes conducted by the user/customer.

In this respect, we propose to organize the electronic commerce processes into

workflow templates adaptable to user needs. Workflow based approach allows

involved parties to define their own tasks and to invoke already existing

applications within the workflow and to re-structure the control and data-flow

among the tasks, in other words, to automatically create a custom built

workflow from the workflow template. The higher level of abstraction

provided by the workflow technology makes this customization of processes

for different users possible. In addition, the workflow definition makes it

possible to invoke any number of activities in parallel to provide efficiency

and to dynamically reengineer the commerce processes not only to the user

4

needs but also to balance the system workload. For example, the search and

purchase of related items from different stores can be activated in parallel.

Furthermore the recovery functionality of a workflow system allows to

automatically rollback the necessary activities if a dependent activity fails,

e.g., a desk purchase request of a user executing in parallel with his computer

purchase request can be automatically rolled back if the computer purchase

request fails.

The workflow system architecture is designed to consist of functionality based

reusable components each of which is realized through different types of

agents. Use of agents provides greater flexibility, agility and adaptibility

especially due to their properties of being proactive and responsive. They are

proactive in the sense that they can take the initiative when an unaniticipated

condition occurs and are responsive so that they can sense and respond the

changes in the environment. Negotiation ability of agents provides for another

aspect of flexibility in the execution of workflow processes.

At the lowest level, there is a need to invoke different types of tasks. To

achieve this functionality, specific task agents are designed which can be

reused whenever the need arises. There are task agents for querying the XML

documents, for negotiation and for handling activities requiring user attention.

The scheduler of a workflow determines the possible control and data-flow

among task agents. There could be modifications on the control-flow

depending on the negotiation among the agents at run-time. This scheduling

functionality is also designed as an agent since the scheduler needs to adapt to

dynamic changes in the environment and also may need to negotiate with

other scheduling agents for delegating parts of a workflow process. Such a

scheduling agent implemented according to a workflow DTD is a highly

reusable component, since it can enact any workflow definition written in

XML conforming to this DTD. It also gives the user the flexibility to include

any process definition conforming to workflow DTD in the workflow

template. Recovery component takes the initiative when a failure or an

unanticipated change in the specification occurs and is realized as an agent.

Another type of agent is facilitator agent whose responsibility is to allow

5

agents to find each other (through advertisements) and to provide services

such as a naming service. Interactions with the user are handled by an agent

called interface agent so that the underlying complexity of the system is

hidden from the user. Interface agents provide graphical user interfaces to

their users and get the requirements of the users to compose workflow process

definitions by adapting the existing templates.

2. The interoperability infrastructure is based on XML.

For electronic commerce to become really ubiquitous electronic commerce

architectures should be open, that is, they should be based on infrastructures

providing for semantic interoperability. The most promising proposal in

providing an open and interoperable electronic commerce architecture seems

to be the efforts of World Wide Web Consortium (W3C) in providing data

exchange and data semantic standards like XML, RDF and CommerceNet's

efforts on developing an open electronic commerce framework based on

Common Business Library (CBL).

XML has gained a great momentum and is emerging as the standard for self-

describing data exchange on the Internet. Its power lies in its extensibility and

ubiquity. Anyone can invent new tags for particular subject areas and define

what they mean in document type definitions. Content oriented tagging

enables a computer to understand the meaning of data. But if every business

uses its own XML definition for describing its data, it is not possible to

achieve interoperability. The tags need to be semantically consistent across

merchant boundaries. For this reason, CBL which consists of product

taxonomies and message formats as XML DTDs, has been developed [B.

Meltzer and R. Glushko, 1998] and the baseline version (1.1) is available from

[VEO Systems Inc., 1998]. CBL contains a set of building blocks common to

many business domains such as address (location.dtd), price (value.dtd),

purchase order (order.dtd) and standard measurements (measures.dtd), and

thus provides the much-needed basis to ensure interoperability among XML

applications. When this is complemented by a set of DTDs common for

specific industries, that is for vertical domains, the open electronic commerce

infrastructure will be achieved. In fact, some of the specifications for vertical

6

domains are already available like HL7 for exchanging healthcare records,

OBI (Open Buying on the Internet), OTP (Open Trading Protocol), and work

is going on for some other domains like for producing the common

terminology and structure of documents for personal computers [RosettaNet,

1998]. The interoperability infrastructure of MOPPET makes use of CBL and

DTDs for vertical domains. We provide our own specifications for missing

DTDs to be replaced by the originals when they become available. In this

respect, we provide DTDs such as a DTD for workflow definition

(workflow.dtd). The advantage of defining a workflow as a DTD is that as

long as there is a workflow engine on the Internet that can interpret this

workflow.dtd, any workflow process defined in XML conforming to this DTD

can be executed. This gives an enormous flexibility in terms of

interoperability. A further level of interoperability is necessary for systems

involving agents. For this purpose, we use Knowledge Query and

Manipulation Language (KQML) which is a language and a protocol for

exchanging information and knowledge among agents. Since KQML is

designed for knowledge sharing, we extend it for agent negotiation.

The organization of the paper is as follows: Following section presents our agent-

based workflow management system architecture. In the next section, we provide

an electronic marketplace environment, called MOPPET. Next, we explain the

proposed architecture providing a detailed scenario. We, then, describe related

work for developing marketplaces and also some previous work on building

agent-based workflow management systems. Final section includes conclusions.

Agent-based WfMS Architecture

In this section, a workflow management system (WfMS) architecture that is used

as a building block in the MOPPET marketplace is described.

Workflow management deals with the specification and execution of business

processes. Workflow management systems allow one to define, execute, manage,

and modify business processes. Business processes, especially for electronic

commerce are highly dynamic and unpredictable - it is difficult to give a complete

7

priori specification of all activities that need to be performed and how they should

be ordered. In addition, a workflow system must include a flexible enactment

system that is capable of supporting scalability, where new resources can be

incorporated easily within the workflow system; and adaptive workflows, where

the workflow specification can be changed or extended. With this in mind,

electronic commerce processes in the marketplace are modeled through agent-

based components. In this way, it is possible to partition a potentially large load

among participating components, ie., agents and to guarantee minimal

communication between these components which are essential to achieve

scalability where a workflow system may need to support tens of thousands of

active order processing workflow instances such as in an electronic marketplace.

There are various agent-based workflow systems developed as explained in

related work section. However, they lack the means for interoperating with other

workflow systems and custom-built services. In order to achieve this level of

interoperability, we make use of standardization efforts like KQML [Y. Labrou

and T. Finin, 1997] and XML [XML, 1998].

The Extensible Markup Language (XML) is a data format for structured

document interchange on the Web. It provides a framework for tagging structured

data by allowing developers to define an unlimited set of tags

bringing great flexibility. XML resembles and complements HTML. XML

describes data such as city name, temperature, and HTML defines tags that

describe how the data should be displayed such as with a bulleted list or a table.

Document Type Definitions (DTDs) may accompany an XML document,

essentially defining the rules of document, such as which elements are present and

the structural relationships between the elements. DTDs help to validate the data.

XML brings so much power and flexibility to Web-based applications that it

provides a number of benefits to developers such as being able to do more

meaningful searches.

8

Agents for Workflow Process Enactment

In our architecture, workflow process enactment is performed by means of agents

that exchange XML through KQML messages. In other words, all data and

definitions are written in XML such as workflow definition and all agents in the

system uses KQML for communicating with other agents.

It should be noted that, KIF (Knowledge Interchange format) might also be used

in KQML communications among agents but we prefer using RDF and XML due

to their power to lead more open and easy to understand architecture. XML is

more restricted than RDF since it only uses hierarchical representation of data but

in most circumstances in MOPPET, it is found to be sufficient to use XML and in

cases it is not adequate such as describing roles, product taxonomies or related

product information, agents exchange documents in RDF.

There are five types of agents in the system: interface agents, scheduling agents,

task agents, recovery agents and facilitator agents. In the following each agent's

functionality is explained.

Interface Agent. Interface agents are responsible for collecting and collating

relevant information from the user to initiate a workflow process, presenting the

returned results and explanations to the user, requesting the user for additional

information during recovery and asking for user confirmation when necessary. By

means of interface agents, the complexity and underlying distribution are hidden

from the user. After getting initial specification from the user, interface agent

constructs the initial schedule of tasks needed to satisfy user specification. Then, it

finds and contacts to a scheduling agent to execute the workflow through

negotiation. The negotiation strategy employed by agents is explained at the end

of this section.

Scheduling Agent. The scheduling agent is the agent doing the real workflow

enactment. It gets the workflow definition in XML from the interface agent of the

user and tries to execute all the tasks and subprocesses according to the control

and data-flow given in the definition. It contacts task agents to schedule the

individual tasks or may contact other scheduling agents to delegate some part of

9

the workflow. To find the relevant task/scheduling agent, it negotiates with

possible set of agents and it schedules the job to one of them. One of the other

responsibilities of the scheduling agent is to ensure the correctness of the

workflow process in presence of other concurrently executing workflows

according to the algorithm provided in [B. Arpinar et al, 1999],[B. Arpinar, 1998].

Task Agent. Task agents act as wrappers of the actual applications. A typical task

agent knows the meta-model of the task that it is associated with and the

procedures for executing the task or accessing the database if it is a database task

or collaborating with the users if the task is a human task. It also communicates

with scheduling agents and recovery agents to report the current situation of the

task (e.g., committed, failed, executing, etc.). There are several types of tasks [J.

Miller et al., 1998]; transactional, non-transactional, user and web. Transactional

tasks are those that support ACID (Atomicity, Consistency, Isolation and

Durability) properties. Non-transactional tasks are used when an ordinary

application that does not enforce atomicity or isolation is included in the

workflow. A user task is used for purely manual tasks like a phone call of a user.

Web tasks are those that involve a web application.

Depending on the type of the task they are in charge with, task agents have

different capabilities. For example, for user tasks, task agents have worklist

management capability.

Recovery Agent. Recovery agents have the knowledge of currently running and

past instances of the workflows that they are associated with. They communicate

with scheduling agents and task agents to gather information about running

instances. A recovery agent has access to the history database and should have

mechanisms to query this database. When a failure in a task or an unanticipated

change in the specification occurs, recovery agent takes the initiative. It produces

the new path or definition to follow by making backward recovery using a

compensation mechanism. It determines which tasks to compensate and what to

do next, and informs the relevant scheduling agent about the new path.

10

Figure 1. Structure of an Agent

Facilitator Agent. It acts as a facilitator (in KQML terminology) for agents in the

system. It collects advertisements of the agents in terms of their capabilities and

facilitates agents to find each other to satisfy their needs. In order to increase

efficiency, there should be more than one facilitator in the system. Facilitator

agents should know each other's address and query each other to answer requests

of the agents. Therefore in our system, facilitator agents advertise themselves to

other facilitator agents.

The general structure of an agent is shown in Figure 1. This structure is common

to all agents in the system with only one exception that only interface agents have

graphical user interfaces (GUIs). There is an XML parser/generator that helps

agents to understand the content of KQML messages and forming a new KQML

message containing some XML content to be sent to another agent. Message

Queues are used to keep track of incoming and outgoing messages so that an

agent knows which message to respond and which messages it has sent and has

not receive a response yet. Agent code includes the procedures and modules that

help agents in realizing their functionality.

Agent Code

XML parser/generator

KQML parser/generator

M
es

sa
ge Q

ue
ue

s

G
U

I

Communication Layer

11

Figure 2. Workflow Management System Architecture

Figure 2 shows the overall architecture consisting of the components and agents

taking part in our workflow management system. Workflow system is initiated by

the user through a web browser. Interface agent constructs the definition in XML

conforming to a workflow.dtd (see Section "Workflow Process Definition"). In

order to start execution, interface agent sends this definition to a scheduling agent

capable of interpreting the definition. The scheduling agent may enact the whole

process or delegate some parts of it to other scheduling agents. In this way, an

execution tree is formed having scheduling agents at interior nodes and task

agents at the leaves. During enactment, a scheduling agent needs to find other

scheduling and/or task agents capable of doing the required work. This is

facilitated by the facilitator agent that holds a repository for storing agent

advertisements.

Task Agent

App
lic

ati
on

Web Browser

Scheduling Agent

Task Agent

Interface Agent

Web Browser

Rep
os

ito
ry

Facilitator Agent

Recovery Agent

History

transactional or
non-transactional tasks

: KQML communication

web or user task

12

Since agents are autonomous, there are no predefined control dependencies among

them, therefore, if an agent requires a task which is managed by another agent, it

cannot simply instruct it to start the task [N. R. Jennings et al., 1996]. Instead,

agents should come to a mutual agreement about the terms and conditions under

which the task is to be performed through negotiating with each other. We call

this type of negotiation as task-oriented negotiation. We use an auction

mechanism, Vickrey auction [W. Vickrey, 1961], for this type of negotiation. In

Vickrey auction model, each of the participants of the auction submits a sealed bid

known only by the receiving party. The participant with the lowest (highest) bid is

awarded the work at the second lowest (highest) bid price. For task-oriented

negotiation, our auction model supports more than one term in the bid. Therefore,

we have made a slight modification to the Vickrey auction model. An agent

should determine the winner agent not only by looking at price offerings but also

other terms such as the proposed duration of the work. This is achieved by

assigning percentages of importance to the terms involved in the negotiation. In

this way, a single value is obtained and the rules of the auction are applied as

before.

Thus, in agent interactions described above, all agents use task-oriented

negotiation during work delegation and task invocation.

Workflow Process Definition

There is a need to define the work to be accomplished and also the ordering

principles (i.e., control-flow) among the activities of workflow processes. In our

framework, we choose to use XML to define a workflow process. In this way, a

workflow definition can be interpreted by all other agents or components that

have the capability to parse an XML document and have access to the DTD used.

XML by itself is not enough to enable plug and play workflows. XML makes it

easy to create specialized markup languages that identify and describe workflows,

the goods or services, and the numerous other document types. But if every

business uses its own XML definitions for describing its workflow it is not

possible to achieve interoperability. In this respect CBL will include a workflow

and service description in its future versions [VEO Systems Inc., 1998]. For the

13

time being we have developed our own DTD for workflow description to be

replaced by the original when it becomes available.

In our approach, a workflow process is defined as a collection of blocks, tasks and

subprocesses [A. Dogac et al., 1998a]. Processes and tasks have input and output

parameters. There are eight block types in our workflow definition; serial, and-

parallel, or-parallel, xor-parallel, conditional, for-each, iterative and contingency.

Activities (i.e., tasks, blocks or subprocesses) in a serial block should be

performed one after another. Similarly, activities in a parallel block are executed

in parallel. And/or/xor parallel blocks differ in the sense that termination of

all/some/one of the activities is required for the termination of the block.

Conditional block allows to constrain the execution of activities according to the

result of a conditional expression. For-each block is necessary when the same

activities are to be performed for each member of a list. An activity in an iterative

block is repeated as many times as the iteration parameter requires. A contingency

block is used to define alternative paths in the definition. In an agent-based

workflow system, external events should also be handled since some activities are

activated according to messages coming from other agents. Therefore, external

variables are also used in workflow definition and activities are placed in

conditional blocks that are controlled by conditions on external variables. The

values of external variables are dynamically updated and the flow of workflow

process is determined accordingly at run-time.

A document type definition, namely workflow.dtd used to describe a workflow

process having the above features is provided in Appendix A.

In the following, we provide an example workflow process written in XML

conforming to the workflow.dtd.

Example 2.1

The following is a simplified workflow definition of the selling process of a

bookstore written in XML. Parameters of some tasks and expressions for

conditions (see dots in the definition) are omitted to save space. The process is

also shown graphically in Figure 3.

14

Figure 3. The Selling Process in a Bookstore

<process name='bookstore'>

 <variables>

 <var type=INT>customer-id</var>

 <var type=LIST> <list type=XML>books</list></var>

 <var type=INT>found</var>

 <var type=INT>confirmed</var>

 <var type=LIST> <list type=STRING>basket</list></var>

 </variables>

 <block>

 <task name='get-request' description='http://www.srdc.metu.edu.tr/mpd/get-

request.RDF'>

 <parameter mode=IN>customer-id</parameter>

 <parameter mode=OUT><list>books</list></parameter>

 </task>

 <for-each-block type=AND-PARALLEL>

 <list>books</list>

 <task name='search-book' description=' http://www.srdc.metu.edu.tr/mpd/search-

book.RDF'>

 <parameter mode=IN><list-element>books<index><int>i</int></index>

 </list-element> </parameter>

 <parameter mode=OUT>found</parameter>

 </task>

 <conditional-block>

 <condition> ... </condition>

 <task name='get-confirmation' ...> ... </task>

 </conditional-block>

..

..

for each (books)

get-request

if (found) if (confirmed)

deliver
search-book

.

search-book

get-confirmation
add-to-basket

add-to-basket

get-confirmation

search-book

payment

15

 <conditional-block>

 <condition> ... </condition>

 <task name='add-to-basket' ...> ... </task>

 </conditional-block>

 </for-each-block>

 <task name='payment' type=SUBPROCESS ...> ... </task>

 <task name='deliver' role='postman'

description='http://www.srdc.metu.edu.tr/mpd/deliver.RDF'> ... </task>

 </block>

</process>

The customer request is obtained as a list of book descriptions (books). For each

of the books in the list, search from the bookstore database is done in parallel.

Customer confirmation is necessary for the books that are found in the bookstore.

Confirmed books are added to the basket of the customer (basket). At the end,

payment subprocess is executed and delivery of the books is scheduled. If there is

nothing in the basket, payment and delivery processes are bypassed. Payment

subprocess may include many tasks one of which may be to get the credit card

number of the customer. Delivery may be a user task to be scheduled to a person

as a work item who satisfies the role given in the definition (i.e., postman) or it

can be a subprocess to find out the best possible delivery service for the specific

user and the item.

Task and Role Definitions

The workflow definition involves many types of tasks such as transactional tasks,

user tasks, etc. as described earlier. In order for agents to advertise themselves as

capable of executing a task or to accept a task execution offer, there is a need for a

mechanism to describe the metadata of tasks. Resource Description Framework

(RDF) [RDF, 1998] is used in this respect to define the metadata of individual

tasks.

RDF is a foundation for processing metadata for providing interoperability

between applications that exchange machine-understandable information. The

model of RDF is represented by named properties and property values. The basic

data model consists of three object types: resources which are the things being

16

described by RDF, properties which are specific aspects, attributes or relations

describing a resource and statements that assign a value to a property of a

resource. For example the sentence "Sena is the creator of "http://www.srdc.metu.

edu.tr/~nural" is a statement in RDF, the resource is "http://www.srdc.metu.edu.tr/

~nural" and the property is "creator''. The RDF data model provides an abstract,

conceptual framework for defining and using metadata. A concrete syntax is also

required and XML is used for this purpose in [RDF, 1998]. Meaning in RDF is

expressed through a reference to a schema that defines the terms that will be used

in RDF statements and gives specific meanings to them. A variety of schema

forms can be used with RDF one of which is defined in [RDFSchema, 1998] that

has some specific characteristics to help with automating tasks using RDF. There

are also some containers defined in RDF; Bag, Sequence and Alternative to refer

to a collection of resources.

The RDF metadata descriptions are stored in the marketplace directory to be used

by the agents. Pointers to the descriptions are given in workflow process

definition as an attribute as shown in Example 2.1.

Below is an example metadata description of a task, namely 'deliver' given in

Example 2.1.

Example 2.2

<rdf:RDF

 xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

 xmlns:t=" http://www.srdc.metu.edu.tr/mpd/schemas/task#">

 <rdf:Description about="http://www.a.b.c/deliver.xml">

 <t:name>deliver</t:name>

 <t:type>UserTask</t:type>

 <t:duration>12 hours</t:duration>

 <t:priority>1</t:priority>

 <t:deadline>25/11/98</t:deadline>

 <t:participant>

 <rdf:ALT>

 <rdf:li> delivery-company </rdf:li>

 <rdf:li> postman </rdf:li>

17

 <rdf:li> office-boy </rdf:li>

 </rdf:ALT>

 </t:participant>

 </rdf:Description>

</rdf:RDF>

In the above RDF description, the schema for task description, namely

"http://www.srdc.metu.edu.tr/mpd/schemas/task'' is defined elsewhere (resides in

the marketplace directory) by using RDF Schema specification described in

[RDFSchema, 1998].

Furthermore, in order to assign user tasks of a workflow to a user capable of

performing them, we need metadata of the users and roles involved in the

workflow management system. These role and user descriptions are also written

in RDF. An example role definition is provided below.

Example 2.3

<rdf:RDF

 xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

 xmlns:r="http://www.srdc.metu.edu.tr/mpd/schemas/roles#">

 <rdf:Description about="http://www.srdc.metu.edu.tr/roles/postman#">

 <r:users>

 <rdf:BAG>

 <rdf:li resource="http://www.a.b.c/users/John.Doe/>

 <rdf:li resource="http://www.a.b.c/users/Mary.Doe/>

 <rdf:li resource="http://www.a.b.c/users/Bob.Smith/>

 </rdf:BAG>

 </r:users>

 </rdf:Description>

</rdf:RDF>

Communication among Agents

In our framework, we use KQML ([Y. Labrou and T. Finin, 1994],[Y. Labrou and

T. Finin, 1997]) for inter-agent communication. KQML is a language and a

protocol for exchanging information and knowledge.

18

KQML uses a set of standard message types an example of which is given below:

(ask-one

 :content (PRICE IBM ?price)

 :receiver stock-server

 :language LPROLOG

 :ontology myOntology)

In KQML terminology, "ask-one" is a performative. A performative sets

parameters that are introduced by keywords such as "sender", "language", etc.

Above message represents a query about the price of a share of IBM stock.

Ontology assumed by the query is identified by the token "myOntology", the

receiver of the message is "stock-server" and language used is "LPROLOG".

The performatives of KQML are organized in three categories. Discourse

performatives (ask-if, ask-all, ask-one, stream-all, tell, insert, delete-one, delete-

all, achieve, advertise, subscribe, and some more) are used in the context of an

information and knowledge exchange kind of discourse between two agents.

Intervention and mechanics of conversation performatives are used either

prematurely terminate a conversation (error, sorry) or override the default

protocol (standby, ready, next, rest and discard). Networking and facilitation

performatives allow agents to find other agents that can process their queries

(register, forward, broadcast, broker-one, broker-all, recommend-one,

recommend-all, recruit-one, recruit-all, and some more).

KQML is essential so that the agents of heterogeneous nature can communicate.

However, since KQML is designed for knowledge sharing, certain aspects of the

language are inadequate for agent negotiation. If negotiation is implemented using

existing performatives of KQML, it becomes necessary to associate a new

interpretation to the performatives, which has not been originally intended for. As

an example, when we consider a price negotiation between two agents, the

capabilities offered by KQML in this respect could be the use of insert

performative. That is, an agent, say A1, could insert the price it is offering to the

counter agent's (A2) knowledge base (KB) and A2 could see whether this is

acceptable. If not, A2 might make a counter proposal by inserting a new price to

19

the KB of A1. However, this is not a natural way of handling negotiation. First, an

agent must have been advertised that it will accept such an insert. Secondly, what

is inserted is not a global fact but only the items of negotiation. For the above

reasons, we propose to add the following three performatives to KQML: propose

and counter-propose and accept. In the following, their syntax and intended

meanings are provided:

(propose

 :sender <word>

 :receiver <word>

 :in-reply-to <word>

 :reply-with <word>

 :language <word>

 :ontology <word>

 :content <conditions>)

This performative indicates that the :content expression of the message whose id

is specified :in-reply-to is true of the :sender under the conditions specified in

:content. This performative should be sent :in-reply-to one of ask-all, ask-if, ask-

one, stream-all or achieve messages. It is intended for providing the terms of

negotiation.

(counter-propose

 :sender <word>

 :receiver <word>

 :in-reply-to <word>

 :reply-with <word>

 :language <word>

 :ontology <word>

 :content <conditions>)

This performative is sent :in-reply-to a previous propose message. It is intended

for providing a counter proposal to a previous message.

(accept

 :sender <word>

20

 :receiver <word>

 :in-reply-to <word>

 :reply-with <word>

 :content <condition>)

This performative is used to terminate the negotiation with agreement under the

conditions referred in :content. It must be sent in-reply-to a previous propose or

counter-propose message. Sorry performative of KQML can be used also to

terminate the negotiation, but this time without an agreement.

Having defined these three new performatives, below we provide an example in

which agents negotiate via these performatives.

Figure 4. Task-oriented Negotiation Example

Example 2.4

In Figure 4, a task-oriented negotiation between two agents is illustrated. Agent 2

wants to have the task "Get-Product-Info" performed by another agent that is

capable. Agent 1 has been advertised to the facilitator agent that it can accept

achieve messages containing this task as the content, that is, Agent 1 is capable of

executing (achieving) "Get-Product-Info" task. Normally, there might be more

than one agent, which has advertised but we show only one agent (Agent 1) in this

example. First, Agent 2 contacts with the facilitator agent and asks for an agent

1

4

(achieve

:sender agent1
....)))

(forward
:content (

:content (achieve

3

2

5 Agent 2Agent 1

:content (advertise <process>
<task name=‘Get-Product-Info’>

:content (<process>
<task name=‘Get-Product-Info’>
</task>

</process>))

</task>
</process>)))

</work-duration>
</negotiation-terms>))

:reply-with id-propose
(propose :content (

<work-duration>
<minute>5</minute>

(accept
:in-reply-to id-propose
:content <negotiation-terms>...)

<negotiation-terms>

(recommend_one

Facilitator 1

21

that is capable of performing the task (1). Secondly, facilitator recommends Agent

1 to Agent 2 for the task in question (2). Then an auction (task-oriented

negotiation) is started by Agent 2 through sending the 3rd message. Agent 1

replies this message with a propose message (4) and if Agent 2 has not received

any better proposal, it accepts the offer of Agent 1 and confirms this by sending

the accept (5) message together with the conditions accepted in the content part.

After this point, it is the responsibility of Agent 1 to execute the task and to send

any results back to Agent 2. Only the important parts of the messages are shown

in the figure.

Marketplace Architecture

Having explained our workflow management system approach, we now discuss

how this approach is used in building an electronic marketplace, MOPPET where

sellers and buyers meet and negotiate to make the best deal.

Figure 5. Architecture of the Marketplace, MOPPET

As discussed before, there are various electronic commerce models such as e-

shops, e-procurement models, e-malls, value chain integrators, third party

Agent Library (Modules)

D
T

D
s

D
ic

t.

Buyer Side

Seller Side

Seller

Buyer

Task Agent Task Agent

(KQML Messages)

KQML:

Facilitator

workflow templates

Marketplace Directory

communication

Repository

KB

history

Appl.

Appl.

history

Sch.Agent

Interf. Agent

Sched. Agent

Interf. Agent

Recovery A.

Recovery A.

Task Agent Task Agent

22

marketplaces etc, as classified in [P. Timmers, 1998]. In this paper, we describe

an electronic marketplace model using the agent-based workflow management

system presented in previous sections. Note that, however, other models can also

be realized using the workflow management system as the basis and adding (or

removing) a few special components to meet the specific needs of other models.

Electronic commerce, which is a complex business process itself, cannot be

modeled effectively by the current marketplaces that support buyer/seller behavior

in an overly simplistic manner. For this reason, we propose to exploit workflow

systems to model buying and/or selling processes. In other words, instead of a

single buying/selling agent, a number of agents are coordinated to realize the

electronic commerce processes.

At the core of MOPPET (Figure 5), there is a directory which provides document

type definitions (DTDs), a dictionary of synonyms, repositories to be used by the

facilitator agent, workflow templates, a knowledge base (KB) for item

compatibility checks and some library modules for agents' own use.

In the following, the use of main components in the marketplace directory is

explained.

Document Type Definitions (DTDs) - We use DTDs in various parts of the

system for different purposes such as:

� to describe the workflow process (workflow.dtd)

� to describe the customer interests (customer.dtd)

� to describe the individual items/services (computer.dtd, car.dtd, etc.)

� to describe the terms of negotiation (terms.dtd)

We have already mentioned about workflow.dtd in Section "Worklfow Process

Definition". The customer.dtd is used by buyers to describe themselves and their

interests so that a seller who is trying to sell a product can find those buyers who

might be interested in. The following is the part of customer.dtd that we are

currently using:

23

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE simple [

<!ELEMENT customer (address?,interested-in)>

<!ATTLIST customer

 customer-id ID #REQUIRED>

<!-- address element description is omitted -->

<!ELEMENT interested-in (item+)>

<!ELEMENT item ANY>

\]>

The DTDs mentioned in the third item are detailed product descriptions that are to

be produced by industry groups. In this respect, there is an effort by RosettaNet

[RosettaNet, 1998] to produce specifications for computers that can possibly be

implemented through XML DTDs. In fact, Common Business Library (CBL)

[VEO Systems Inc., 1998] includes a DTD for laptop computers, namely

laptop.dtd which conforms to the specification generated by RosettaNet

[RosettaNet, 1998]. Throughout the paper, we are using our own DTDs to be

replaced by the originals when they become available.

During negotiation, agents must use the same vocabulary for terms of negotiation.

For example, if an agent uses hours for duration and the other one uses minutes,

they cannot be compared with each other if it is not known whether the scale is

minutes or hours. In order to achieve a common terminology for the terms of

negotiation, we use terms.dtd given in the following. In producing this DTD, we

use the modules provided by CBL. CBL includes a group of DTDs for weights

and measures, the description of time and location and the terms of trade. For

example, "transaction.unit.of.measure'' is defined in measures.mod in CBL and

"amount.monetary'' is defined in value.mod.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE simple [

<!ELEMENT negotiation-terms (price?,work-duration?,quality?,quantity?,delivery-

time?)>

<!ELEMENT price (amount.monetary)>

<!ELEMENT work-duration (year?,month?,week?,day?,hour?,minute?,second?)>

<!ELEMENT quality ANY>

24

<!ELEMENT quantity (transaction.unit.of.measure)>

<!ELEMENT delivery-time (hour?,day,month,year)>

/]>

Agents give the names of DTDs in the :ontology part of the KQML messages so

that they can understand the context of each other's questions or responses as

demonstrated in Example 3.2.

Dictionary of Synonyms - Interface agents are responsible for obtaining the

product/service requests from the buyer. However, the user may not know the

right term (i.e., the term used in DTD for that item) to use for the item s/he is

looking for. Therefore, a dictionary of synonyms which evolves over time should

be used [A. Dogac et al., 1998b]. For example, consider a computer store that uses

a computer.dtd in describing its products and services. If a buyer wants to buy a

"CPU'' and uses the "Processor'' while "CPU'' is the term used in the DTD, then

the dictionary of synonyms is searched to match the word "Processor'' with

"CPU''.

The dictionary of synonyms is empty at the very beginning. During marketplace

activities, however, it learns the synonyms for the terms with the help of users and

afterwards and it can answer queries about the terms it has learned so far.

Knowledge Base for Compatibility Requirements - There should be two sets of

rules in the knowledge base.

� relationships among items. For example, a customer who buys a computer can

be interested in purchasing a printer. These rules are checked by the interface

agent in order to be able to provide related offerings to the buyer.

� compatibility requirements among items. For example, a customer may want a

software product that has a specific memory requirement. These compatibility

rules are checked when a buyer makes a request so that if there are

incompatibilities among the items requested, the buyer is warned and the

request is adapted.

25

Currently, we are developing a simple knowledge base to contain above

information. However, there is a need for further research and development for

representing and processing these relationships among items.

Agents' Responsibilities in the Marketplace

The general functionality of agents is described in Section "Agent-based WfMS

Architecture". In this section, the features and the responsibilities of the agents

specific to the marketplace environment are described.

Interface Agents - We differentiate two main types of users: buyers and sellers

and two modes of these users: active and passive. Active buyer is the buyer who

makes requests for items to be bought and passive one waits until a request comes

from a seller who is trying to sell his/her product. Similarly, an active seller tries

to sell a specific product and the passive one waits for buyers who are interested

in buying his/her products. These roles are introduced for modeling different

marketing policies. Interface agents, especially the graphical user interfaces of the

agents, differ for these types and modes of users. In the following, we briefly

describe the functions of interface agents for both modes of sellers and buyers:

� For an active buyer: Interface agent of an active buyer is responsible for

constructing the initial workflow process definition. The buyer gives the items

and/or services s/he wants to purchase and also dependencies among the items

if there are any, through a Java applet provided by the interface agent as

shown in Figure 6a. The buyer may not know the details of the item/service

s/he wants. For example, s/he may want to buy a computer but s/he may not

know the properties of the computer such as CPU, board, etc. This

information is searched by the interface agent from the DTDs in the

marketplace directory with the help of a particular task agent (capable of

doing such a search). Then, the fields obtained from the DTD are presented to

the buyer (see Item/Service Details part in Figure 6a) and filled by the buyer if

there are preferences for them. The buyer can also provide negotiation details

for the items s/he requested if there are any.

26

Figure 6. Interfaces for (a) Buyers and (b) Sellers

Additionally, interface agents are capable of providing related items or

services once a buyer requests an item. For example, a customer looking for a

computer can also be interested in buying some software suitable for his/her

computer. These related items can automatically be offered to the customer by

the interface agent. To achieve this functionality, a knowledge base that holds

the rules and compatibility requirements among the items is searched. This

knowledge base is stored in marketplace directory as described before.

Interface agent of the buyer translates the buyer inquiry to the workflow

definition in XML by modifying the appropriate workflow template obtained

from the marketplace directory and finds a scheduling agent by starting an

auction among suitable scheduling agents. Then it transfers the work to the

winner scheduling agent through a KQML message. The workflow templates

for each type of buyers and sellers will be described in the next section.

In addition, throughout the workflow process execution, if user intervention is

required the interface agent handles it. Monitoring of the workflow can be

(b)(a)

27

added to the capabilities of interface agent by providing a module (from agent

library) to the agent.

� For a passive buyer: Interface agent of the passive buyer is activated when a

buyer registers (advertises) himself to the marketplace by providing his

interests (conforming to customer.dtd). An example advertisement is shown in

Example 3.2. Afterwards, it waits idle until a request comes from a seller.

From this point on, interface agent adapts the workflow template and activates

a workflow instance by finding a suitable scheduling agent through task-

oriented negotiation as described before.

� For a passive seller: Interface agent for this type of seller is mainly responsible

for registering the seller to the marketplace. It can do this by listing the

previously registered catalogs such as "computer", "book", etc. and seller

chooses the suitable one for him/her. Or the catalog to be registered can be a

new one (Figure 6b). Sellers who have more than one item/service should

register for each of the items/services.

The interface agent uses advertise KQML message to introduce the seller to

the marketplace. An example advertisement message for a seller is provided in

Example 3.2. The registered catalog name must exist in one of the DTDs that

the marketplace knows or has access to.

The interface agent of the passive seller also obtains a workflow template

from the marketplace directory. The workflow is initiated by a request coming

from a buyer similar to the case of passive buyer.

� For an active seller: The seller might also initiate a selling process by

providing the details of the product s/he is trying to sell. This type of interface

agent provides a GUI similar to the one provided by the interface agent of the

buyer. Whenever the seller clicks the "Sell" button, the interface agent initiates

a workflow process by contacting a scheduling agent and sending it the

workflow definition obtained by adapting the template for active sellers

(Figure 6b).

28

Apart from sellers and buyers, there might be interface agents for other end-users

of the workflow system. For example, a person who is responsible for physically

delivering a product to a buyer has an interface agent. This type of interface

agents has a different type of GUI that displays the work items assigned to the

users. In other words, some interface agents are only responsible for providing the

worklists to the users.

The interface agent types described above are the ones required for realizing a

electronic marketplace environment. If other electronic commerce models such as

supply-chain integration, e-procurement, e-mall etc ([P. Timmers, 1998]) are to be

realized, different interface agents must be implemented. The underlying

workflow system can be used for any kind of workflow processes that such

models require.

Task Agents - The marketplace contains many types of specific task agents in

addition to the task agents of other workflow activities. These can be categorized

as:

� Negotiation task agents: These are used for negotiation between sellers and

buyers for a specific item. We name this type of negotiation as item-based

negotiation. For this type of negotiation, task agents uses negotiation criteria

of the users obtained at the beginning by the interface agents. A number of

propose and counter-propose messages are exchanged between the task agents

of the seller and buyer sides until an agreement is reached. Negotiation task

agents should know what to offer next and how to determine the end of

negotiation. Many attributes may be negotiated between the sides such as

price, deadline, delivery time, etc. Therefore, a multi-issue, multi-party

negotiation algorithm is used for item-based negotiation [M. Yilmaz, 1999].

Negotiation model is based on Raiffa’s bilateral (two parties, many issue)

negotiation [H. Raiffa, 1982]. This bilateral negotiation model is transformed

into multilateral (many parties, many issues) negotiation model by using a set

of mutually influencing two parties, many issues negotiations [P. Faratin et al.,

1998]. This type of negotiation is also called as integrative bargaining.

29

Sequence of offers and counter-offers in two-party negotiation is called as a

negotiation thread. Offers and counter-offers are generated by linear

combinations of simple functions, called tactics. The term strategy is used to

denote the way in which an agent changes the weights of the different tactics

over time. By the help of strategies agents make use of internal reasoning

model and history of negotiations and could influence other negotiation

threads.

In the bilateral negotiation model, agent scoring function stemmed from

MAUT is used in order to decide which offer is better than other, each agent

has a scoring function which returns the score of a given issue, that is, it

assigns a value to an issue in the range of acceptable values and these scores

are kept in the interval [0,1] for convenience. The next element of model is

relative importance that an agent assigns to each issue under negotiation.

These weights are normalized, that is sum of weights of each issue is 1. With

these elements, an agent scoring function for a contract is defined as sum of

scores of each issue multiplied by its weight.

In order to prepare counter offer that is next offer in the negotiation thread

agent uses a set of tactics that generate new values for each variable in the

negotiation set. Three different families of tactics based on the needs of

business process applications are developed [P. Faratin et al., 1998]; time-

dependent, resource-dependent and behaviour-dependent.

Tactics are set of functions that compute the value of an issue by considering a

single criterion. The set of values for the issues are then the range of the

function, and the single criteria -time, resource, ...- is its domain. Agents may

want to consider more than one criterion to compute the value for single issue;

this could be achieved by generating counter proposals as a weighted

combination of different tactics covering the set of criteria.

In order to determine the best course of action, which will result in an

agreement on a contract that maximizes the scoring function, agent utilizes the

30

strategy. When an agent receives an offer that is unsatisfactory, it generates a

counter offer and it uses different combinations of tactics for a particular

issue.

The further details of the negotiation can be found in [M. Yilmaz, 1999].

� User task agents: When a user activity is to be executed by the scheduling

agent, this type of task agent is required. User task agent stores the request

(work item) into a worklist. User task agent should decide on which user this

work is to be scheduled. It achieves this by looking at RDF metadata of rules

and users that exist in the marketplace directory as explained in Section "Task

and Role Definitions". According to the decision, it sends appropriate KQML

message to the interface agent of the user. For example, suppose the work to

be assigned is the delivery of a product to a buyer. Suppose also that this is a

manual task and there are five people who can deliver this package. The user

task agent first finds the interface agents of those five people through the RDF

metadata of 'postman' role (see Example 2.3) and negotiates with them to find

the most appropriate one. Then, this work item is stored into the worklist of

that person and interface agent for that person is informed about this new

work item.

� Query task agents: These task agents are required for querying especially the

seller catalogs. Sellers export their catalogs as XML pages and throughout the

marketplace activities, these catalogs need to be searched for specific

items/services. We use XML-QL that is a submission to World Wide Web

Consortium (W3C) [A. Deutsch et al., 1998] for querying XML documents.

There are many efforts going on querying semi-structured data ([S. Abiteboul

et al., 1997],[P. Buneman et al., 1996]) and SGML [K. Bohm et al., 1997] and

some of the approaches are adapted also to query XML documents [D. Suciu,

1998]. Query task agents uses Document Object Model (DOM) [DOM, 1998]

implementation together with an XML parser and a XML-QL query processor

to answer queries. DOM provides a uniform mechanism to access and

manipulate parsed XML or HTML documents. Specifically, DOM defines an

object-oriented API of an XML document.

31

Example 3.1 shows an example query written in XML-QL for querying a

computer shop's catalog.

Example 3.1

The computer shop's catalog contains product entries conforming to the

following simplified DTD:

<!ELEMENT item (computer,description?,price_info,item*)>

<!ELEMENT computer (memory,board,cdrom?,disk)>

<!ELEMENT description (paragraph | img)* >

<!ELEMENT img EMPTY>

<!ATTLIST img src CDATA #REQUIRED>

<!ELEMENT paragraph (#PCDATA)>

<!ELEMENT price_info (productno, price, avail, warranty?)>

The following is a query written in XML-QL that asks for the computers

having disks 4GB or larger and having price lower than 1200$.

WHERE <item>

 <computer> <disk> $d </> </>

 <description> <price_info> <price> $p </> </> </>

 </> IN "www.a.b.c/computer.xml",

 d > 4GB, p < 1200

Facilitator Agent - Apart from facilitating the agents of the workflow system,

facilitator agent is also responsible for storing advertisements of the sellers and

the buyers. In fact, these advertisements are also done by the agents, but they

serve as the catalog information, which is specific to a marketplace environment.

In the following example, several advertisement messages that should be sent to

the facilitator agent are described.

Example 3.2

The following is an advertise message of a seller (seller1) who sells computers:

(advertise

32

 :sender seller1

 :receiver facilitator1

 :language KQML

 :ontology kqml-ontology

 :content (ask-all

 :receiver seller1

 :language XML

 :ontology xml-ql

 :content (WHERE <computer>$c</>

 IN "http://www.a.b.c/seller1.xml")))

This message says that the agent seller1 can respond to ask-all messages that

contains a query about a "computer" in seller's catalog (seller1.xml).

Similarly, a buyer (buyer1) who is interested in purchasing a computer can use the

following message:

(advertise

 :sender buyer1

 :receiver facilitator1

 :language KQML

 :ontology kqml-ontology

 :content (ask-one

 :receiver buyer1

 :language XML

 :ontology customer.dtd

 :content (<?xml namespace name=" http://www.srdc.metu.edu.tr/mpd/

computer.dtd" as "c" ?>

 <customer customer-id='1234'>

 <interested-in>

 <item> <c:computer> </c:computer>

 </item>

 </interested-in>

 </customer>)))

33

Other agents in the system should also advertise themselves by giving the

capabilities offered. A sample message from a scheduling agent (sch1) is the

following:

(advertise

 :sender sch1

 :receiver facilitator1

 :language KQML

 :ontology kqml-ontology

 :content (achieve

 :receiver sch1

 :language XML

 :ontology http://www.srdc.metu.edu.tr/mpd/workflow.dtd

 :content (<process> </process>)))

This message indicates that sch1 can execute the given workflow definition in

achieve:content. Since the definition includes only the <process> tags, not a specific

process or a task it means that it can schedule all kinds of workflow processes

conforming to workflow.dtd.

Templates for Seller and Buyer Workflows

In the marketplace, there are mainly two types of parties: buyers and sellers. We

further categorize these parties as passive and active buyers/sellers. A buyer is

active when s/he wants to buy items and/or services and it is passive when s/he

prefers to wait for some seller to come and try to sell him/her items and/or

services. The same holds for the sellers as well.

The templates reside at the marketplace directory and are configured by the

interface agent according to the mode (active or passive) of the user. A buyer or a

seller can behave both as active and passive at the same time by contacting more

than one interface agent. In the following, the simplified versions of the templates

generated by the interface agent for each mode of both buyers and sellers are

provided (XML versions of the templates are given in Appendix B).

34

Figure 7. Workflow Template for Active Buyers

Workflow Template for Active Buyer: The template given in Figure 7 is further

modified when a buyer inquiry is made. For example, "for-each (items)'' is

replaced with a series of other types of blocks when the constraints and the

orderings among the items are collected. Note that, if there is no dependency or a

specific order among the items, "for-each (items)'' block is preserved and only the

details of items are included in the definition. These modifications will be clear

with the example given in the following section.

Figure 8. Workflow Template for Passive Buyers

Workflow Template for Passive Buyer: Workflow of the passive buyer (Figure 8)

is initiated by external events/variables, which comes from a seller workflow.

'User-confirmation' is the task to be done when a 'request' and 'product-info'

comes from an active seller. After this point, the flow is the same with the active

one. 'Negotiate' task is scheduled and according to the result of negotiation,

'payment' subprocess is to be scheduled.

..

for each (items)

find-sellers

find-sellers

find-sellers

.

.

.
query

query

query

negotiate

negotiate

negotiate

for-each (seller)
if (result<>0)

payment..

if (request) if (confirmed)product-info
request

user-confirmation negotiate payment

35

Figure 9. Workflow Template for Active Sellers

Workflow Template for Active Seller: Workflow template of active sellers

(Figure 9) is similar to the one for active buyers. Product details are obtained from

the seller through the interface and then 'find-buyers' task is scheduled to find

possibly interested buyers. Finding interested buyers is done by the facilitator

agent by looking at advertisement messages of the buyers conforming to the

customer.dtd (see Example 3.2). To each of the buyers found, a request is sent.

For those who replied positively, 'negotiate' tasks are scheduled. Finally,

according to the result of negotiations, payment and delivery are scheduled.

Figure 10. Workflow Template for Passive Sellers

Workflow Template for Passive Seller: The passive seller is activated by the

message coming from an agent of the active buyer. This message initiates the

workflow (Figure 10) and the first task is to query the seller's catalog. It sends the

result of the query and waits to see if the buyer is still interested in buying the

product. If so, as in other templates, 'negotiate' task is scheduled and 'payment'

and 'deliver' tasks may also be invoked.

find-buyers

.. negotiate

negotiate

for-each (buyer)
if (reply)

payment

deliver

get-product-info

send-request

send-request

send-request

negotiate

negotiate payment

if (request)query
request interest

if (interest)

query-catalog deliver

36

The Scenario

In this section, we provide a scenario for an active buyer, passive seller pair to

further describe the MOPPET architecture.

Figure 11. Finding a Scheduling Agent

When a buyer wants to buy an item from the marketplace it reaches the

marketplace through its URL. The marketplace can be spread over many sites to

provide scalability and availability. When more than one marketplace directory

exist, they are linked together similar to the traders linked in Object Management

Group (OMG)'s Trading Object Service specification [TOS, 1997]. Therefore,

querying a marketplace directory involves querying the others that are linked to

the current one if the current one can not answer the query.

(propose
 :content (

..... </>))
<negotiation-terms> (propose)

(accept ...)

1
2 3

1

2
(sorry ...)

3

Interface Agent

Sch2
Scheduling AgentScheduling Agent

Sch1

(achieve
 :content (<workflows>

WF1......</workflows>))

Int1

37

Figure 12. Interactions of Task Agents of the Buyer and Query Task Agents of Sellers

An interface agent is activated and this agent sends an applet to the buyer site. The

buyer needs only a Web browser capability to conduct business at the

marketplace. From this point on, the interface agent interacts with the buyer as

shown in Figure 6a. According to the information gathered in this step, the

interface agent adapts the related workflow template. This involves adapting the

control flow and data flow in the template as well as adding or deleting activities

or subprocesses. A user-defined subprocess can also be scheduled if the user

wishes so, as long as the definition conforms to the workflow.dtd. The interface

agent then looks for scheduling agents to schedule this workflow instance (Figure

11). A negotiation (task-oriented negotiation) with different scheduler agents are

necessary for two reasons: (1) since schedulers are agents, they cannot be

instructed to do things and (2) more importantly, some of these schedulers may

not be capable of executing the workflow for several reasons like being already

overloaded or not having access to some of the related task agents. An example

task-oriented negotiation is illustrated in Figure 11. Interface agent of the buyer

(Int1) negotiates with two scheduling agents (Sch1 and Sch2) whose names are

Query Task Agent
QA-S3

Interface Agent

Scheduling Agent
TA1Sch3

Task Agent

Scheduling Agent
Sch1

Task Agent Task Agent Task Agent
TA2 TA3 TA4

Int1

result result result

Query Task Agent Query Task Agent
QA-S2QA-S1

Query
Query

Query
Sellers Side

Buyer side

Scheduling Agent
Sch-S1

Interface Agent

Scheduling Agent
Sch-S1

Interface Agent

Scheduling Agent
Sch-S1

Interface Agent
Int-S3Int-S1 Int-S2

38

recommended by the facilitator agent. It starts negotiation by sending a message

containing an achieve performative. Then scheduling agents make proposals

conforming to the terms.dtd. Among the agents, suppose that Sch1 makes the best

offer and therefore Int1 sends it an accept message and sends Sch2 a sorry

message to finalize the negotiation.

Similarly, scheduling agent (Sch1) which gets the job of enactment finds task

agents to execute related tasks.

The workflow at the seller side is initiated when a buyer task agent sends a query

to a seller's interface agent. The query is the event that activates the passive

seller's interface agent (see Figure 10). The interface agent after adapting the

template for passive sellers, finds a scheduling agent for that workflow instance.

The scheduling agent starts executing the workflow instance and schedules the

first task ("query-catalog'') to a query task agent. We assume that the seller

catalogs are expressed in XML and the query is expressed in XML-QL as

mentioned previously. The results are sent to the buyer task agent who had

originally sent the query. Once the buyers and sellers are thus identified the

negotiation starts. This phase is shown in Figure 12.

Item-based negotiation is performed by negotiation task agents at both sides

(Figure 13). Negotiation process at the seller side is initiated by an external

"interest'' event sent by a negotiation task agent of the buyer. The negotiation

process is realized according to a multi-party, multi-attribute negotiation scheme

as described in [P. Faratin et al., 1998] through the suggested propose, counter-

propose KQML messages and finalized with a sorry or an accept KQML

message. Once an agreement is reached, payment processes are scheduled at both

sides. The task agent responsible for doing the payment at the buyer side gets the

user preference for payment type such as credit card, on-site, etc. and other related

information such as a credit card number. For user interaction, the agent contacts

with the interface agent of the buyer. The task agent then sends this information to

the seller side task agent that activates the payment process.

39

Figure 13. Interactions of Negotiate Task Agents

At the seller side, there is another task, namely 'deliver' to deliver the purchased

product to the customer. This task may be a user task, that is, a user task agent

may be necessary to execute the task. This requires another turn of auctions. There

might be many postmen who can deliver this item. They all have interface agents

running on behalf of them. One of the interface agents gets the job as a result of

an auction and displays the work to be done (item properties and address of

delivery, delivery time, etc.) as a work item of the worklist of that postman.

Example 4.1

The example given in this section describes a scenario for an active buyer. The

scenario is as follows: "There is a buyer who wants to buy a computer and a desk

for the computer. He also needs three game CDs.'' Whenever, the customer

(buyer) connects to the marketplace (by contacting a URL) an interface agent

becomes active to interact with the user. The interface agent obtains the request

from the buyer as depicted in Figure 6a. In the window, the details for computer is

shown but the details of the desk and CDs are also gathered. Afterwards, the

Interface Agent

Scheduling Agent
TA1Sch3

Task Agent

Scheduling Agent
Sch1

Negotiate Task
Agent NTA1

Negotiate Task
Agent NTA2

Negotiate Task
Agent NTA2

Agent NTA-S1
Negotiate Task
Agent NTA-S2

Negotiate Task
Agent NTA-S3

propose

counter-
propose

propose propose

counter- counter-
propose propose

Buyer side

Sellers Side

Int1

Scheduling Agent
Sch-S1

Interface Agent
Int-S1

Scheduling Agent
Sch-S1

Interface Agent

Scheduling Agent
Sch-S1

Interface Agent
Int-S2 Int-S3

Negotiate Task

interest interestinterest

40

interface agent converts this request into an initial workflow process definition in

XML (see Appendix C) by adapting the workflow template (Figure 7) obtained

from the marketplace directory for an active buyer. Graphical representation of

the initial workflow process definition that contains only the buyer requirements

is shown in Figure 14.

Figure 14. Workflow Process of the buyer Request

Figure 15. Adapted Workflow Process

Figure 15 illustrates the final workflow definition as adapted from the template

using the definition of the buyer request given in Figure 14.

The other steps are executed as described in the scenario.

OR

OR buy

 buy

 buy

 buy

 buy

 buy

<c:computer>
 <c:memory>64M</c:memory>
 <c:board>Pentium-II300</c:board>
 <c:cdrom>Creative-40x</c:cdrom>
 <c:disk>Quantum-6GB</c:disk>
</c:computer>

CDs

desk

CD-1

payment
OR

..
query

query

query

negotiate

negotiate

negotiate

for-each (seller)
if (result<>0)

OR

find-sellers

find-sellers

..
query

query

query

negotiate

negotiate

negotiate

for-each (seller)
if (result<>0)

Buy the desk

Buy CDs

find-sellers

..
query

query

query

negotiate

negotiate

negotiate

for-each (seller)
if (result<>0)

Buy the computer

41

Related Work

There are several marketplace architectures proposed and some of them are being

commercially used.

One of the early marketplaces is Kasbah [A. Chaves and P. Maes, 1996]. Kasbah

is a Web-based system where the users create autonomous agents that buy and sell

goods or services on their behalf. Selling agents try to sell themselves by going

into the marketplace contacting interested buying agents and negotiating with

them to find the best deal. The marketplace's job is to facilitate interaction

between the agents. In Kasbah, a specific communication language is used since

their agents are locally built and can communicate via a predefined set of

methods.

In [M. Tsvetovatyy et al., 1997], an architecture (MAGMA) for a marketplace that

includes the infrastructure required for conducting commerce on the Internet is

proposed. MAGMA supports communication among agents and allows for

various forms of automated and human-controlled transactions. The Vickrey

mechanism ([W. Vickrey, 1961]) is implemented as the negotiation strategy.

There are several trader agents, an Advertising server and a Bank in MAGMA.

Trader agents are responsible for buying and selling goods. The Advertisement

server provides a classified advertisement that includes search and retrieval of ads

by category. Finally, the Bank provides a set of basic banking services such as

checking accounts and electronic cash. All agents communicate with each other

through socket connections.

OFFER [M. Bichler et al., 1998] is an electronic brokering architecture which

uses OMG's CORBA as a distribution infrastructure. There are three main

components: suppliers, customers and e-brokers. A customer can search for a

service either directly in the e-catalog of the supplier or use the e-broker to search

all the e-catalogs of all the suppliers, which are registered with this broker.

CORBA is chosen as the communication infrastructure to solve the

interoperability problem. As the negotiation mechanism e-brokers employ simple

auction implementations.

42

EMP [S. Boll et al., 1999] is a marketplace that has a DBMS based architecture.

Business transactions within the electronic market are realized by a set of modular

market services like offering, buying, registration, authentication, etc. Product

data are stored in a DBMS and accessed by the market server through JDBC (Java

DataBase Connectivity) interface.

In [B. Reich and I. Ben-Shaul, 1998], Global Electronic Market (GEM) system

developed using Java is described. It provides a generic market framework and

infrastructure along with the specifications of component interfaces that need to

be implemented and plugged into the framework in order to obtain an operational

market.

In [A. Dogac et al., 1998c], we present some initial ideas on a workflow based

electronic marketplace on the Web.

In [K. Decker et al., 1996], the notions of agent matchmaking and brokering

behaviors are defined. KQML performatives are used in describing roles and

interactions among agents. Some experiments are conducted to evaluate

performance tradeoffs of matchmade and brokered systems. The authors conclude

that the brokered systems allow efficient load balancing and have lower overhead

while matchmade systems are more robust and retain dynamic naming

capabilities, which are required in marketplaces.

In [K. Sycara and D. Zeng, 1996], an architecture for coordinating multiple

intelligent software agents is presented. The authors classify the agents as

interface agents, task agents and information agents. Interface agents are those

whose main task is information filtering to alleviate the user's cognitive overload.

Task agents help users perform tasks by formulating problem solving plans and

carrying out these plans through querying and exchanging information with other

agents. Information agents provide access to a possibly heterogeneous collection

of resources. The architecture suggested in this paper has influenced the

component-based design of MOPPET.

43

In [Q. Chen et al., 1998], a dynamic-agent infrastructure which supports dynamic

behavior modification of agents is proposed. Functions and actions of the

dynamic agent are not predefined but can be loaded and modified at run-time. The

architecture supports mobility of the agents. The authors also present how service

provisioning can be realized through the use of dynamic agents.

There is some previous work on realizing a workflow system with the use of

agents. DartFlow workflow management system [T. Cai et al., 1997] uses Web-

browser embedded Java applets as its front end and transportable agents as the

backbone. A transportable agent is a program that migrates machine to machine in

a heterogeneous network. In DartFlow, each business process can be handled by

an agent. Agent Tcl system is used to implement transportable agents. Since

agents in DartFlow do not use a standard communication language, its usage is

limited to those who make use of Agent Tcl system.

[M. N. Huhns and M. P. Singh, 1998] presents the usage of co-operating agents to

manage heterogeneous transaction workflows. Agents communicate through a

common ontology to realize the parts of a transaction. There are two kinds of

computational agents: actors and knowledge-based systems. The actors are used

to control interactions among the components of the architecture. The knowledge-

based agents are used when reasoning is needed such as deciding what tasks

should be performed next.

In [J. Miller et al., 1998], the use of Web technology for workflow is presented

with METEOR2 Web-based workflow management system (WebWork).

WebWork is said to be web-based rather than web-enabled since both interfaces

and communication/distribution infrastructures are built using Web technology.

Data flow is realized through exchanging HTML pages and CGI is the main

communication mechanism with servers.

[N. R. Jennings et al., 1996] designs and implements the business process

management using an agent-based approach. In this work, the business process is

viewed as a collection of autonomous problem solving entities that negotiate with

one another to coordinate their sub-activities. Agents communicate through a

44

specific Agent Communication Language (ACL) which is only interpretable by

the native agents.

While [N. R. Jennings et al., 1996] emphasizes the negotiation aspects, [T. Tesh

and K. Aberer, 1998] focuses on how agreements among agents can be enforced

without a central control. The authors present a formal framework for contract

management among autonomous agents. The agents tell a contract manager their

interests in the deal and the contract manager is responsible for forming a contract

acceptable to both parties and to schedule the exchanges in a way that considers

the individual interests.

Conclusions

The electronic commerce process models developed thus far like e-shops, e-malls

[P. Timmers, 1998] imitate their off-line counterparts. However to further

accelerate the diffusion of electronic commerce, the opportunities and

technologies offered by the electronic medium should be fully exploited to

provide the users with better commerce environments. The complexities of

commerce processes must be hidden from the users through appropriate

exploitation of advanced technologies. Providing an open and interoperable

architecture is also very important.

This paper proposes an architecture that addresses these issues by providing the

users with an able and user friendly environment to express their needs and the

system handles the underlying complexities through an agent-based workflow

architecture. MOPPET architecture is also based on an open and interoperable

infrastructure namely XML and CBL.

MOPPET is currently being implemented. Agents are implemented to use KQML

parser of JATLite from Stanford University which follows the full KQML

grammar both for standard and extended performatives [JatLite, 1999]. JATLite

also provides mechanisms for communication among agents. For parsing XML

documents (contents of KQML messages), agents make use of DataChannel's

45

XJParser which is a validating (using both DTDs and XML data) XML parser

together with a DOM implementation [XJParser, 1999].

References

A. Chaves and P. Maes (1996). Kasbah: An agent marketplace for buying and selling goods. In Proceedings

of the First International Conference on the Practical Application of Intelligent Agents and Multi-Agent

Technology, London, UK.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu (1998). XML-QL: A query language for

XML. W3C Document, http://www.w3.org/TR/NOTE-xml-ql.

A. Dogac (1998). Guest Editor. ACM Sigmod Record Special Section on Electronic Commerce. 27(4),

December.

A. Dogac (1999). Guest Editor. Distributed and Parallel Databases, Special Issue on Electronic Commerce.

Kluwer. to appear.

A. Dogac, E. Gokkoca, S. Arpinar, P. Koksal, I. Cingil, B. Arpinar, N. Tatbul, P. Karagoz, U. Halici, and M.

Altinel (1998a). Design and implementation of a distributed workflow management system: METUFlow. In

A. Dogac, L. Kalinichenko, T. Ozsu, and A. Sheth, editors, Workflow Management Systems and

Interoperability. Springer-Verlag. NATO ASI Series.

A. Dogac, I. Durusoy, S. Arpinar, E. Gokkoca, N. Tatbul, and P. Koksal (1998b). METU-EMar: An agent-

based electronic marketplace on the web. In [C. Nicolaou and C. Stephanidis, 1998].

A. Dogac, I. Durusoy, S. Arpinar, N. Tatbul, P. Koksal, I. Cingil, and N. Dimililer (1998c). A workflow-

based electronic marketplace on the web. In [A. Dogac, 1998].

B. Arpinar (1998). Formalization of Workflows and Correctness Issues in the Presence of Concurrency.

Ph.D. thesis, Middle East Technical University, Dept. of Computer Engineering, November.

B. Arpinar, U. Halici, S. Arpinar, and A. Dogac (1999). Formalization of Workflows and Correctness Issues

in the Presence of Concurrency. Distributed and Parallel Databases, to appear.

B. Meltzer and R. Glushko (1998). XML and electronic commerce: Enabling the network economy. In [A.

Dogac, 1998].

B. Reich and I. Ben-Shaul (1998). A componentized architecture for dynamic electronic markets. In [A.

Dogac, 1998].

C. Nicolaou and C. Stephanidis (1998). Editors. Research and Advanced Technology for Digital Libraries,

Lecture Notes in Computer Science, Springer.

46

D. Suciu (1998). Semistructured data and XML. In Proceedings of International Conference on Foundations

of Data Organization.

DOM (1998). Document Object Model Level 1 Specification. W3C Recommendation.

http://www.w3.org/TR/REC-DOM-Level-1.

H. Raiffa (1982). The Art and Science of Negotiation. Harward University Press.

JATLite (1999). http://java.stanford.edu/JATLite-index.html

J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh (1998). WebWork: METEOR2's web-based

workflow management system. Journal of Intelligent Information Systems, 10(2):1--30.

K. Bohm, K. Aberer, E. Neuhold, and X. Yang (1997). Structured document storage and refined declarative

and navigational access mechanisms in HyperStorM. The VLDB Journal, 6(4):296--311.

K. Decker, M. Williamson, and K. Sycara (1996). Matchmaking and brokering. In Proc. of the Second

International Conference on Multi-Agent Systems (ICMAS-96).

K. Sycara and D. Zeng (1996). Coordination of multiple intelligent software agents. Intl. Journal of

Cooperative Information Systems, 5 (2&3).

M. Bichler, C. Beam, and A. Segev (1998). OFFER: A broker-centered object framework for electronic

requisitioning. In IFIP Conference "Trends in Electronic Commerce '98.

M. N. Huhns and M. P. Singh (1998). Managing heterogeneous transaction workflows with co-operating

agents. In N.R. Jennings and M. J. Wooldridge, editors, Agent Technology: Foundations, Applications, and

Markets. Springer-Verlag.

M. Tsvetovatyy, M. Gini, B. Mobasher, and Z. Wieckowski (1997). MAGMA: An agent-based virtual market

for electronic commerce. Applied Artificial Intelligence, 11(6):501--524.

M. Yilmaz (1999), Design and Implementation of an Agent Architecture for an Electronic Marketplace, MSc

Thesis, Dept. of Computer Eng., Middle East Technical University, March.

N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O'Brien, and M. E. Wiegand (1996). Agent-based

business process management. International Journal of Cooperative Information Systems, 5(2\&3):105--130.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu (1996). A query language and optimization techniques

for unstructured data. In Proc. of ACM SIGMOD Intl. Conf. on Management of Data, Montreal, Canada.

P. Faratin, C. Sierra, and N. R. Jennings (1998). Negotiation decision functions for autonomous agents. Int.

Journal of Robotics and Autonomous Systems.24 (3-4):159-182.

47

P. Timmers (1998). Business models for electronic markets. In: Y. Gradient, B. F. Schmid, D. Selz: EM-

Electronic Commerce in Europe. EM-Electronic Markets, 8 (2), July

http://www.ispo.cec.be/ecommerce/busimod.htm.

Q. Chen, P. Chundi, U. Dayal, and M. Hsu (1998). Dynamic-agents for dynamic service provisioning. In

Proc. of 3rd Intl. Conf. on Cooperative Information Systems, NewYork.

RDF (1998). Resource Description Framework (RDF) Model and Syntax Specification. W3C Working Draft.

http://www.w3.org/TR/WD-rdf-syntax.

RDFSchema (1998). Resource Description Framework (RDF) Schema Specification. W3C Working Draft.

http://www.w3.org/TR/WD-rdf-schema.

RosettaNet (1998). http://www.rosettanet.org/general/finished-project/laptop.html.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener (1997). The lorel query language for

semistructured data. International Journal on Digital Libraries, 1(1).

S. Boll, A. Gruner, A. Haaf, and W. Klas (1999). EMP-a database driven electronic marketplace for business-

to-business commerce on the internet. In [A. Dogac, 1999]. to appear.

T. Cai, P. A. Gloor, and S. Nog (1997). DartFlow: A workflow management system on the web using

transportable agents. Technical report, Dartmouth College.

T. Tesh and K. Aberer (1998). Scheduling non-enforceable contracts among autonomous agents. In 3rd Intl.

Conf. on Cooperative Information Systems (COOPIS'98)}, NewYork.

TOS (1997). Trading Object Service. OMG Document.

VEO Systems Inc. (1998). http://www.veosystems.com.

W. Vickrey (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance,

16(8):8--37.

XJParser (1999). http://xdev.datachannel.com/downloads/xjparser.

XML (1998). Extensible Markup Language (XML) 1.0. W3C Recommendation. http://www.w3.org/TR/REC-

xml-19980210.

Y. Bakos (1998). The Emerging Role of Electronic Marketplaces on the Internet, Communications of the

ACM, 41 (8): 35-42, August.

Y. Labrou and T. Finin (1994). A semantics approach for KQML - a general purpose communication

language for software agents. In Third Intl. Conf. on Information and Knowledge Management (CIKM'94).

48

Y. Labrou and T. Finin (1997). A proposal for a new KQML specification. Technical Report TR-CS-97-03,

University of Maryland, Baltimore County.

49

Appendix A

DTD for a Workflow Process Definition

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE simple [

<!ENTITY % activity '(task,retry?,undo?,compensation?)|assignment|block|

iterative-block|conditional-block|for-each-block'>

<!-- Top level Container: workflows -->

<!ELEMENT workflows (#PCDATA,process+)>

<!ELEMENT process (variables?,parameter*,%activity;*)>

<!ATTLIST process

 name CDATA #REQUIRED

 duration CDATA #IMPLIED >

<!ELEMENT variables (var*)>

<!ELEMENT var (#PCDATA | list)>

<!ATTLIST var

 mode (INTERNAL|EXTERNAL) "INTERNAL"

 type (INT|STRING|XML|XML-QL|LIST)>

<!ELEMENT parameter (#PCDATA,content?)>

<!ATTLIST parameter

 mode (IN|OUT)>

<!ELEMENT task (parameter*)>

<!ATTLIST task

 name CDATA #REQUIRED

 type (TASK|SUBPROCESS) "TASK"

 role CDATA #IMPLIED

 user CDATA #IMPLIED

 description CDATA #IMPLIED>

<!ELEMENT retry (condition?)>

<!ATTLIST retry

 number CDATA #REQUIRED>

<!ELEMENT undo (condition?,%activity;*)>

<!ELEMENT compensation (%activity;*)>

<!ELEMENT assigment ((lhs-expr|list-element),rhs-expr)>

<!ELEMENT block (%activity;*, compensation?)>

<!ATTLIST block

 type (SERIAL|AND-PARALLEL|OR-PARALLEL|XOR-PARALLEL|CONTINGENCY)

"SERIAL"

 name CDATA #IMPLIED >

50

<!ELEMENT iterative-block (condition,%activity;*,compensation?)>

<!ELEMENT conditional-block (condition,%activity;*,compensation?,else?)>

<!ELEMENT else (%activity;,compensation?)>

<!ELEMENT for-each-block (list,%activity;*,compensation?)>

<!ATTLIST for-each-block

 type (AND-PARALLEL|OR-PARALLEL|XOR-PARALLEL) "AND-PARALLEL">

<!ELEMENT condition(lhs-expr,comparison-operator,rhs-expr)>

<!ELEMENT lhs-expr (#PCDATA)>

<!ELEMENT comparison-operator EMPTY>

<!ATTLIST comparison-operator

 type (EQUALITY|GREATER|LESS|GEQ|LEQ|NOTEQUAL)>

<!ELEMENT rhs-expr ((int|list|string),(operator,(int|list|string))*>

<!ELEMENT operator ("+"|"-"|"*"|"/"|"%")>

<!ELEMENT int (#PCDATA)>

<!ELEMENT string (#PCDATA)>

<!ELEMENT list (#PCDATA)>

<!ATTLIST list

 type (INT|STRING|XML|XML-QL) "STRING" >

<!ELEMENT list-element (#PCDATA,index,content)>

<!ELEMENT index (int) >

<!ELEMENT content ANY>

]>

51

Appendix B

Workflow Templates

Active Buyer Template

<workflows>wf-temp1

 <process name='active-buyer'}

 <parameter mode=IN>items</parameter>

 <variables>

 <var type=XML-QL>result</var>

 <var type=LIST><list type=XML-QL>items</list></var>

 <var type=LIST><list type=STRING>sellers</list></var>

 </variables>

 <block>

 <for-each-block type=AND-PARALLEL>

 <list>items</list>

 <task name='find-sellers' description='http://www.srdc.metu.edu.tr/mpd/find-sellers.RDF'>

 <parameter mode=IN><list-element>items<index><int>i</int></index>

 </list-element></parameter>

 <parameter mode=OUT>sellers</parameter>

 </task>

 <for-each-block type=AND-PARALLEL>

 <list>sellers</list>

 <task name='query' description='http://www.srdc.metu.edu.tr/mpd/query.RDF'>

 <parameter mode=IN><list-element>items<index><int>i</></index>

 </list-element></parameter>

 <parameter mode=IN><list-element>sellers<index><int>j</int></index>

 </list-element></parameter>

 <parameter mode=OUT>result</parameter>

 </task>

 <conditional-block> <condition>... </condition>

 <task name='negotiate' ...> ... </task>

 </conditional-block>

 </for-each-block>

 </for-each-block>

 <task name='payment' type=SUBPROCESS ...> ... </task>

 </block>

 </process>

 ... (definitions of other processes eg. payment)

</workflows>

52

Passive Buyer Template

<workflows>wf-temp2

 <process name='passive-buyer'>

 <variables>

 <var mode=EXTERNAL type=INT>request</var>

 <var mode=EXTERNAL type=XML>product-info</var>

 </variables>

 <conditonal-block>

 <condition>

 <lhs-expr>request</lhs-expr><comparison-operator type=EQUALITY/>

 <rhs-expr><int>1</int></rhs-expr>

 </condition>

 <task name='user-confirmation' description='http://www.srdc.metu.edu.tr/mpd/user-

confirmation.RDF'>

 <parameter mode=IN>product-info</parameter>

 <parameter mode=OUT>reply</parameter>

 </task>

 <conditional-block> (if reply is OK (1))

 <condition> ... </condition>

 <task name='negotiate' ...> ... </task>

 </conditional-block>

 <task name='payment' type=SUBPROCESS ...> ... </task>

 </process>

 ...

</workflows>

Active Seller Template

<workflows>wf-temp3

 <process name='active-seller'>

 <variables>

 <var type=XML>product-info</var>

 <var type=LIST><list type=STRING>buyers</list></var>

 </variables>

 <block>

 <task name='get-product-info' description='http://www.srdc.metu.edu.tr/mpd/get-product-

info.RDF'>

 <parameter mode=OUT>product-info</parameter> </task>

 <task name='find-buyers' ...> <parameter mode=OUT>buyers</parameter> </task>

 <for-each-block type=AND-PARALLEL>

 <list>buyers</list>

53

 <task name='send-request' description='http://www.srdc.metu.edu.tr/mpd/send-

request.RDF'>

 <parameter mode=IN>product-info</parameter>

 <parameter mode=OUT>reply</parameter>

 </task>

 <conditional-block> (if reply is positive)

 <condition> ... <condition>

 <task name='negotiate' ...> ... </task>

 </conditional-block>

 </for-each-block>

 <task name='payment' type=SUBPROCESS ...> ... </task>

 <task name='deliver' role='postman' ...> ... </task>

 </block>

 </process>

 ...

</workflows>

Passive Seller Template

<workflows>wf-temp4

 <process name='passive-seller'>

 <variables>

 <var mode=EXTERNAL type=INT>request</var>

 <var mode=EXTERNAL type=XML-QL>query</var>

 <var mode=EXTERNAL type=INT>interest</var>

 <var type=XML-QL>result</var>

 </variables>

 <conditonal-block>

 <condition> (if request is 1)

 <lhs-expr>request</lhs-expr><comparison-operator type=EQUALITY/>

 <rhs-expr><int>1</int></rhs-expr>

 </condition>

 <task name='query-catalog' description='http://www.srdc.metu.edu.tr/mpd/query-

catalog.RDF'>

 <parameter mode=IN>query</parameter>

 <parameter mode=OUT>result</parameter>

 </task>

 <conditional-block> (if interest is 1)

 <condition> ... </condition>

 <task name='negotiate' ...> ... </task>

 </conditional-block>

 <task name='payment' type=SUBPROCESS ...> ... </task>

54

 </process>

 ...

</workflows>

55

Appendix C

Adapted Workflow Template

<workflows>WF1

 <process>

 <variables>

 <var type=XML-QL>result</var>

 <var type=LIST><list type=STRING>sellers</list></var>

 <var type=XML>computer-info</var>

 <var type=XML>desk-info</var>

 <var type=XML>CD-info1</var>

 ...

 </variables>

 <block>

 <task name='find-sellers' description='http://www.srdc.metu.edu.tr/mpd/find-sellers.RDF'>

 <parameter mode=IN>computer-info

 <content>

 <?xml namespace name='http://www.srdc.metu.edu.tr/mpd/computer.dtd' as "c"?>

 <c:item><c:computer>

 <c:memory>64M</c:memory>

 <c:board>Pentium-II300</c:board>

 <c:cdrom>Creative-40x</c:cdrom>

 <c:disk>Quantum6GB</c:disk>

 </c:computer></c:item>

 </content> </parameter>

 <parameter mode=OUT>sellers</parameter>

 </task>

 <for-each-block type=AND-PARALLEL>

 ...

 <task name='query' description='http://www.srdc.metu.edu.tr/mpd/query.RDF'>

 <parameter mode=IN>computer-info<content> ... </content>

 </parameter>

 ...

 </task>

 ...

 </for-each-block>

 <block type=OR-PARALLEL>

 <task name='find-sellers' ...>

 <parameter mode=IN>desk-info </parameter>

 </task>

56

 ...

 <block type=OR-PARALLEL>

 <task name='find-sellers' ...> <parameter mode=IN>CD-info1 ... </parameter> </task>

 ...

 </block>

 </block>

 <task name='payment'....> ... </task>

 </block>

 </process>

</workflows>

