
{

An Architecture for Supply Chain Integration and

Automation on the Internet *

IBRAHIM CINGIL AND ASUMAN DOGAC fibrahim,asumang@srdc.metu.edu.tr

Software Research and Development Center

Department of Computer Engineering

Middle East Technical University (METU)

06531, Ankara, Turkiye

Abstract. Electronic commerce is happening at a very fast pace and business-to-business ecom-
merce is taking the lead, a very important part of which is the supply chain integration and
automation. There is a high demand for well accepted interoperability standards which need to
be �tted together for supply chain integration to meet the business demands such as being able
to integrate catalogs from di�erent companies. This will facilitate product comparisons and pro-
ducing customized catalogs. Given an anchor product anywhere on the supply chain, it should be
possible to obtain information on related products that complement or add value to this anchor
product. Yet another key issue is the full automation of the supply chain processes. However
since a single dominant electronic commerce standard is unlikely, the supply chain integration
and automation should be able to accommodate di�erent standards like OBI or OTP. This will
make it possible for users to conform to the standards of their choice.
Another important fact is that rigid supply chains can co-exist with supply chains formed on

the
y where participants can transact business spontaneously since the Web is able to make
the information instantly available to all trading partners. Facilitating resource discovery that is
discovering information on possible partners and their catalogs on the Internet and transacting
business automatically also becomes an important issue.
The architecture developed within the scope of this paper addresses these issues. We have

used the emerging technologies and standards as the infrastructure of the system proposed; and
integrated these to meet the needs of supply chain integration and automation and demonstrated
how each of the mentioned functionality can be achieved.

1. Introduction

The electronic catalogs will much better serve the needs of the businesses today if
they can achieve the following functionality through seamless interoperation of the
resources on the whole supply chain of retailers, distributors and manufacturers [9]:

1. Facilitating product comparisons and customized catalogs: Buyers should be
able to query multiple catalogs concurrently and then assemble the accumu-
lated information in any format they prefer to be able to compare competitive
products. In other words, it should be possible to integrate data from a number
of di�erent resources to create catalogs that are not only timely and informa-
tion rich, but also tailored according to the customer's needs and preferences.

* This work is partially being supported by the Middle East Technical University, Faculty of
Engineering Project No: AFP-99.03.12.02, and by the Scienti�c and Technical Research Council
of Turkey, Project No: 197E038.

2 _I. C� _ING_IL, AND A. DO�GAC�

Also for large organizations that have negotiated special discounts with certain
suppliers, interoperable catalog technology should make it possible to create in-
ternally distributed product listings that describe approved items and the prices
set for them through master purchase agreements.

2. Locating complementary products: A buyer may be willing to purchase related
products or a product may need several additional components before a com-
plete system is deployed. This necessitates being able to locate compatible
products in other catalogs through standardized queries. That is, once a buyer
establishes a core (or "anchor") product anywhere on the supply chain, s/he
should be able to readily obtain information from other catalogs describing
items and services that complement or add value to this anchor product. For
many suppliers this approach is also preferable to the alternative of redirecting
customers to complementary catalogs since many of these catalogs may contain
pointers to competitive products.

3. Bi-directional catalog integration: Catalog integration should be possible not
only down the supply chain, that is from retailer to manufacturer but also up
the supply chain that is from manufacturer to the retailer. As an example,
a distributor's catalog should not only be able to obtain information about
products from the original suppliers, but should also acquire information about
the retail outlets where products in the catalog are o�ered. This will make
it possible for the user to access all the information available on a particular
product, regardless of where s/he has chosen to establish an anchor on the
supply chain.

4. Automation of processes on the supply chain. Whenever a product is bought,
this information should propagate down and up the supply chain automatically
triggering a series of distribution, manufacturing and logistics events. As an
example, the items collected in a shopping cart should automatically trigger
the issuing, approval and delivery of related purchase orders electronically to
the appropriate vendor organization. In response an electronic message should
be sent to the buyer con�rming the acceptance of the transaction, providing
tracking number of the transaction and summarizing the status of the order.
At the seller site, on the other hand, the related sub-processes like shipment
and payment need to be automatically activated. Assuming that the buyer is
a customer who contacted a retailer, it is necessary to automatically trigger
the processes down the supply chain alerting necessary processes in related
distributors and manufacturers.

The work described in this paper addresses these issues and is implemented within
the scope of the MESChain (METU Supply Chain) project.
The technology we propose for catalog integration is to generate Extensible Markup

Language (XML) documents from existing resources conforming to the Common
Business Library (CBL) and also to the available industry speci�c standards. Given
an anchor product on the supply chain, the items and services that complement

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 3

this product are described using the "property" feature of Resource Description
Framework (RDF). The meta data of a particular resource itself can be described
through the attributes of the resource like the creator of the resource, its title, pub-
lisher, etc. There is a standardization e�ort in this respect, namely, Dublin Core
(DC) [19] that provides for a meta data element set for describing resources. This
helps not only to their discovery by search agents but also for forming the supply
chains on the
y. Given an anchor product on the supply chain, bi-directional
traversing on the supply chain is realized by describing up and down links through
RDF properties.

XML is used in our architecture as an enabling technology since it makes it
possible for business documents, forms and messages to be interoperable and com-
prehensible. The Electronic Data Interchange (EDI) protocol, although a success
for some, has not been accepted by the majority of the business community as a
way to do business electronically. Even though there have been extensive e�orts to
standardize EDI transactions, it remains too expensive and the software developed
does not make it easy to leverage implementations across di�erent trading partners
[26]. Any solution that is targeted at enabling network economy must be one that
insulates businesses operating computer systems from the daily changes that occur
in a business.

In this paper, we show that a supply chain architecture can be constructed by
using standard technologies without any need for specialized coding or customized
programming. We demonstrate that when these technologies are used as proposed,
achieving most of the required functionality reduces to executing standardized
queries as demonstrated in Section 5.

Another issue addressed in the paper is the automation of supply chain processes.
For this purpose catalogs are associated with catalog agents which can automat-
ically invoke the related work
ow on the supply chain for full automation of the
supply chain processes. We de�ne the work
ow processes in XML conforming to
a "work
ow.dtd" that we provide to be replaced by the original when it becomes
available through the standardization e�orts currently undertaken. We also provide
a component-based message-driven work
ow engine in Java capable of executing
the work
ow de�nition in XML conforming to this work
ow.dtd that the users
of the supply chain can download and execute. The catalog agents di�erentiate
between messages sent according to di�erent standards and activate the related
work
ow process templates accordingly. This provides for the interoperability in
terms of di�erent standards.

The paper is organized as follows: Section 2 brie
y describes the technologies
and standards that enabled the architecture presented. To facilitate supply chain
integration and automation, we propose some minor extensions to the enabling
technologies. These extensions are discussed in Section 3. The architecture of
the system as well as how the enabling technologies need to be �tted together are
explained in Section 4. This section also contains the description of the work
ow
engine. In Section 5, the functionality of the system is demonstrated through

4 _I. C� _ING_IL, AND A. DO�GAC�

product.description

product.description

product.description

detailed.product.desc.

detailed.product.desc.

detailed.product.desc.

catalog.entry
catalog.entry
catalog.entry

cat.entry.ptr
cat.entry.ptr
cat.entry.ptr

Catalog Catalog Entries Product Descriptions
General

Product Descriptions
Detailed

Figure 1. The electronic catalog structure in Common Business Library.

examples. The contributions of the paper are summarized in Section 6, and the
related work in Section 7. Finally, Section 8 contains the conclusions.

2. Enabling Technologies and Standards

In this section, the technologies and standards that enabled the architecture pre-
sented and used in its implementation are described brie
y.

2.1. Extensible Markup Language (XML) and the Common Business

Library (CBL)

XML [40] has gained a great momentum and is emerging as the standard for
self-describing data exchange on the Internet. Its power lies in its extensibility and
ubiquity. Anyone can invent new tags for particular subject areas and de�ne what
they mean in document type de�nitions (DTDs). Content oriented tagging enables
a computer to understand the meaning of data. But if every business uses its own
XML de�nition for describing its data, it is not possible to achieve interoperability.
The tags need to be semantically consistent across merchant boundaries. One of the
e�orts in this respect is the Common Business Library [11, 20, 26]. CBL consists
of information models for various concepts including:

� Business forms, such as catalogs, purchase orders and invoices,

� Standard measurements, such as date, time, location and classi�cation codes.

CBL thus provides the much needed basis to ensure interoperability among XML
applications. This needs to be complemented by a set of DTDs common for speci�c
industries, that is for vertical domains. In fact, some of the speci�cations for
vertical domains are already available like HL7 for exchanging healthcare records,
OBI (Open Buying on the Internet) [29], OTP (Open Trading Protocol) [31], and
work is going on for some other domains like personal computers [34].

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 5

Related with electronic catalogs, CBL provides a standard catalog de�nition
which includes product descriptions as well as default values for catalog opera-
tor, payment and shipment speci�cations. The catalog architecture of CBL is given
in Figure 1.

2.2. Resource Description Framework (RDF)

RDF is a foundation for processing meta data for providing interoperability between
applications that exchange machine understandable information and currently is a
recommendation by the World Wide Web Consortium (W3C) [32, 33]. RDF enables
meta data interoperability through the design of mechanisms that support common
conventions of semantics, syntax and structure. Structure can be thought of as
a formal constraint on the syntax for the consistent representation of semantics.
RDF imposes the needed structural constraints to provide unambiguous methods
of expressing semantics [27].
The basic data model consists of three object types: resources which are the

things being described by RDF, properties which are speci�c aspects, attributes or
relations describing a resource and statements that assign a value to a property of
a resource. A resource can be any object that is uniquely identi�able by a Uniform
Resource Identi�er (URI). Values may be atomic in nature or can be other resources,
which in turn may have their own properties. A collection of these properties that
refers to the same resource is called a description.
Meaning in RDF is expressed through a reference to an application-speci�c schema

which de�nes the terms that will be used in RDF statements and gives speci�c
meanings to them. In other words RDF does not stipulate semantics for each re-
source description community, but rather provides the ability for these communities
to de�ne meta data elements as needed. Individual resource description commu-
nities de�ne the semantics, or meaning of meta data that address their particular
needs using RDF Schema Speci�cation Language [32].
The RDF data model provides an abstract, conceptual framework; a concrete

syntax is also required and XML is used for this purpose [33]. The XML names-
pace mechanism serves to identify RDF Schemas. The syntax and the structural
constraints RDF imposes, support the consistent encoding and exchange of machine
processable meta data.
As an example, the following RDF de�nition describes the resource "ups" as a

subclass of the resource "product" and an add-on to the resource "desktop":

<rdf:RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:rds="http://www.w3.org/TR/WD-rdf-schema#"

xmlns:MESChain="http://www.srdc.metu.edu.tr/sc/common.schema.rdf#">

<rdf:Description ID="ups">

<rdf:type resource="http://www.w3.org/TR/WD-rdf-schema#Class"/>

<rds:subClassOf resource="product"/>

<MESChain:Add_On_to resource="desktop"/>

<rds:label>UPS</rds:label>

<rds:comment>All kinds of Uninterruptable Power Supplies

6 _I. C� _ING_IL, AND A. DO�GAC�

that can be used for a desktop computer</rds:comment>

</rdf:Description>

Notice that in this example, namespace pre�x "rdf" is used for qualifying RDF
Syntax tags; namespace pre�x "rds" is used for qualifying RDF Schema tags; and
namespace pre�x "MESChain" is used for qualifying the tags that we have used to
de�ne our schema. Through out the paper, the tags used in the RDF examples use
these pre�xes.

2.3. Querying XML and RDF Documents

There is a need for techniques and tools for extracting data from large XML docu-
ments, for translating XML data between di�erent ontology (DTD's), for integrat-
ing XML data from multiple sources including RDF descriptions speci�ed in XML.
XML data is very similar to 'semi-structured data' [37], which has been proposed
in the database research community as a data model for sources that have irregular
or rapidly evolving structure.
One of the query languages available for XML is XML-QL [14] and it has been de-

signed by applying techniques from semi-structured data. XML-QL has a SELECT-
WHERE construct, like SQL, that can express queries, which extract pieces of data
from XML documents, as well as transformations, which, for example, can map
XML data between DTD's and can integrate XML data from di�erent sources. Al-
though XML-QL shares some functionality with XML's style sheet mechanism, it
supports more data-intensive operations, such as joins and aggregates, and has bet-
ter support for constructing new XML data, which is required by transformations.
XML-QL is the main query language used in our work.
The Extensible Stylesheet Language (XSL) [42], which is still under develop-

ment, also includes a transformation language. This XSL Transformations language
(XSLT) [43] has recently been standardized and now is an o�cial recommendation
of the W3C. Its ability to transform data from one XML representation to another
makes it an important component of any application that needs to convert the same
data between di�erent XML representations.
XSLT provides elements that de�ne rules for how one XML document is trans-

formed into another. The transformation is achieved by associating patterns with
templates. In an XSL transformation, an XSL processor reads both an XML docu-
ment and an XSL style sheet. Based on the instructions the processor �nds in the
XSL style sheet, it outputs a new XML document or a fragment.
The transformed XML document may use the markup and DTD of the original

document or it may use a completely di�erent set of tags. There's also special
support for outputting HTML. With some e�ort it can also be made to output
essentially arbitrary text, though it's designed primarily for XML-to-XML trans-
formations. Since a query can be considered as a transformation from a source
document to a query-result document, we use XSLT as an alternative query lan-
guage in our work.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 7

2.4. Open Buying on the Internet (OBI)

The OBI initiative [29] is automating large-scale corporate procurement of o�ce
and maintenance supplies. In the OBI architecture, a requisitioner at a Buying
Organization uses a Web browser to interact with a specialized catalog at a Selling
Organization. If the requisitioner places an order, the Selling Organization will
transmit an order request to the Buying Organization's purchasing server for ap-
proval. If it is approved, the Buying Organization returns the order to the Selling
Organization.

At an abstract level, the OBI architecture can be viewed as the interaction of
four entities:

� Requisitioner: The requisitioner represents the end-user of the system; the per-
son who actually places the order. The requisitioner also has a digital certi�cate,
issued by a trusted certi�cate authority.

� Buying Organization: The buying organization represents the purchasing man-
agement and the information systems which support purchasing. These systems
include an OBI server for receiving OBI Order Requests and returning OBI Or-
ders.

� Selling Organization: The selling organization maintains a dynamic electronic
catalog that presents accurate product and price information. This catalog can
be tailored based on the organizational a�liation of the requisitioner as speci�ed
in a digital certi�cate.

� Payment Authority: Payment authorities provide authorization for the pay-
ment vehicle presented by the requisitioner. Payment authorities must provide
payments to selling organizations and a timely invoice or debit to the buying
organization.

2.5. Open Trading Protocol (OTP)

The Internet Open Trading Protocol [31] provides an interoperable framework for
Internet commerce. It is payment system independent and it encapsulates payment
systems such as SET, Mondex, CyberCash, etc. It addresses the involved parties
in the trade, how it will be conducted, presentation of an o�er, the method of
payment, the provision of a payment receipt, the delivery of goods and the receipt
of goods. The fundamental goal of the OTP e�ort is to produce a de�nition of these
trading events in such a way that any two unfamiliar parties that conform to the
OTP speci�cations will be able to complete the business safely and successfully.

A minimum useful set of OTP transactions, called "Baseline", include the fol-
lowing: Purchase, Refund, Value Exchange, Authentication, Withdrawal, Deposit,
Payment Instrument Care, Inquiry and Ping.

8 _I. C� _ING_IL, AND A. DO�GAC�

The di�erent roles that organizations can have in a trade are identi�ed in OTP
as Trading Roles, which are the following: Consumer, Merchant, Payment Handler,
Delivery Handler, Merchant Customer Care Provider and Payment Instrument Cus-
tomer Care Provider.
These roles may be carried out by the same organization or by di�erent organiza-

tions. For example, in the simplest case, one physical organization (e.g. a merchant)
could handle the purchase, accept the payment, deliver the goods, and provide mer-
chant customer care. At the other extreme, a merchant can handle the purchase
but can instruct the customer to pay a bank or �nancial institution, request that
delivery be made by an overnight courier �rm and to contact an organization which
provides 24x7 hours of service if problems arise.

2.6. Agent Technology

An agent is a computer system situated in some environment that is capable of
autonomous action in this environment in order to meet its design objectives. Au-
tonomy generally means that the system acts without the direct intervention of
humans (or other agents), and has control over its own actions and internal state.
To better explain the autonomy of agents, consider an object 'x' in an object ori-
ented system. The methods that object 'x' provides can be invoked by other objects
and 'x' does not have any control over this. However an agent has control over its
actions. Agents, in general, have the following properties:

1. They accept messages rather than being invoked by other programs.

2. They evaluate the messages that they receive and act in response rather than
being told what to do, i.e., they are autonomous.

3. They discover other agents that they need to communicate.

4. They keep their state while communicating with other agents.

5. The agents can advertise the services they o�er through facilitators (i.e., match
makers) so that other agents can �nd them. To communicate with other agents
in the outside world, a standard agent communication language like KQML can
be used [22].

2.7. Work
ow Systems

A work
ow process, as de�ned in [39], is a coordinated (parallel and/or serial) set
of process activities that are connected in order to achieve a common business goal.
A process activity is de�ned as a logical step or description of a piece of work that
contributes towards the accomplishment of a process. A process activity may be a
manual process activity and/or an automated process activity.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 9

A work
ow process is speci�ed using a process de�nition language or a process
de�nition tool, and then executed by a work
ow management system (WFMS).
A work
ow process also de�nes the order of task invocation or condition(s) under
which tasks must be invoked (i.e. control-
ow) and data-
ow between these tasks.
A WFMS is a system that completely de�nes, manages and executes work
ow
processes through the execution of software whose order of execution is driven by
a computer representation of the work
ow process logic.
Within the scope of supply chains, work
ow technology enables automation of

order approval and purchasing procedures as well as assembly and/or production
processes. The work
ow management system developed within the scope of this
work is discussed in detail in Section 4.6.

3. Integration of the Enabling Technologies

We have integrated the enabling technologies to form the proposed supply chain
architecture as follows: Electronic catalog and product description data are stored
in XML conforming to CBL. To provide for catalog interoperability a common DTD
is necessary and CBL is one of the candidates. Another candidate like cXML [8] can
also be used without a dramatic change in the proposed architecture. In MESChain
architecture, meta data of electronic catalogs, the product taxonomy information,
the meta data to express up and down links as well as products that add value to
an anchor product are expressed in RDF. To the best of our knowledge, this is the
�rst use of RDF in this scope and our architecture demonstrates both the feasibility
and advantages of using RDF for these purposes.
A catalog agent is exploited to serve all the messages coming to a catalog. All

queries against the catalogs are realized by using standard XML-QL queries via
catalog agents. Standardized queries avoid any further coding e�ort on behalf of
the participants.
All accepted customer orders and monitoring of the supply chain are handled

dynamically and automatically by using the work
ow technology which provides
di�erent process de�nitions for di�erent purchasing protocols such as OBI, OTP,
etc.
In MESChain architecture, each participant has its own catalog agent and work-

ow domain manager. The bene�ts of using a catalog agent instead of a Web server
in the proposed architecture are as follows: A Web server, like an agent, can also
continuously listen to a port to accept incoming messages. However in the Web
server alternative, since the catalog messages need to be handled through the GET
and POST methods of HTTP, a di�erent URI or at least di�erent parameters for
each di�erent call need to be con�gured on the server. Since each participant of
the supply chain, like a retailer or a distributor has its own Web server, each Web
server needs to be modi�ed or customized individually. However an agent code
is reusable through out the supply chain. Furthermore, when a Web server needs
to communicate with an external application, for example to process supply chain
queries, it uses one of the available mechanisms like CGI or Java servlets which re-

10 _I. C� _ING_IL, AND A. DO�GAC�

quire some coding. On the other hand, a catalog agent being speci�cally designed
for serving catalogs, does not require any extra coding by the participants of the
supply chain.
Also, a Web server accepts any request within its capability; that is, it does

not have facilities to evaluate an incoming request or to keep its state. Incoming
requests can be evaluated by invoking external programs and states of requests
can be handled by using hidden �elds on HTML pages. However both of these are
dealt with indirectly. Catalog agents have built-in capabilities to evaluate incoming
messages, as well as keeping the states of requests.
Automation on the proposed architecture is achieved by using the work
ow tech-

nology. Work
ow processes handle all the purchasing procedures, for both customer
and supply orders, as well as production or assembly procedures. Using an internet
based work
ow system relieves any need for pre-installation of any speci�c software,
such as CORBA for example. Furthermore specifying process de�nitions in XML
as discussed in Section 4.6 provides for very high transportability and re-usability.
In the light of our experiences with the architecture of MESChain, there is a need

in some cases for minor extensions to some of the enabling technologies to have the
proposed architecture fully functional. The extensions needed are described in the
following subsections.

3.1. Legacy Application Support for Catalog Interoperability

For catalog interoperability, the proposed architecture necessitates invoking some
external applications from XML documents such as accessing databases, invoking
work
ow processes or legacy applications to dynamically modify XML documents.
For example, if some of the catalog data is on a legacy database, it is necessary to
invoke a wrapper program to dynamically generate catalog data to be inserted into
an XML document representing the integrated catalog. Another example could be
accessing an inventory database directly from an XML document to retrieve the
current availability of an item in stock.
In XML, the NOTATION facility is used for invoking external applications. With

this facility, it is possible to pass input parameters to the external applications,
however there is no mechanism to retrieve the result of the invoked application
back into XML.
With the current XML technology the following two alternatives can be used to

integrate the results of an external database application into an XML document:

� If the database system is supporting XML, then it can be queried through
XML-QL queries that are placed in the XML document [14].

� The XML-QL queries can be used in combination with XML "NOTATION"
facility. For example, an external application that accesses the company's au-
tonomous database may be initiated by the NOTATION facility. The external
application can store its results in XML to a pre-de�ned location which can be
accessed then by an XML-QL query.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 11

On the other hand, the NOTATION facility can be extended to accommodate the
results of an external application it initiates. An external application may generate
its results in XML so that it can readily be integrated into XML data where the
NOTATION facility is used. This will provide a natural mean to integrate XML
with already existing applications.

Another solution that we propose is to use the XML processing application [23]
syntax to interact with external applications [6, 35]. Consider the following exam-
ple which retrieves the currently available quantity in stock of an item and returns
the available quantity into the XML document. In this way, parsed value of the
"in.stock.quantity" element will always be up-to-date although the in stock quan-
tities reside in an external database.

<in.stock.quantity>

<?EXECUTE type="PL/SQL" name="retrieve.in.stock.quantity"

source=[SELECT available_quantity_attribute INTO avail_qty_var

FROM Inventory_Table

WHERE product_id_attribute = product_id_var]

input=[<call.parm name="product_id_var"> "M1-CD32" </call.parm>]

output=[<call.parm name="avail_qty_var"> in.stock.qty </call.parm>] ?>

&in.stock.qty;

</in.stock.quantity>

The "avail qty var" and "product id var" are PL/SQL variables, whereas the
"in.stock.qty" is an XML entity. The "M1-CD32" is the product identi�er of the
item in concern and is passed as a parameter to PL/SQL query from the "EX-
ECUTE" statement and mapped to "product id var". The result of the query
stored in "avail qty var" is mapped to "in.stock.qty" which is provided as the
output variable and used in the XML document as an entity. Each time the
"< in:stock:quantity >" element is parsed, the query is executed to retrieve the
current stock quantity for the product in concern.

It should be noted that the major database vendors are in an e�ort to fully
support XML and therefore dynamic XML generation from databases will soon be
readily available [30]. The advantage of our approach over such kind of a dynamic
XML generation is the following: the EXECUTE instruction makes it possible
to specify in the document where to get the external data and how to integrate
it into the document. In this way, XML documents dynamically generated from
a number of possibly heterogeneous resources can be
exibly integrated. When
a change becomes necessary, for example to invoke another resource, this can be
accomplished at the document level. A server program developed to do this task,
on the other hand, requires the modi�cation of the code each time a change is
necessary. Furthermore, where to get the data would most likely be hard-coded in
a server program.

The EXECUTE instruction as proposed can appear anywhere parsed data is al-
lowed. The modi�ed XML parser passes the execution to the processing application.
The "type" attribute speci�es the type of an application like a work
ow process,
a PL/SQL, an SQL or an XML-QL query. New application types can be added

12 _I. C� _ING_IL, AND A. DO�GAC�

as needed. The "name" attribute speci�es the name of the application to be exe-
cuted and the "source" attribute either provides a URL or the source. The input
parameters of the process, if any, can be given by the "input" attribute which is
parsed and evaluated by the processing application. Parsing of the input attribute
is required since the general XML entities are allowed inside the input parameters.
Alternatively, the input attribute can specify a URL where the input parameters
can be found. Similarly the output parameters of the process, if any, are speci�ed
by the "output" attribute which speci�es a URL indicating where the output will
be stored. The output attribute alternatively can give variable name speci�cations
to store the output values. The values stored in these variables can be included into
the XML document by the XML's standard general entity reference format such as:
"&varname;". Note that when the result of the external application is inserted into
the XML document, the document should still conform to its corresponding DTD.
This is the responsibility of the person who codes the invoked external application.
There is a need to use "variables" in the de�nition of the "EXECUTE" processing

instruction to store output values. However, variables are not readily available in
XML. Variables can be accommodated into XML (with a minor change in the XML
parser) by allowing the <!ENTITY ..> de�nitions to rede�ne a previously de�ned
entity. This will enable using an entity as a variable. Alternatively, a more general
variable structure can also be added to XML.
As a summary, XML is intended primarily for static data exchange on the In-

ternet. However it may be necessary to interact with other sources from an XML
document to dynamically create some XML data to be inserted into the original
document. Using the EXECUTE instruction for this purpose is our contribution
in this respect.
Note that there is a similar feature in HTML where it is possible to embed

JavaScript in an HTML document as statements and functions within a<SCRIPT>
tag, by specifying a �le as the JavaScript source, or by specifying a JavaScript ex-
pression as the value of an HTML attribute [21].

3.2. Automation of Customer Orders down the Supply Chain

Full automation of customer orders down the supply chain, that is from retailer
down to manufacturer, requires two mechanisms to be present in the involved par-
ties. These are as follows:
To automate the business processes down the supply chain, automated stock

control is essential in the sense that a stock danger level must be associated with
each item in stock. A triggering mechanism must also be available raising a signal if
the "in.stock.quantity" of a product goes below a stock danger level. This triggering
mechanism enables the related work
ows to be enacted to generate an automatic
order to purchase or produce the missing item.
Furthermore, since each item is ordered automatically in our system, the infor-

mation about the electronic catalog where the order is to be sent should also be
known if the product is to be purchased. If the product is to be produced, then

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 13

the production procedure of the product should be known. Note that a production
process may require production or purchasing of sub parts of the product to be
produced, in which case the main production process would �re required processes
to produce or purchase these sub parts.
This information can either be stored in an external database, or alternatively it

can be contained in the "product.description" element of CBL. In the light of the
discussions above, we propose the following extensions to CBL to better accommo-
date the requirements of supply chain automation:

� Inventory Control Element. In order to automate the supply chain processes, an
"inventory.control" element provided at "http://www.srdc.metu.edu.tr/sc/dtds
/cbl1.2/our.extensions.mod" is introduced and added into the general product
description element of CBL.

The inventory control element contains a list of sub parts for the products that
need assembling, current stock availability, stock danger level, minimum amount
to order and a related work
ow process pointer. When the "in.stock.quantity"
decreases to the stock danger level or below an automatic supply order is gen-
erated. For a product that requires assembling, its sub parts are ordered �rst,
then assembled and put into stock according to the speci�ed work
ow process.

� Catalog Pointer. A catalog pointer element is also introduced within the "inven-
tory.control" element to point at an electronic catalog or establish links among
catalogs on the supply chain. Note that catalog entry pointers in CBL do not
serve this purpose and CBL does not provide catalog pointers possibly because
it does not attempt to model a supply chain.

Catalog pointers in MESChain are used for product speci�c purchasing pur-
poses. For example, when the stock availability for a product is not su�cient,
an automatic supply order is generated for that product and sent to a catalog
agent pointed by the "catalog.pointer" contained in the "inventory.control" el-
ement. The catalog pointer di�ers from the "down link" and "up link" descrip-
tions discussed in Section 4.4. The "up link" and "down link" do not provide
any product speci�c information, but describe the roles and the participants of
a supply chain.

3.3. Handling Recursive Execution in XML-QL

In an XML document there can be an element which either contains data or a
pointer to this data. As an example "product.description.group" element may
contain either "product.description" or "product.description. pointer" as shown in
the following:

<!ELEMENT product.description.group (

(product.description | product.description.pointer),

quantity.per.customer?, shipment.method.set.pointer?,

payment.method.group.pointer?, value.monetary.group?)>

14 _I. C� _ING_IL, AND A. DO�GAC�

Note that a pointer may point to another pointer and there is no limit on the
depth of this pointer chain. This implies a need for a recursive execution in some
queries.

Although XSLT is capable of handling this kind of recursion, there is no sup-
port for this in XML-QL as presented in [14]. Therefore we extend the function
declaration, execution and call points in XML-QL as follows:

1. The XML-QL functions should be recursive.

2. In the function declaration of XML-QL, a query block is speci�ed in the function
body which terminates with a CONSTRUCT clause. However a function can be
called for some intermediate results that should not appear in the �nal result of
the main query to conform to a particular DTD. Also the value returned by the
function is not clearly speci�ed. For this reason we introduce a RETURN clause
to the function to explicitly indicate that the value returned is an intermediate
result.

3. We extend the call points of a function such that a function can be called from
any place where an instantiated variable can be used.

4. In XML-QL where to get the input XML document can be speci�ed through the
IN clause. However there are no means to specify where to store the result con-
structed. We propose INTO and APPEND TO clauses for this purpose, right
hand side of which may be a variable or a URI that represents an XML docu-
ment. Note that INTO overwrites the previous content, whereas APPEND TO
appends to the previous content.

An XML-QL query processor including these extensions is available at "http:-
//www.srdc.metu.edu.tr/ MESChain/xmlql".

3.4. Relating XML documents with their corresponding RDF descrip-

tions

Although there are pointers from RDF descriptions to the corresponding XML
documents, there is no accepted standard way of specifying the corresponding RDF
description in a given XML document yet.
We consider three alternative ways of specifying RDF descriptions within XML

documents:

� A special tag, say, <rdf>, can be used. In this case it is possible to associate
more than one RDF description with the given XML document as shown in the
following:

<rdf url.string="http://www.srdc.metu.edu.tr/sc/R1.catalog.rdf" />

<rdf url.string="http://www.srdc.metu.edu.tr/sc/R1.common.schema.rdf" />

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 15

However, de�ning a tag to express RDF associations necessitates a change in
the DTD of the XML document. Changing the DTDs for this tag does not seem
feasible. Also care should be taken in order to prevent name space collisions.

� RDF can be de�ned in a similar way as <!DOCUMENT ...> as shown in the
following:

<!RDF rdf.name SYSTEM "http://www.srdc.metu.edu.tr/sc/R1.catalog.rdf" >

or

<!RDF rdf.name [..rdf.descriptions..]>

This alternative does not necessitate any modi�cations in the related DTDs and
also it is possible to accommodate more than one RDF descriptions at the cost
of a minor modi�cation in the XML parser.

� RDF link can be de�ned as an attribute of the XML document itself as shown
in the following:

<?xml Version="1.0" Encoding="UTF-8"

RDF="http://www.srdc.metu.edu.tr/sc/R1.catalog.rdf"?>

Although only one RDF link can be speci�ed in this way, this is not a seri-
ous restriction since the indicated RDF de�nition can include several separate
RDF descriptions through XML's entity mechanism. This approach does not
necessitate a change in DTD but a minor change in XML parsers is required.
This seems to be the most suitable solution which is used in the architecture
proposed.

4. The Architecture of the System

In the classical supply chain model, the distinctions between retailers, distributors
and manufacturers are not clear cut in that manufacturers may also need to buy raw
material and distributors or retailers may be assembling (i.e., producing) products.
Therefore in order to come up with a more generic model we assume that all the
participants on the supply chain may purchase or produce products that they sell.
This removes any di�erences between a manufacturer and a distributor or a retailer
in terms of supply chain functionality.
Figure 2 shows the proposed architecture which supports both Business-to-

Business (B2B) and Business-to-Consumer (B2C) scenarios.
In the B2C scenario shown in Figure 3, a user contacts the home page of a

catalog through a Web browser. Note that a search agent may help the user
to locate the home pages of the relevant catalogs as explained in Section 4.1.
When a user contacts the site through a browser, the HTTP server sends the
home page of the catalog, on which there are facilities for querying and pur-
chasing. When activated these facilities communicate with the catalog agent di-
rectly through XML messages conforming to "message.dtd" which is available at

1
6

_I.
C�
_IN
G
_IL
,
A
N
D
A
.
D
O
�G
A
C�

and Applications

Legacy databases

and Applications and Applications

Legacy databases Legacy databases

and Applications

Legacy databases

<?EXECUTE ><?EXECUTE > <?EXECUTE >

Automated Purchasing Automated Purchasing Automated Purchasing Automated Purchasing

Queries Involving Product Specfications Queries Involving Product Specfications Queries Involving Product Specfications

User User User

Purchase

Order

Browsing

Querying

<?EXECUTE >

Browsing

Querying

Browsing

Querying

Distributor ManufacturerRetailerOrganizational Customers Individuals

Querying

Browsing
Demanding

Querying Querying Querying Querying

System

Catalog

Agent

Workflow

in XML/CBL

Electronic

Catalog
Browsers

Consumer

in XML/CBLin XML/CBLin XML/CBL

Electronic

CatalogCatalog

Agent

SystemSystem

Electronic

CatalogCatalog

Agent

Browsers

Consumer Consumer

Browsers

WorkflowWorkflow

Electronic

CatalogCatalog

Agent

System

Employee

Browsers

Workflow

Purchase

Order

Purchase

Order

User

Purchase

Order

Tasks Tasks TasksTasks

Pruchasing PruchasingPruchasing

F
ig
u
re

2
.
T
h
e
p
ro
p
o
sed

su
p
p
ly

ch
a
in

a
rch

itectu
re

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 17

"http://www.srdc.metu.edu.tr/sc/dtds/message.dtd". The agent �rst checks an in-
coming message, and decides whether to accept it or not. It rejects any message
which does not conform to "message.dtd", or has an unde�ned message type, or
asks for an unauthorized functionality. If the agent decides to accept a message, it
performs necessary operations according to the message type.

Message types include: "catalog/product query" messages, "purchase order" mes-
sages, "work
ow process activation" messages, and "response" messages. If the
message type is "query the catalog", the agent executes a standardized XML-QL
query contained in the message against the catalog and product speci�cations in
XML, and sends the result back. If the message type is purchase order, the agent
then decides whether to accept the order. If it does, it determines which cus-
tomer purchasing process should be activated depending on the trade protocol
(like OTP, OBI, etc.) indicated in the message through the "protocol" element.
Then the agent sends a process activation message to the work
ow domain man-
ager, in addition to passing necessary parameters such as the shopping basket,
user identi�cation information, delivery con�rmation method and the address. The
user is provided with an order tracking number, and the work
ow process runs
independently. The customer purchasing process, checks the stock availability
from the inventory control database. If su�cient quantity is available, the pro-
cess continues. Otherwise, the related task in this work
ow instance sends an
activation message to the work
ow domain manager to initiate an automatic pur-
chasing process down the supply chain for the missing product(s). Since there
could be several types of missing products each with a di�erent automatic pur-
chasing process type, more than one process instance may be started. Note that
each process instance started sends a purchase order message to the related cata-
log agent down the supply chain and this continues recursively for missing prod-
ucts. The customer purchasing process waits until the termination of the auto-
matically started purchasing process(es). Once the stock becomes su�cient, the
customer purchasing process proceeds. Upon successful termination of the pro-
cess, a con�rmation message sent to the user via her preferred media (like email,
voice mail, fax, etc). We provide an example of a customer purchase process def-
inition at "http://www.srdc.metu.edu.tr/sc/work
ows/wf.processOTP.xml", real-
izing procurement through OTP.

In the B2B scenario shown in Figure 4, a customer organization has a customized
catalog (details of which is presented in Section 4.2), and also maintains its own
catalog agent. A company employee contacts the Web page of this catalog and
by using the "query" and "consumables request" facilities, sends an XML message
to the catalog agent. The catalog agent in response to this request activates the
appropriate "Request Approval Process" depending on the employee's position in
the company. The approval process checks the company inventory for the requested
product(s) and if the product(s) does not exist in the company stocks and if the
request is approved, an automated purchasing process(es) is started. Each process
instance started sends a purchase order message to the related suppliers' catalog

1
8

_I.
C�
_IN
G
_IL
,
A
N
D
A
.
D
O
�G
A
C�

Control
Inventory

Customer

Database

Process

Automated

Purchase
Purchase

Process

Catalog
Agent

Supply

Library in XML
Process Definitions

Workflow

Manager
Domain Inventory

Control
Database

Customer
Purchase
Process

Automated
Supply

Process

Catalog
Agent

Library in XML
Process Definitions

Domain

Purchase

Manager

Workflow

XML-QL queries

Purchase Order
Confirmation

Query Result
Public

Catalog
Customized
Catalog.A Catalog.B

Customized

Resource Desription in RDF/XML

Catalog Entries in XML/CBL

Product Specifications in XML/CBL

in XML/CBLin XML/CBLin XML/CBL

Purchase

XML-QL queries

Purchase Order
Confirmation

Query Result
Public

Catalog
Customized
Catalog.A Catalog.B

Customized

Resource Desription in RDF/XML

Catalog Entries in XML/CBL

Product Specifications in XML/CBL

in XML/CBLin XML/CBLin XML/CBL

Purchase

Browser
Consumer A

Browser
Consumer B

Shop Robot Shop Robot

Retailer Distributor

F
ig
u
re

3
.
T
h
e
B
u
sin

ess-to
-C
o
n
su
m
er

scen
a
rio

in
th
e
p
ro
p
o
sed

a
rch

itectu
re.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 19

agent. This may �re a recursive action down the supply chain for ordering of the
missing product(s).
Note that at every site involved in the supply chain, there are RDF descriptions of

product taxonomy and RDF de�nitions of "Added Value" properties. These facil-
itate �nding out the add-on products once an anchor product is established on the
chain. The details of locating complementary products is provided in Sections 4.3
and 5.2. Bi-directional traversal on the supply chain is supported through "up link"
and "down link" descriptions in RDF, details of which are given in Sections 4.4 and
5.5.
In the following a road map is presented to show how to set up such a system

from an end user or a developer point of view:

1. The catalog agent, the work
ow manager, the XML-QL processor code, IBM's
XML4J parser (modi�ed for the entity variables and the EXECUTE instruc-
tion) and LotusXSL processor (that uses the modi�ed XML parser) can be
downloaded from "http://www.srdc.metu.edu.tr/MESChain". These codes do
not require any customization.

2. The organization should prepare its product descriptions and catalog entries in
XML conforming to CBL. To facilitate this process, an empty set of product
descriptions and catalog entries may be downloaded from the same address.

3. The products o�ered by the organization must be described in RDF according
to their vertical market domain. Most likely, these RDF descriptions will be
available in the future as a result of the standardization e�orts similar to Dublin
Core. However until then, an organization needs to develop its own RDF de-
scriptions. Note that, this is to be done only once for a vertical domain, other
organizations in the same domain may follow these RDF descriptions.

4. After preparing product descriptions, catalog entries and RDF descriptions,
some minor modi�cations may be necessary on the standardized queries to
handle di�erent requirements of di�erent vertical markets.

5. The organization must provide its process de�nitions, for example de�nition of
a customer purchase process is the minimum requirement. Since, work
ow pro-
cess de�nitions are written in XML, they are highly transportable and common
business process de�nitions will most likely be publicly available. Therefore,
the organization should only de�ne its own speci�c processes.

6. At this point, the organization is ready to join a supply chain. One more
step is necessary to realize the connections to the related organizations: the
"up link" and "down link" descriptions must be added to the RDF description
of the catalog to indicate the organization's immediate suppliers and customers.
Note that this necessitates the mentioned suppliers and customers to add this
organization into their "up link" and "down link" descriptions. This is achieved
by the catalog agents through the "new.partner.msg" messages as explained in
Section 5.6. These links allow for up and down traversing on the supply chain.

2
0

_I.
C�
_IN
G
_IL
,
A
N
D
A
.
D
O
�G
A
C�

Workflow

Manager
Domain

Customer

Process
Purchase

Agent

Library in XML

Catalog

Process Definitions

Control
Database

Automated
Supply
Purchase
Process

Inventory

Workflow

Manager
Domain

Process

Purchase
Approval

Inventory
Control
Database

Agent
Catalog

Library in XML
Process Definitions

Purchase Order
Confirmation

Public
Catalog

Customized
Catalog.A Catalog.B

Customized

Resource Desription in RDF/XML

Catalog Entries in XML/CBL

Product Specifications in XML/CBL

in XML/CBLin XML/CBLin XML/CBL

Retailer

Catalog Queries

Automated
Purchase
Process

Employee Browser

XML-QL queries

Employee Browser

in XML/CBL

Customized
General
Catalog
in XML/CBL

Customized
Authorized
Catalog

Query Results

Customer Organization

Consumables Request

Consumables Req.Reply

F
ig
u
re

4
.
T
h
e
B
u
sin

ess-to
-B
u
sin

ess
scen

a
rio

in
th
e
p
ro
p
o
sed

a
rch

itectu
re.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 21

The following subsections describe the architecture of the system according to its
functionality.

4.1. Resource discovery on the Web

The discovery of resources in our architecture is twofold: �rst, the resources that
are electronic catalogs need to be discovered, and the second, the types of products
contained in that catalog need to be discovered.
For discovery of electronic catalogs in the MESChain project, meta data of in-

dividual catalogs are expressed in RDF conforming to Dublin Core (DC) spec-
i�cation, an example of which can be found at "http://www.srdc.metu.edu.tr/
MESChain/sc/M1.catalog.rdf".
This description makes it possible for search agents to identify the electronic cat-

alogs and then to select catalogs that contain the desired items. It should be noted
that DC, for the sake of interoperability, requires the value of the "TYPE" element
to be selected from an enumerated list that is currently under development. The
"electronic catalog" should be included into this list for facilitating the discovery
of electronic catalogs.
We propose to specify the type of the electronic catalog, such as "manufacturer",

"distributor", "retailer" and "customer", in the "SUBJECT" element. This speci�-
cation facilitates on-the-
y supply chain construction since the type of an electronic
catalog will also be available when the catalog is discovered by a search agent. For
interoperability reasons the type values for electronic catalogs should also be se-
lected from a pre-determined list with well-de�ned meanings.
In this way, not only supplier catalogs are discovered on behalf of potential buyers,

but also the "customer" catalogs maintained by buyer organizations can be discov-
ered on behalf of suppliers, for example to advertise promotions or to compete with
other suppliers.
We also suggest specifying the URI of the catalog agent in the "Identi�er" element,

so that it will be readily available to the search agents. The search agents can then
send a query message conforming to "message.dtd" to the catalog agent to verify
that the page discovered is an active electronic catalog. This query may solicit
further information available in the catalog.
Similarly, shop robots may also discover supplier catalogs and possibly make a

database of their own. When a buyer asks a shop robot for a certain type of product,
the robot may query the desired and similar products through each of the electronic
catalogs listed in its database, and present the buyer intelligently combined results
to facilitate comparative shopping. Note that this may require dividing a complex
query into subqueries and sending each subquery to a di�erent catalog depending
on the contents of the catalog. A similar approach is discussed [24].
For discovering the types of products in a catalog, both the catalog schema ex-

pressed in CBL and the product taxonomy expressed in RDF are used. Note that
the taxonomy of products o�ered by an organization are described in RDF accord-
ing to their vertical domains in our system. CBL already provides the standards for

22 _I. C� _ING_IL, AND A. DO�GAC�

<?xml version="1.0" RDF="http://www.srdc.metu.edu.tr/sc/R1.catalog.rdf" ?>

<!DOCTYPE catalog.entries

SYSTEM "http://www.srdc.metu.edu.tr/sc/dtds/cbl/catentry.dtd">

<catalog.entries>

......

<catalog.entry ident="R1-MB333-64">

<product.description.group> <product.description.pointer ident="R1-MB333-64">

<url.reference url.string="http://www.srdc.metu.edu.tr/sc/R1.proddesc.xml"/>

</product.description.pointer>

<value.monetary.group>

<value.monetary.base>

<amount.monetary currency.code="USD">450.00</amount.monetary>

</value.monetary.base>

<value.adjustment> <adjustment.name>Sales Tax</adjustment.name>

<adjustment.rate>10% </adjustment.rate>

<adjusted.monetary.value>

<amount.monetary currency.code="USD">45.00</amount.monetary>

</adjusted.monetary.value>

</value.adjustment>

<value.monetary.total>

<amount.monetary currency.code="USD">495.00</amount.monetary>

</value.monetary.total>

</value.monetary.group>

</product.description.group>

</catalog.entry>

......

</catalog.entries>

Figure 5. A sample "catalog.entry" element in XML/CBL

the catalog schema and most likely, standardized product taxonomy descriptions
in RDF will also be available in the future as a result of the standardization e�orts
similar to Dublin Core.

4.2. Catalog interoperability and customized catalogs

Catalog interoperability requires handling of heterogeneous catalog data. The ac-
cepted practice to make heterogeneous data interoperable is to map it to a canonical
data model. Here XML DTDs play this role, however, XML by itself is not su�cient
to support interoperability; the tags need to be semantically consistent across mer-
chant boundaries. CBL provides for the necessary standardization for horizontal
domains such as for orders, invoices, catalog entries in a product independent way.
Therefore, all the catalog information on the proposed supply chain architecture
are either de�ned or transformed into XML conforming to CBL.
For organizations that keep their catalog and product information in legacy

databases or applications, there is a need to convert the schema in the legacy
databases to the schema of the proposed electronic catalogs and map their data

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 23

<product.description.group> <product.description.pointer ident="R1-MB333-64">

<url.reference url.string="http://www.srdc.metu.edu.tr/sc/R1.proddesc.xml"/>

</product.description.pointer>

<value.monetary.group> <value.monetary.base>

<amount.monetary currency.code="USD">450.00</amount.monetary>

</value.monetary.base> <value.adjustment>

<adjustment.name>Sales Tax</adjustment.name>

<adjustment.rate>10% </adjustment.rate> <adjusted.monetary.value>

<amount.monetary currency.code="USD">45.00</amount.monetary>

</adjusted.monetary.value> </value.adjustment>

<value.monetary.total>

<amount.monetary currency.code="USD">495.00</amount.monetary>

</value.monetary.total> </value.monetary.group>

</product.description.group>

(a) A sample output string produced by a "wrapper" program.

<?xml version="1.0" RDF="http://www.srdc.metu.edu.tr/sc/R1.catalog.rdf" ?>

<!DOCTYPE catalog.entries

SYSTEM "http://www.srdc.metu.edu.tr/sc/dtds/cbl/catentry.dtd">

<catalog.entries>

......

<catalog.entry ident="R1-MB333-64">

<?EXECUTE type="Unix_Shell" name="Get.CatEntry"

source="http://www.srdc.metu.edu.tr/sc/wrappers/Get.Catentry"

input=[<call.parm name="product.id">R1-MB333-64</call.parm>]

output=[<call.parm name="cat.entry.content"> centry </call.parm>] ?>

¢ry;

</catalog.entry>

......

</catalog.entries>

(b) An example coding of EXECUTE instruction for the wrapper.

Figure 6. Using a wrapper program to dynamically generate contents of a "catalog.entry".

into XML conforming to proper catalog or product DTDs of CBL. The schema
conversion problem is not an easy task, but it is unavoidable for interoperability.
Schema conversion problem is out of the scope of this paper, since it is application
dependent. However, it should be noted that once this schema conversion process
is de�ned, it can be directly embedded into wrapper programs. For schema inte-
gration we propose to use the EXECUTE instruction introduced in Section 3.1.
Assume the sample catalog entry given in Figure 5. The EXECUTE instruction
in Figure 6 (b) invokes the wrapper program of the related legacy application to
produce the string in Figure 6 (a). In this way, the necessary XML document is
both dynamically and automatically generated.

The e�orts are also continuing for producing product speci�c standards for ver-
tical industry domains such as for computer industry. In MESChain, the class
hierarchy of the products are de�ned through RDF descriptions and the industry
speci�c DTDs are used to describe the products in the leaf classes. For example,

24 _I. C� _ING_IL, AND A. DO�GAC�

as shown in Figure 11, the "computer" class has two subclasses as "laptop" and
"desktop". The "laptop.dtd" has already been produced by the RosettaNet project
and we provide the remaining DTDs like "desktop.dtd".

As demonstrated in Section 5.1, catalog interoperability can be achieved through
standardized queries once the catalog and product DTDs of CBL are used as the
canonical model.

The customized catalogs, on the other hand, can be generated in the following
ways:

� A participant can generate catalogs speci�c to its certain customers with special
discount information. But this may require the repetition of some catalog entries
according to CBL's catalog entry DTD. Yet in this way it is possible to give
di�erent products in di�erent catalogs. As an example, a supplier may wish
to provide its latest products only to a speci�ed set of customers. Digital
certi�cates are used by the catalog agent for the identi�cation of customers.

� A customer can maintain its own catalog which may contain entries from di�er-
ent supplier catalogs. It is possible to achieve this through standardized queries
since all the catalogs are generated in XML conforming to standard DTDs. In
this way, the catalogs not only contain timely information like the most recent
promotions but also will be tailored according to the customer's needs and pref-
erences. The customer catalog will contain only the products that the customer
is interested in and in the style s/he prefers through XML's style sheets. Note
that a customer organization may also maintain more than one catalog, for
example di�erent catalogs for di�erent departments, or di�erent catalogs for
di�erent employee positions. The catalog agent of the customer organization,
may select appropriate catalog according to the digital certi�cate identifying
the employee. Producing customized catalogs for the consumer through stan-
dardized queries is depicted through an example in Section 5.1.

4.3. Discovery of items and services that add value

On the supply chain it is also necessary to provide information about the items or
services that complement or add value to a product. Note that, a product taxonomy
is also necessary in identifying this information since the add on products of a super
class (e.g. computer) can also be the add on products of its sub class (e.g. desktop).
The following three alternatives are considered for representing the add-on product
data in the electronic catalogs:

1. Keeping the add-on product data in the product de�nitions: This causes re-
dundancy since the same add on product must be speci�ed repetitively for each
instance of a product. For example, assuming that "UPSs are add-on products
to desktops", each instance of a desktop product will contain an "add-on" tag
to specify "ups" as shown in Figure 7 (a). When a new add-on product is in-

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 25

<product ident="d1"> <taxon>desktop</taxon> <addon>ups</addon> </product>

<product ident="d2"> <taxon>desktop</taxon> <addon>ups</addon> </product>

<product ident="d3"> <taxon>desktop</taxon> <addon>ups</addon> </product>

<product ident="d4"> <taxon>desktop</taxon> <addon>ups</addon> </product>

(a) Add-On product information kept as a part of the product descriptions.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE catalog [<!ELEMENT taxonomy (taxon+)>

<!ELEMENT taxon (name, added.value*, addon.to*, part.req*, part.opt*,

parent*, child*) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT added.value (#PCDATA) >

<!ELEMENT addon.to (#PCDATA) >

<!ELEMENT part.req (#PCDATA) >

<!ELEMENT part.opt (#PCDATA) >

<!ELEMENT parent (#PCDATA) >

<!ELEMENT child (#PCDATA) >]>

<taxonomy>

<taxon><name>computer</name><added.value>printer</added.value>

<parent>product</product><child>desktop</child><child>laptop</child></taxon>

<taxon><name>desktop</name><added.value>ups</addedd.value>

<part.req>monitor</part.req><part.req>keyboard</part.req>

<part.opt>cdrom</part.opt><parent>computer</product></taxon>

<taxon><name>ups</name><addon.to>desktop</addon.to>

<parent>product</product></taxon>

</taxonomy>

(b) A sample product taxonomy definition.

Figure 7. Three alternatives for representing the "added value" information for products.

troduced to desktops, all these instances should be updated to re
ect this new
add-on product.

2. Using a "taxonomy.dtd": Assume the sample taxonomy DTD given in Figure
7 (b) which describes a product taxonomy. This "taxonomy.dtd" speci�es the
class/subclass hierarchy through "parent" and "child" elements, and the added-
value property through the "added.value" element.

3. Using RDF de�nitions: Both the product taxonomy and the "Added Value"
property can be expressed by using RDF Schema De�nition Language, more
speci�cally through "subClassOf" and "Property" features of RDF. Figure 8
shows the RDF de�nition of the "Added Value" property and de�nition of the
resources "desktop" and "ups". The class/subclass hierarchy and the added
value property de�nition are explicitly given, and the "domain" and "range"
constraints indicate the type of resources that the property applies.

Note that RDF, by giving a description for each resource individually, like
"desktop" and "ups" in the example, declares what kind of properties these
resources may have.

26 _I. C� _ING_IL, AND A. DO�GAC�

<rdf:Description ID="Added_Value">

<rdf:type resource="http://www.w3.org/TR/WD-rdf-syntax#Property"/>

<rds:label>Add On Product</rds:label>

<rds:domain resource="Product">

<rds:range resource="Product">

<rds:comment>The Added_Value property indicates the possible

Add_On products for an anchor product</rds:comment>

</rdf:Description>

<rdf:Description ID="desktop">

<rdf:type resource="http://www.w3.org/TR/WD-rdf-schema#Class"/>

<rds:subClassOf resource="computer"/>

<MESChain:Added_Value resource="ups"/>

<MESChain:Part_Required resource="monitor"/>

<MESChain:Part_Required resource="keyboard"/>

<MESChain:Part_Optional resource="cdrom"/>

<rds:label>Computer</rds:label>

<rds:comment>All kinds of desktop computers</rds:comment>

</rdf:Description>

<rdf:Description ID="ups">

<rdf:type resource="http://www.w3.org/TR/WD-rdf-schema#Class"/>

<rds:subClassOf resource="Product"/>

<MESChain:Add_On_to resource="desktop"/>

<rds:label>UPS</rds:label>

<rds:comment>All kinds of Uninterruptable

Power Supplies for desktops</rds:comment>

</rdf:Description>

Figure 8. RDF description and use of the "Added Value" property.

The XML DTDs in comparison to RDF descriptions su�er from the following
disadvantages when it comes to expressing relationships among resources:

� "subClassOf" being a part of RDF Schema De�nition Language has a well
de�ned meaning; whereas the tags like "parent" or "child" need interpretation.

� The properties that resources may have, are not explicit in the XML DTDs,
since all the properties of the resources need to conform to the same DTD.
In the example given, "ups" does not have any "add-on" products and this is
explicit from the RDF description in Figure 8; however this fact is not apparent
in the "taxonomy.dtd" in Figure 7 (b), since all the products conform to the
same DTD.

� Furthermore, "domain" and "range" constraints in RDF provide for their proper
use through automatic validation of constraints on the resources that they apply.
DTDs do not provide for this.

If we summarize, the �rst approach presented does not di�erentiate data from meta
data and RDF descriptions have better expressive power compared to XML DTDs
in expressing relationships.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 27

In MESChain we used the third alternative where the "subClassOf" and "prop-
erty" features of RDF are used to express the information about the items or services
that complement or add value to a product. In the descriptions given in Figure 8,
the "property" is de�ned in a generic way, that is, UPSs are de�ned as "Add-On"
products for desktop computers without giving any speci�c instance information,
since we assumed that all the instances of UPSs are add on products for all the
desktop computers.
Finding related or add-on products for a given anchor product from the RDF

descriptions through standard queries is depicted by an example in Section 5.2.

4.4. Bi-directional traversal on the supply chain

Generally a participant on a supply chain knows about its suppliers and buyers
because they have some kind of pre-established agreements among them. For ex-
ample, a distributor knows which products it buys from which manufacturer or a
retailer knows which products it buys from which distributor and the manufacturer
of these products. However, the information in the reverse direction is generally
not available.
We have de�ned the relationships among the catalogs on the supply chain, in other

words, participant roles through RDF property. At any point on the supply chain,
all the immediate suppliers to this point are de�ned as "down link" and all the
immediate purchasers of this point are de�ned as "up link" providing the capability
for bi-directional traversals on the chain. RDF de�nitions of these links can be found
at "http://www.srdc.metu.edu.tr/MESChain/sc/common.schema.rdf".
Instance speci�c values for these properties need to be speci�ed as RDF state-

ments as shown in the following example which describes that distributor D1 has
two manufacturers (M1,M2) down the chain and two retailers (R1,R2) up the chain:

<rdf:Description about="http://www.srdc.metu.edu.tr/sc/D1.catalog.xml">

<MESChain:down_link resource="http://www.srdc.metu.edu.tr/sc/M1.catalog.xml"/>

<MESChain:down_link resource="http://www.srdc.metu.edu.tr/sc/M2.catalog.xml"/>

<MESChain:up_link resource="http://www.srdc.metu.edu.tr/sc/R1.catalog.xml"/>

<MESChain:up_link resource="http://www.srdc.metu.edu.tr/sc/R2.catalog.xml"/>

</rdf:Description>

These links are created automatically by the catalog agents through the new
partner messages as discussed in Section 5.6.
An example is given in Section 5.5 that illustrates an upward traversal of the

supply chain from a manufacturer's catalog to a retailer's catalog through a stan-
dardized query.

4.5. The architecture of catalog agents

In MESChain each catalog is associated with a catalog agent. The catalog agent is
used in querying catalogs; in automating the supply chain by automatically invoking

28 _I. C� _ING_IL, AND A. DO�GAC�

the related work
ow processes and also for "on-the-
y supply chain construction"
as described in Section 5.6.
Using a catalog agent instead of a Web server provides the following bene�ts: A

catalog agent, being speci�cally designed for serving electronic catalogs, does not
require any modi�cation or customization of the agent code. A catalog agent also
keeps internal state while communicating with involved parties and has autonomy
and specialized knowledge on how to handle incoming messages.
The catalog agent handles incoming messages according to the "message.dtd"

which contains the following message types:

� Query Catalog ("query.catalog.msg") messages: The standardized XML-QL
query contained in the message is executed against the catalog and the product
speci�cations in XML, and the result is sent back.

� Purchase Order ("purchase.msg") messages: If the agent decides to accept the
purchase order, it uses the "protocol" element in the message to decide on which
trade protocol (like OTP, OBI, etc.) to use. It is possible to accommodate new
standards by introducing new work
ow templates and by informing the catalog
agents about the new protocols and the related work
ow templates.

� Work
ow Process Activation ("wf.process.run") messages: The agent sends this
message to the domain manager to start a process instance.

� Order Tracking ("order.tracking.msg") message: A customer sends this message
to the catalog agent through the facilities on the home page of the catalog with
the proper "order tracking id".

� Work
ow Process Status Querying ("wf.query") messages: The agent sends
this message to the domain manager when it receives an order tracking message
from a customer.

� Partnership Negotiation ("negotiate.msg") message: This message is used by
the catalog agent to handle the pre-negotiation to form a new partnership which
needs to be approved by an approval process.

� New Partner ("new.partner.msg") message: When a partnership is approved,
the catalog agent sends this message to the related catalog agent to establish
the "up link" and "down link" descriptions on the supply chain.

� Response ("response.msg") messages: In response to every message a response
message is sent.

The catalog agents have the following properties:

� They are autonomous; they need to listen to a port for incoming messages.

� They handle di�erent message types and act accordingly.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 29

HUMAN USER

Catalog Agent
Processing Instr.

Web Browser

W
or

kf
lo

w
 D

om
ai

n
M

an
ag

er

Tasks of a Process

History Manager

CATALOG

..............

<?EXECUTE ?>

<?xml version="1.0">

XML Parser

</message>

Wf.Processes

<message>

Workflow Process Defn Library
(All process definitions are in XML)

Workflow Domain Control Data

- URL of Component Server Repository

- List of Participating Sites
- List of Active Component-Servers
- List of Active Process Instances

- URL of Wf Process Definitions Library
- URL of Wf Domain Permanent Storage

Workflow Domain
Monitoring Tool- Textual Process Definition Tool

- Graphical Process Definition Tool
- Process Animator
- Dynamic Modification Tool

- Workflow Domain Monitoring Tool

- Worklist Handler - Engine
- Worklist Handler - User
- Activity Handler / Scheduler - Type 1
- Activity Handler / Scheduler - Type 2
- Permanent History Handler
- Authorization Server

- Basic Enactment Server

- Process Instance Monitoring Tool

Component-Server Repository

Permanent
Storage

Component Server.N

Component Server.1

Figure 9. The proposed message-driven, component-based and adaptive work
ow system archi-
tecture.

� They preserve their state while communicating with other agents and with the
domain manager while processing messages.

� They communicate with other catalog agents for establishing new partnership
relations automatically.

MESChain Agents communicate in XML over TCP/IP.

4.6. The work
ow architecture

A work
ow system is provided to fully automate the supply chain processes in co-
operation with the catalog agent. Work
ow processes are de�ned in XML conform-
ing to a "work
ow.dtd" which is provided in "http://www.srdc.metu.edu.tr/sc/dtds

30 _I. C� _ING_IL, AND A. DO�GAC�

/work
ow.dtd". Using work
ow systems in supply chain integration is an accepted
practice. However, the work
ow architecture proposed in this paper better �ts
to supply chain automation. The advantages of this architecture are discussed in
Section 6.

The architecture of the work
ow system is message driven and component based
as shown in Figure 9. An implementation is available in [44]. Each participant on
the supply chain has a Work
ow Domain Manager which runs in close contact with
the catalog agent. The Work
ow Domain Manager and other components of the
work
ow system are implemented as Java objects and they communicate with each
other through XML messages.

The basic components of the work
ow system are presented in the following:

1. Work
ow Domain Manager: The domain manager is the server of the system.
It communicates via XML messages conforming to "message.dtd", and it can
perform any of its functionality through these messages. For example, a catalog
agent sends only an XML message ("wf.process.run") to initiate the related
process when a customer purchase order is accepted. The domain manager, in
response to a "wf.query" message provides the monitoring information to the
catalog agent.

Human clients access the domain manager through a Web browser for admin-
istrative purposes like de�ning new processes or monitoring the system. The
domain manager downloads appropriate Java applets to the client which then
handle subsequent requests of the same client for that particular service which
is provided by a component server. The domain manager keeps runtime infor-
mation such as list of active process instances, active component servers, list of
participating sites, etc. for domain monitoring purposes.

2. Work
ow Process Object (WPO): When the catalog agent or an authorized user
wants to initiate a new instance of a pre-speci�ed work
ow process, the Domain
Manager creates a new "Work
ow Process Object". The main method of this
object is the "Basic Enactment Method" which is activated by the Domain
Manager on behalf of the client. The WPO contains all the data (such as
work
ow process de�nition, work
ow relevant data, enactment history of that
instance up to the current execution point, etc.) required to complete the
execution of the process instance, or to migrate the process instance from one
site to another, or to rescue an instance in case of failures. Since a WPO
contains its own copy of the work
ow process de�nition and all the run-time
information about its own process instance, the dynamic modi�cation of the
work
ow process de�nition on instance basis is simply enabled by dynamically
modifying the WPO.

WPOs exist only for active process instances. When a process instance ter-
minates, its WPO is destroyed after its history is permanently saved by the
History Manager.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 31

3. Component-Server Repository: The components of the system are implemented
as Java objects and are activated by the domain manager as requested by the
executing process instances. The human interaction components like Dynamic
Modi�cation tool, on the other hand, are accessed by the authorized users
through Java applets. The Component-Server Repository includes the following
components for human interaction:

� Work
ow Process De�nition Tool: Authorized users are allowed to de�ne
new work
ow processes or to delete previously de�ned processes. The pro-
cess de�nition is syntactically veri�ed and permanently stored in the Work-

ow Process De�nition Library in XML.

� Dynamic Modi�cation Tool: Authorized users are allowed to modify a par-
ticular work
ow process instance at run time to respond to external changes
that cause variations in the pre-speci�ed process de�nition. In such a case,
the modi�cations can be applied to executing instances selectively or to
all instances of the same work
ow process if required. The modi�cations
can also be re
ected to the template de�nitions in the Work
ow Process
De�nition Library if needed.

� Process Instance Monitoring Tool: Users are allowed to trace work
ow pro-
cess instances they have initiated and extract run-time information about
the current execution status of an instance. Collecting and measuring pro-
cess enactment data are needed to improve subsequent process enactment
as well as documenting what process actions actually occurred in what or-
der. This feature provides data for optimization and evaluation of process
de�nitions. Note that an authorized user can monitor any process instance.

4. Work
ow Process De�nitions Library: Work
ow de�nitions (i.e., the process
templates), organizational role de�nitions, and participant-role assignments are
durably stored into this library. Only work
ow process de�nition tool and
dynamic modi�cation tool may insert or update work
ow process templates in
this library. However, a new process de�nition may remotely be inserted into
the library through an XML message sent to the domain manager provided that
the message contains the process de�nition.

5. History Manager: The History Manager handles the database that stores the
information about work
ow process instances which have been enacted to com-
pletion to provide history related information to its clients (e.g. for data mining
purposes). It should be noted that the history of active process instances are
stored in the WPO itself.

The implementation of this work
ow architecture provided in [44] requires only
TCP/IP connection to communicate with its components, the catalog agent and
domain managers of other organizations. Since the work
ow system is message
based, it does not need any special software such as CORBA to remotely execute
tasks.

32 _I. C� _ING_IL, AND A. DO�GAC�

Manufacturer M1

Manufacturer M3

Manufacturer M2

Distributer D1

Distributor D2

Retailer R1

Retailer R2

Figure 10. An Example Supply Chain

5. The Functionality and Implementation Status of the Proposed Ar-

chitecture

A proof of concept prototype of the proposed system developed within the scope of
the MESChain (METU Supply Chain) project is available from "http://www.srdc.
metu.edu.tr/ MESChain". The prototype is implemented in Java JDK 1.1.5. IBM's
XML4J parser [41] and LotusXSL 1.0.1 [25] are used to parse and transform XML
documents. However we have modi�ed the XML parser for the entity variables
and the EXECUTE instruction as discussed in Section 3.1, and arranged the XSLT
processor to use this modi�ed XML parser. We have implemented the XML-QL
processor by using Java and JavaCC. The Web server used is Apache 1.39, and the
browser is Netscape 4.5. The system runs on Sun Ultra-10 operating under Sun
OS 5.6. Since Netscape 4.5 does not support XML documents, all the XML results
obtained are converted to HTML through XSLT.

Figure 10 shows a sample supply chain where all the involved catalogs are ex-
pressed in XML conforming to CBL catalog architecture given in Figure 1. Figure
11 presents a simpli�ed example of the product taxonomy for the personal computer
industry.

In the following subsections the functionality of the proposed architecture shown
in Figure 2 is described through detailed examples which are based on the sample
supply chain and product taxonomy given in Figures 10 and 11. All the queries
(both in XML-QL and XSLT), query results, sample catalog data and sample prod-
uct taxonomy descriptions mentioned in the examples are available at "http://
www.srdc.metu.edu.tr/ MESChain/sc".

5.1. Producing customized catalog for the consumer

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 33

UPS
Add-on

Subclass

Laser

Printer

Subclass

DotMatrix
Printer

Subclass

Scanner

Subclass

Laptop

Desktop

Subclass

Add-on

Add-on

Subclass

Computer

Resource Subclass Product Printer

Figure 11. RDF Schema Description of the Example Resource

Assume that an individual customer C1 contacts retailer R1's catalog to buy a
300 MHz or faster Pentium PC. The standardized query given in Figure 12 will
return the items in the retailer's catalog that satis�es the customer's request.
The �rst part of the query in Figure 12.b matches each catalog entry pointer

found in the catalog of the retailer R1. The second part of the query accesses cor-
responding catalog entries located in "catentry url" and identi�ed by "cei". Each
accessed catalog entry points to a product description element located in "prod-
desc url" and identi�ed by "pdi". The third part of the query calls the function
"Get.Proddesc.Element" to �nd the "product.description.general" element and se-
lects the product only if it contains a feature "Clock Speed" with a value greater or
equal to 300. Here the function contains two sub queries, such that the second one
is executed only if the �rst one fails, because the "product.description" element will
either contain a "product.description.general" element or a pointer to it. The �rst
sub query returns the "product.description.general" element if it is present in the
"product.description". The second sub query on the other hand, follows the "prod-
uct.description.general.pointer" link recursively until "product.description.general"
element is found. Assume that the catalog entry pointers of the following items are
returned as the result of this query:
R1-PC333-A, R1-PC333-B.

5.2. Finding related or add-on products for a given anchor product

Assume that the user wishes to �nd out about add on products as well. In order
to do this, resource type of the selected products are obtained from the product

34 _I. C� _ING_IL, AND A. DO�GAC�

FUNCTION Get.Proddesc.General.Element (in $pdi, in $proddesc_url)

{ WHERE <product.description ident = "$pdi">

<product.description.general> </> ELEMENT_AS $pdge

</> IN $proddesc_url

RETURN $pdge }

{ WHERE <product.description ident = "$pdi">

<product.description.general.pointer ident = "$pdgi">

<url.reference url.string = "$pdgidesc_url">

</></></> IN $proddesc_url

RETURN Get.Proddesc.General.Element($pdgi, $pdgidesc_url) }

END

(a)

WHERE <catalog>

<catalog.entry.pointer ident = "$cei">

<url.reference url.string = "$catentry_url">

</></> ELEMENT_AS $cep_element

</> IN "www.srdc.metu.edu.tr/sc/R1.catalog.xml",

<catalog.entry ident = "$cei">

<product.description.group>

<product.description.pointer ident = "$pdi">

<url.reference url.string = "$proddesc_url">

</></></></> IN "$catentry_url",

<product.description.general>

<keyword.set><keyword>Desktop</></>

<feature.set> <feature.group>

<feature.name>Clock Speed</>

<feature.name.value><mhz>$mhz_value</></>

</></></> IN Get.Proddesc.General.Element($pdi, $proddesc_url),

EXPR "($mhz_value >= 300)"

CONSTRUCT $cep_element INTO "result1.xml"

(b)

Figure 12. A standardized XML query to �nd out PCs with a 300 Mhz or faster CPU

description. Then, the RDF description of each of these resources are searched to
obtain a list of resource types of add-on products speci�ed by the "Added-Value"
property. Note that "computer" is the super class of "desktop" and the add on
products of "computer" are also the add on products of "desktop". Therefore the
add on products of the super classes of the resource are also collected in the same
way. The resource list constructed is expanded for their subclasses. As an example,
if the add on product is printer, its subclasses such as "dot matrix printer" and
"laser printer" should be added to the resource list.

By going back to the product descriptions, the product names corresponding to
these resource types are obtained and the retailer's catalog is accessed again to

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 35

extract related entries to be added to the customer's resulting catalog. In this way,
a dynamic customer catalog is created for this anchor product together with its
add-on products.

Three standard queries shown in Figures 13, 14 and 15 are executed against the
RDF description of this catalog resource to obtain the catalog entries for the add
on products:

The �rst of part the query given in Figure 13.b matches each catalog entry pointer
"cei" in the temporary result produced by the query given in Figure 12. The sec-
ond part of the query accesses the designated catalog entry and obtains the product
description identi�er "pdi" and its url. The third part of the query accesses the
product description element and retrieves "pddetail url" and "pddi". The fourth
part of the query gathers the resource type of this product into "rrt" from the
product description element pointed by "pddetail url" and "pddi". The function
call in the CONSTRUCT part of the query extracts the super classes of each se-
lected product's resource type from the RDF descriptions. Actually this function
is executed recursively to any depth since the RDF schema does not impose any re-
strictions on the nesting level of the "subClassOf" property. Therefore, the query is
executed until no other super classes are found, that is, until the given top resource
type "Product" is reached.

The following resource types are obtained as the result of the above query ac-
cording to the RDF schema description given in Figure 11:

desktop, computer.

The second standard query given in Figure 14.b is executed next against these
resource types. The query accesses the RDF descriptions for each product resource
type to obtain related add on product types. The function call in the CONSTRUCT
part, traces down the class hierarchy of the resources to obtain all the sub classes of
the extracted add-on product types. In fact this function is executed recursively to
any depth, similar to �nding the closure set of super classes, since the RDF schema
does not impose any restrictions on the nesting level of the "subClassOf" property.
The following resource types are obtained as the result of the above query according
to the RDF schema description given in Figure 11:

ups, printer, scanner, laser.printer, dot.matrix.printer.

The third query given in Figure 15 �nds out the catalog entries for the products
corresponding to these add on product types. The query accesses the product
description entries and selects the products that belong to these add on product
classes, and then extracts the catalog entries to construct a catalog entry pointer
list for the selected add on products. Catalog entry pointers for the following items
are obtained as the result of the third query:

R1-D1-M2-UPS500, R1-D1-M2-Laser6, R1-D1-M2-PR9.

As demonstrated through these examples, a customized catalog can be dynami-
cally created by executing the given standardized XML-QL queries. Such a dynamic

36 _I. C� _ING_IL, AND A. DO�GAC�

FUNCTION Get.RDF.SuperClass(in $inpClass, in $topClass, in $res.tag.name)

WHERE <rdf:RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:rds="http://www.w3.org/TR/WD-rdf-schema#">

<rdf:description ID = "$inpClass" >

<rds:subClassOf resource = "$superClass">

</></></> IN "http://www.srdc.metu.edu.tr/sc/common.schema.rdf",

EXPR "($superClass != $topClass)"

CONSTRUCT <$res.tag.name>$superClass</>

{ Get.RDF.SuperClass($superClass, $topClass, $res.tag.name) }

END

(a)

WHERE <catalog.entry.pointer ident = "$cei">

<url.reference url.string = "$catentry_url">

</></> IN "http://www.srdc.metu.edu.tr/sc/result1.xml",

<catalog.entry ident = "$cei">

<product.description.group>

<product.description.pointer ident = "$pdi">

<url.reference url.string = "$proddesc_url">

</></></></> IN "$catentry_url",

<product.description ident = "$pdi">

<rdf.class><$rrt></></>

</> IN "$proddesc_url"

CONSTRUCT <rdf.resource.type> $rrt</>

{ Get.RDF.SuperClass($rrt, "Product", "rdf.resource.type") }

INTO "result2.xml"

(b)

Figure 13. A standardized XML query to �nd out the resource type and the super classes of a
product

catalog can be presented to the customer according to his preferred style by using
the XML's style sheet mechanism.

5.3. Full automation of the supply chain

Assume that the user selects the items and puts the desktop, R1-PC333-B, and a
laser printer R1-D1-M2-Laser6 into his shopping cart and �nalizes his shopping.
The catalog agent accepts the shopping cart as part of a "purchase.msg" message,
and according to the customer's preferred purchase protocol (like OBI or OTP)
1 starts a work
ow process and provides an order tracking identi�er so that the
customer can monitor its order.
Assuming that the customer prefers OTP, an example work
ow process de�nition

invoked by the catalog agent is available at "http://www.srdc.metu.edu.tr/sc/work-

ows/wf.processOTP.xml". This process, through a user task, �rst registers the

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 37

FUNCTION Get.RDF.SubClass (in $inpClass, in $res.tag.name)

WHERE <rdf:RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:rds="http://www.w3.org/TR/WD-rdf-schema#">

<rdf:description ID = "$subClass">

<rds:subClassOf resource = "$inpClass">

</></></> IN "http://www.srdc.metu.edu.tr/sc/common.schema.rdf"

CONSTRUCT <$res.tag.name>$subClass</>

{ Get.RDF.SubClass($subClass, $res.tag.name) }

END

(a)

WHERE <rdf.resource.type> $rrt </>

IN "http://www.srdc.metu.edu.tr/sc/result2.xml",

<rdf:RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:rds="http://www.w3.org/TR/WD-rdf-schema#"

xmlns:our="http://www.srdc.metu.edu.tr/sc/common.schema.rdf#">

<rdf:description ID="$rrt">

<MESChain:Added_Value ID="$addOnClass">

</></></> IN "http://www.srdc.metu.edu.tr/sc/common.schema.rdf"

CONSTRUCT <rdf.addon.class>$addOnClass</>

{ Get.RDF.SubClass($addOnClass, "rdf.addon.class") }

INTO "result3.xml"

(b)

Figure 14. A standardized XML query to �nd out the Add-On classes and their sub-class of a
given resource type

customer into a customer database if s/he is not already registered, and obtains
a unique customer id for the customer. The process continues checking the stock
availability for each item in the shopping cart. For all the products for which in
stock quantity is not su�cient, an automatic order is generated and sent to the
catalog agent of the related distributor. Note that if the customer order can be
ful�lled with the available stock, the process continues by requesting the payment
from the customer conforming to the payment exchange procedure in OTP. After
the receipt of the payment, the process con�rms the delivery with the customer,
and realizes the delivery of goods according to the delivery exchange procedures in
OTP.

In OTP, the roles like "payment handler", "delivery handler" could be either
realized by di�erent organizations or by a single organization. The sample work
ow
process de�nition given assumes that all the roles are realized by the merchant
organization.

Note that a retailer is a customer to the distributor and the same work
ow process
can be used by the distributor with the possible exception that the shipping details
and the payment may be predetermined. Thus when the automatically generated
orders of retailer's work
ow process are sent to the distributors catalog agent, it in

38 _I. C� _ING_IL, AND A. DO�GAC�

WHERE <rdf.addon.class>$addOnClass</>

IN "http://www.srdc.metu.edu.tr/sc/result3.xml",

<catalog>

<catalog.entry.pointer ident = "$cei">

<url.reference url.string = "$catentry_url">

</></> ELEMENT_AS $cep_element

</> IN "http://www.srdc.metu.edu.tr/sc/R1.catalog.xml",

<catalog.entry ident = "$cei">

<product.description.group>

<product.description.pointer ident = "$pdi">

<url.reference url.string = "$proddesc_url">

</></></></> IN $catentry_url,

<product.description ident = "$pdi">

<rdf.class><$addOnClass></></>

</> IN $proddesc_url

CONSTRUCT $cep_element INTO "result4.xml"

Figure 15. A standardized XML query to �nd out the catalog entries of the Add-On classes of a
resource type

return starts its own work
ow process. In this way the automation of the whole
supply chain is achieved.

5.4. Monitoring

Monitoring on the supply chain includes monitoring of status of customer orders,
supply purchase and/or production orders. Monitoring requirements can be con-
sidered in the following categories:

� Customer Order Monitoring. A customer may monitor only her own orders one
at a time by contacting the catalog agent for each order. When a customer
places an order through the catalog agent, she is provided with a tracking
number. Later, the customer may inquire the status of her order by contacting
the catalog agent and presenting the tracking number of the order. The catalog
agent sends the work
ow domain manager a "wf.query" message which includes
the order tracking number. The work
ow domain manager identi�es the related
work
ow process instance by using the order tracking number, and sends the
status of the process back to the catalog agent. The catalog agent then forwards
the status of the order to the customer.

� Monitoring Orders at a Participant. A supply chain participant may want to
monitor a single order or all orders, i.e., the status of customer orders down the

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 39

WHERE <catalog>

<catalog.entry.pointer ident = "$cei">

<url.reference url.string = "$catentry_url">

</></></> IN "http://www.srdc.metu.edu.tr/sc/M1.catalog.xml",

<catalog.entry ident = "$cei">

<product.description.group>

<product.description.pointer ident = "$pdi">

<url.reference url.string = "$proddesc_url">

</></></></> IN $catentry_url,

<product.description.general>

<feature.set> <feature.group>

<feature.name>Access Speed</>

<feature.name.value><rate>$speed</></>

</></></> IN Get.Proddesc.General.Element($pdi, $proddesc_url),

EXPR "($speed>=32)"

CONSTRUCT <catalog.entry.pointers>

Get.UpLink.Items("http://www.srdc.metu.edu.tr/sc/M1.catalog.xml",$cei)

</> INTO "result5.xml"

Figure 16. A standardized XML query for traversing up links

supply chain. This can be achieved by authorized users via direct connection
to the participant's own work
ow domain manager which maintains a run-time
list of active processes and their status.

� Monitoring the Entire Chain. Monitoring of the entire chain can be achieved
by directly connecting to the work
ow domain managers of each participant on
the chain. When the results are combined, it will include all the active orders
and their status on the chain.

5.5. Bi-directional traversal on the supply chain

Assume a business-to-consumer scenario where a customer is willing to buy a prod-
uct with a certain brand name. This can be a whole product or a subcomponent in
a product. The customer prefers to refer to the manufacturer's catalog to see the
available alternatives. Since s/he can only purchase from a retailer it is necessary
to traverse the supply chain starting from this manufacturer until the retailers that
sell the product (or the products which contain this product as a component) are
reached.

As an example, consider the supply chain given in Figure 10 where a customer
wants to buy a 32X or faster CD produced by manufacturer M1. We use "up link"
feature of the supply chain which is de�ned as an RDF property as explained in
Section 4.4.

The standardized query given Figure 16 �rst retrieves the 32X or faster CDs pro-
duced by manufacturer M1 and then traverses the up links to �nd out the retailers

40 _I. C� _ING_IL, AND A. DO�GAC�

FUNCTION Get.UpLink.Items (in $catalog_url, in $cei)

/* When a retailer catalog has been reached, the following query will

terminate and return a catalog entry pointer to a retailer product*/

{ WHERE <catalog RDF="$rdf_url"></> IN $catalog_url,

<rdf:RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:dc="http://purl.org/metadata/dublin_core#">

<rdf:Description about="$catalog_url">

<dc:Subject>"Retailer"</>

</></> IN $rdf_url,

<catalog>

<catalog.entry.pointer ident = "$cei">

</> ELEMENT_AS $cep_element

</> IN $catalog_url

RETURN $cep_element }

/* This it is not a retalier catalog,

follow the "uplink"s until a retailer catalog is found.*/

{ WHERE <catalog RDF="$rdf_url"></> IN $catalog_url,

<rdf:RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:msc="http://www.srdc.metu.edu.tr/sc/common.schema.rdf#">

<rdf:Description about="$catalog_url">

<msc:up_link resource="$up_catalog_url"></>

</></> IN $rdf_url,

<catalog>

<catalog.entry.pointer ident = "$up_cei">

<url.reference url.string = "$up_catentry_url">

</></></> IN $up_catalog_url,

<catalog.entry ident = "$up_cei">

<product.description.group>

<product.description.pointer ident = "$up_pdi">

<url.reference url.string = "$up_proddesc_url">

</></></></> IN $up_catentry_url,

<product.description ident="$up_pdi">

<product.description.general.pointer ident="$cei">

</></> IN $up_proddesc_url

RETURN Get.UpLink.Items($up_catalog_url, $up_cei) }

END

Figure 17. The recursive XML-QL function used in the query in Figure 16

selling this product. Assume the following item is found in M1's catalog: M1-CD32

The function call in the CONSTRUCT part, traces the up links to �nd out the
retailers selling this product. The function de�nition in Figure 17 obtains the URL
of the RDF descriptions from <?xml ...> as proposed in Section 3.4. Once the
RDF description is obtained, the query checks the SUBJECT element to see if
a retailer catalog is reached. Note that the SUBJECT element of Dublin Core
contains the roles of participants on the supply chain as proposed in Section 4.1.
If a retailer's catalog is not reached yet, the second query block of the function
executes to obtain the up links of the current catalog and searches the up link

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 41

Get.Uplink.Items(M1.catalog,"M1-CD32") Get.Uplink.Items(D1.catalog,"D1-M1-CD32")

uplinks: D1,D2 uplinks: R1,R2

Construct: D1.catalog, "D1-M1-CD32" Construct: R1.catalog, "R1-D1-M1-CD32"

D2.catalog, "D2-M1-CD32"

(a) (b)

Get.Uplink.Items(R1.catalog,"R1-D1-M1-CD32") Get.Uplink.Items(D2.catalog,"D2-M1-CD32")

uplinks: R1,R2 uplinks: R1,R2

returns: R1.catalog, "R1-D1-M1-CD32" Construct: nil

(c) (d)

Figure 18. Trace of the standardized XML query given in Figure 16

catalogs to �nd the item (or the products containing the item) recursively. This
function requires both a CONSTRUCT and a RETURN clause since there could
both be several up links to be traversed and also several products containing the
required item. If only a RETURN statement is used the function will return upon
a �rst match. To be able to get the complete combinations, the CONSTRUCT
statement is used together with a RETURN clause where the RETURN clause
executes only after the CONSTRUCT clause produces all combinations.

The execution of the query continues with the recursive calls of the function as
follows: The function is called for "M1.catalog, M1-CD32" as shown in Figure 18.a
which constructs "D1.catalog, D1-M1-CD32" and "D2.catalog, D2-M1-CD32" by
following the up links D1 and D2. The function in the construct clause is called
for "D1.catalog, D1-M1-CD32" as in Figure 18.b and it constructs "R1.catalog,
R1-D1-M1-CD32". We assume that there are no matching items in R2's catalog.
The function in the construct clause is called for "R1.catalog, R1-D1-M1-CD32" as
in Figure 18.c and which returns a catalog entry pointer since it �nds out that R1
is a retailer. The call in (b) terminates by the termination of (c), which causes the
construct part of (a) to call the function once more for "D2.catalog, D2-M1-CD32"
as in Figure 18.d. The function �nds the up links R1 and R2, but we assume that
these catalogs do not have any matching items. Therefore the functions returns nil,
which causes the call in (a) to terminate and return the �nal result as "R1.catalog,
R1-D1-M1-CD32".

5.6. On-the-
y supply chain construction

On-the-
y supply chain integration is greatly facilitated with the proposed archi-
tecture. Since the meta data of the electronic catalogs are described through RDF
with Dublin Core, the discovery of them by search agents becomes possible. In a
business to business scenario, once a buyer search agent locates an electronic cata-
log of a potential supplier, it informs its own catalog agent which in turn contacts
and negotiates with the catalog agent located. If a deal is reached, each catalog

42 _I. C� _ING_IL, AND A. DO�GAC�

agent starts an approval process to evaluate the new candidate partner for its own
company. If both parties approve each other as 'new partners', then the catalog
agents exchange a "new.partner.msg" message to automatically insert "up link"
and "down link" property values pointing to each other in the RDF descriptions of
the catalogs. They also exchange the necessary CBL data such as market partici-
pant information as part of the "new.partner.msg" operation.
The assumption over here is that the electronic catalogs conform to CBL. For

those catalogs that do not conform to CBL or that are kept in legacy databases,
how to map them to CBL catalogs is discussed in Section 4.2.

6. Contributions of the work

The contributions of the work described in this paper are as follows:

1. Catalog interoperability. MESChain proposes XML CBL catalog DTDs as the
canonical data model for integration of heterogeneous catalogs. By using the
EXECUTE instruction introduced in Section 3.1, it is possible to integrate XML
fragments obtained from external applications through wrapper programs. In
this way, XML documents dynamically generated from a number of possibly
heterogeneous resources can be
exibly integrated. This integration is done at
the document level rather than at the code level. With this approach, an organi-
zation may continue to keep its product speci�cations and catalog information
in its legacy applications and still bene�t from the supply chain architecture
proposed.

When all the catalogs are available in XML conforming to standard DTDs,
catalog integration and customized catalog generation reduce to issuing stan-
dardized XML queries as demonstrated in Section 5.1.

2. Given an anchor product on the supply chain, discovery of the items and services

that add value to this product. The product taxonomy and an "Added Value"
property are de�ned in RDF Schema De�nition Language, more speci�cally
through the "subClassOf" and "property" features of the RDF.

The "subClassOf" mechanism makes possible to give a product taxonomy, and
through the "property" feature of RDF, it is possible to state which resource
(e.g. a printer) is an add on product for which other resource (e.g. a computer).
This mechanism is explained through examples in Sections 4.3 and 5.2.

3. Bi-directional traversal on the supply chain. The relationships among the cata-
logs on the supply chain, in other words participant roles, are speci�ed through
the "up link" and "down link" descriptions in RDF which facilitate the bi-
directional catalog search and integration. This mechanism is explained through
examples in Sections 4.4 and 5.5. Catalog agents help to establish the "up link"
and "down link" speci�cations for on-the-
y supply chain construction as ex-
plained in Sections 4.5 and 5.6.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 43

4. An open architecture capable of supporting di�erent electronic commerce stan-

dards. It is widely believed that a single dominant ecommerce standard is
unlikely. Rather there will be many standards. An ecommerce architecture
should be open in the sense that it should be able to support more than one
standard at a time. As an example both OBI and OTP are di�erent but sim-
ilar standards. When the base is XML, since XML is machine processable, it
naturally follows that the task of supporting more than one standard should
be delegated to the agents and this is the approach taken in MESChain by
associating catalog agents to catalogs.

5. Resource discovery on the Web. Resource discovery on the Web has been an
important yet di�cult problem. It is considered in two categories in our ar-
chitecture: discovery of the electronic catalogs and discovery of the types of
products contained in a catalog.

For the discovery of electronic catalogs, the meta data of a catalog is expressed
in RDF using the Dublin Core element set. For the discovery of product types,
a catalog schema conforming to CBL and a product taxonomy expressed in
RDF are used. Having a standardized catalog schema and product taxonomy,
it becomes possible for resource discovery agents to �nd out these catalogs and
types of products in them as explained in Section 4.1.

6. Automating the whole process on the supply chain. When a catalog agent re-
ceives a customer order, it identi�es the associated protocol and initiates the
corresponding work
ow template instance. The companies on the chain can de-
�ne their work
ow templates in XML conforming to "work
ow.dtd" proposed
and a work
ow engine in Java is provided to execute these de�nitions.

We believe the work
ow architecture proposed in Section 4.6 better �ts to sup-
ply chain architecture for the following reasons:

� The use of XML for process de�nitions. In this way, process de�nitions
become highly transportable and interoperable. Any organization may de-
velop its own processes, in addition to sharing common business processes
developed by others without any di�culty. This brings re-usability to the
process de�nitions and provides high productivity.

� Processes can run platform-freely, since the engine is coded in Java. The
engine is capable of executing tasks locally or remotely.

� The use of XML messages to communicate with the work
ow domain man-
ager. This enables remote control of the work
ow manager, for example
initiating a process from the library, or inserting a new process de�nition
into the library. With proper coordination of authorization requirements, it
is also possible to initiate processes across organization boundaries. Since
initiating a process remotely involves only sending the "process activation"
message, this message can be sent to the work
ow domain manager of any
organization (in our architecture), to actually initiate the corresponding

44 _I. C� _ING_IL, AND A. DO�GAC�

process. At the termination of this process, the originator will be informed
by a response message in XML. That is, the proposed work
ow architec-
ture is capable of running complex processes that involve more than one
organization in a supply chain.

� The adaptive architecture of the work
ow system supports dynamic changes
on the running process instances in case of external changes in the network
or unexpected conditions in the organization. In such a situation, running
process instances may selectively be modi�ed as needed. The modi�cation
may cause rolling back some completed tasks which will be compensated
as part of the modi�cation, and execution of the modi�ed instance will
proceed from thereon.

7. Related work

The most notable work on supply chain automation and integration come from two
main industry consortiums, CommerceNet consortium and the RosettaNet consor-
tium. The CommerceNet is the leading industry association for electronic commerce
and in [9] describes the required properties of electronic catalogs for supply chain in-
tegration. This document motivated the work presented in this paper. RosettaNet
project [34] on the other hand, stresses the importance of open content and open
transaction standards for supply chain integration and is producing the standard
descriptions for computer industry as XML DTDs.
A more recent electronic commerce interoperability infrastructure proposed by

CommerceNet is the eCo framework [10]. In the eCo framework businesses agree
on a common method of describing what they do, rather than the standards of what
they do and how they do it. The eCo framework consists of an architectural speci-
�cation and a semantic speci�cation. The eCo Architectural Speci�cation presents
information about an e-commerce system in seven di�erent categories (layers). The
eCo Semantic Speci�cation provides a sample set of business documents that can be
used inside the eCo framework. These can be used as is, or extended and modi�ed
to meet speci�c needs [10]. In the network layer the eCo compliant markets are
listed like computers, phones, or books. In the market layer, for a speci�c market
like computers, their participating businesses are listed like Dell, or IBM. In the
business layer, the services provided by a business are listed for example purchase or
rent. At the service layer, the possible interactions are listed where each interaction
de�nes input, output documents and optionally an execution URI. As an example
the interaction for purchasing a computer can be an order document as input, and
an invoice as output de�ned in XML using the corresponding CBL DTDs [11]. The
document layer speci�es the structure of a document as well as listing data elements
if there are any. At the data element layer, details of data elements are presented.
WISE system [2] describes an infrastructure for business to business electronic

commerce. This infrastructure includes an "internet work
ow engine" acting as
the underlying distributed operating system controlling the execution of business

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 45

processes, a process modeling tool for de�ning and monitoring the processes, a
catalog tool for virtual enterprise services. In WISE, virtual business processes
are constructed by using the services o�ered by di�erent companies as building
blocks. The WWW catalog provided uses Java Applet/Servlet technology to allow
companies in the trading community to advertise and to see the semantics of the
services provided by other companies.

CrossFlow [12] aims at providing high-level support for work
ows in dynamically
formed virtual organizations. Virtual organizations are formed when some activities
of a company is outsourced to external service providers. High level support is ob-
tained by abstracting services and o�ering advanced cooperation support. Virtual
organizations are dynamically formed by contract-based match-making between
service providers and consumers.

MESChain di�ers from WISE and CrossFlow as follows: MESChain addresses
the supply chain automation and catalog interoperability by exploiting the recent
Web standards and using work
ow and agent technology, rather than constructing a
work
ow from the building blocks provided by companies in the trading community.

Related with electronic catalogs, [13] discusses issues and solutions about the
creation of a product information database as a foundation for deploying an elec-
tronic catalog. In the proposed architecture, an HTML form will be dynamically
generated from the database when a buyer wants to browse the catalog through
the Internet. To exchange product information among trading partners, it is sug-
gested that the contents of product information database be either electronically
sent in XML or this information be queried online. For example when a distributor
needs the product information from the manufacturer, the manufacturer should
either send this information in XML format or should let its product database to
be queried online by the distributor. The latter relives the distributor from main-
taining product information which is primarily maintained in the manufacturer's
database.

In MESChain, a participant has the option of keeping its own product information
database and generating the electronic catalog in XML from this database dynam-
ically by the EXECUTE instruction. Sharing the product information among par-
ticipants is also possible in MESChain by using the "product.description.pointer"
element of the CBL catalog schema which provides for online querying to retrieve
product information from another participant.

Anderson Consulting's BargainFinder [3] is one of the well-known and early ex-
ample of electronic marketplaces. BargainFinder was the �rst shopping agent for
on-line price comparison. It requests its price from each of nine di�erent merchant
web sites as if it is using a web browser to do the request. Although it was a limited
prototype, it o�ered many insights into the issues involved in price comparisons.

OFFER [4] is an electronic brokering architecture which uses OMG's CORBA as a
distribution infrastructure. There are three main components: suppliers, customers
and e-brokers. A customer can search for a service either directly in the e-catalog
of the supplier or use the e-broker to search all the e-catalogs of all the suppliers,
which are registered with this broker. CORBA is chosen as the communication

46 _I. C� _ING_IL, AND A. DO�GAC�

infrastructure to solve the interoperability problem. They specify a standard IDL
interface for the e-catalogs of a supplier and for the e-broker. Each supplier is
responsible for implementing this interface to be able to register with the broker
and for others to �nd its catalog. As the negotiation mechanism e-brokers employ
simple auction mechanisms.

Related with describing resources for information discovery, the Information Man-
ifold (IM) [24] project developed at AT&T Bell Labs., provides a uniform interface
to the resources. The approach requires the participating sources manually describe
their available content and querying capabilities using the content and capability
records de�ned in the IM project. When a complex query arrives, it is divided
into sub queries such that each sub query can be send to an appropriate source,
and answers from these sources are combined to form the resulting answer of the
complex query. The content and capability records developed does not conform to
any standard.

In MESChain, the contents of a catalog is expressed in XML conforming to CBL
and product taxonomy in RDF, both of which can easily be queried via XML-QL
or XSLT.

There are many work
ow management systems, some of which are brie
y de-
scribed in the following:

METUFlow [15] is a fully distributed work
ow management system that uses
a block structured process speci�cation language called MFDL. A process tree is
generated from a process de�nition, and it is used for guard generation for each
task in the process de�nition. The guards are used by task handlers to control
the activation of the user tasks at run time. Distributed execution of METUFlow
is based on CORBA. METUFlow's highly distributed architecture makes dynamic
modi�cation very ine�cient. In MESChain, however, the work
ow architecture by
keeping all the process information in a work
ow process object, e�ciently handles
the dynamic modi�cations.

Another distributed work
ow management system is METEOR (Managing End
to End Organization) [36]. Its work
ow execution model is driven by inter-task
dependency rules that are expressed in a speci�cally designed script language. ME-
TEOR allows work
ow de�nition at two levels of abstraction using two di�erent
languages: the Work
ow Speci�cation Language, and the Task Speci�cation Lan-
guage. Process de�nitions are saved in an intermediate format that is used for
automatic code generation at run time. The runtime code generators output code
for task managers and task invocation, data object access routines and recovery
mechanism. The generated code includes all the inter-task dependencies required
by the de�nition of the process, and it is based on CORBA and Web environment
for distributed execution.

In [28], the use of Web technology for work
ow is presented with METEOR2
Web-based work
ow management system (WebWork). WebWork is said to be
web-based rather than web-enabled since both interfaces and communication/ dis-
tribution infrastructures are built using Web technology. Data
ow is realized

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 47

through exchanging HTML pages and CGI is the main communication mechanism
with servers.
There is also some previous work on realizing a work
ow system with the use of

agents. DartFlow work
ow management system [5] uses Web-browser embedded
Java applets as its front end and transportable agents as the backbone. A trans-
portable agent is a program that migrates machine to machine in a heterogeneous
network. In DartFlow, each business process can be handled by an agent. Agent
Tcl system is used to implement transportable agents. Since agents in DartFlow
do not use a standard communication language, its usage is limited to those who
make use of Agent Tcl system.

8. Conclusions

Electronic commerce is one of the most exciting and fast moving �elds of today
with a high demand for innovative new technologies and interoperability standards
[1, 16, 17]. The progress and wider dissemination of electronic commerce will be
possible with interoperable architectures which allow consumers and businesses
seamlessly and dynamically come together and do business without ad hoc and
propriety integration. In this paper we describe such a supply chain integration ar-
chitecture that provides for the expected functionality by exploiting and integrating
the current interoperability standards for the Web.
The experiences we have gained through the implementation of MESChain indi-

cated that current enabling technologies lack certain features necessary for supply
chain integration. We propose some extensions to meet the required functional-
ity and also demonstrate how to �t these technologies together. For example, the
EXECUTE instruction introduced to XML provided very helpful in dealing with
catalogs maintained in legacy databases or applications.
In the architecture we propose, the canonical data model for catalog integration

is the CBL catalog DTDs. In future more than one catalog schema may be sup-
ported to give businesses a choice. As long as the supported schemas are limited,
automatic conversions among them can be possible.

Acknowledgements
The authors wish to gratefully acknowledge the METU SRDC team for imple-

menting the parts of the system: Yusuf Tambag for the catalog agent, Necip Oner

Hamali for the extended XML-QL query processor, Yalin Yarimagan for the work-

ow system, and Ender Sevinc for the EXECUTE instruction.

Notes

1. We prefer to call protocols like OBI and OTP "purchase protocols" rather than "electronic
commerce" protocols since electronic commerce involves other activities like �nding the related
catalogs and comparing the products.

48 _I. C� _ING_IL, AND A. DO�GAC�

References

1. N. Adam and Y. Yesha, "Electronic Commerce: Current Research Issues and Applications",
Springer, 1996.

2. G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt and N. Weiler, "WISE: Business to
Business E-Commerce", hhtp:// www.inf.ethz.ch/department/IS/iks/research/wise.html.

3. Bargain Finder URL. http://bf.cstar.ac.com/bf.

4. M. Bichler, C. Beam, and A. Segev. OFFER: A broker-centered object framework for electronic
requisitioning. In IFIP Conference "Trends in Electronic Commerce '98.

5. T. Cai, P. A. Gloor, and S. Nog. "DartFlow: A work
ow management system on the web using
transportable agents." Technical report, Dartmouth College, 1997.

6. I. Cingil, A. Dogac, E. Sevinc and A. Cosar "Dynamic Modi�cation of XML Documents:
External Application Invocation from XML" ACM SIGecom Exchanges, Vol. 1, No. 1, August
2000, pp.1-6.

7. I. Cingil, "An Architecture for Supply Chain Integration and Automation on the Internet"
PhD Thesis, Middle East Technical University, in preparation.

8. Commerce XML Resources, http://www.cxml.org/home.

9. CommerceNet, Catalogs for the Digital Marketplace, Note 97-03, 1997.

10. CommerceNet, "eCo architecture for for electronic commerce interoperability" The eco
Framework, http://eco.commerce.net

11. CommerceOne Inc, http://www.commerceone.com/ XML/CBL, 1997.

12. CrossFlow, "Cross-Organizational Work
ow Support in Virtual Enterprises", ESPRIT
Project 28635, http://www.cross
ow.org.

13. S. Danish, "Building Database-driven Electronic Catalogs", ACM Sigmod Record Special
Section on Electronic Commerce. 27(4), December 1998.

14. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, "XML-QL: A query language
for XML", W3C Document, http://www.w3.org/ TR/NOTE-xml-ql, 1998.

15. A. Dogac et al, "Design and Implementation of a Distributed Work
ow Management System:
METUFlow", Springer Verlog, 1998.

16. A. Dogac, Guest Editor, ACM Sigmod Record Special Section on Electronic Commerce. 27(4),
December 1998.

17. A. Dogac. Guest Editor, Distributed and Parallel Databases, Special Issue on Electronic
Commerce. April 1999, Vol.7, No.2.

18. DOM, "Document Object Model Level 1 Speci�cation", W3C Recommendation,
http://www.w3.org/ TR/REC-DOM-Level-1, 1998.

19. Dublin Core, "Dublin Core Metadata Element Set", http://purl.org/DC/, 1998.

20. R. Glushko, J. M. Tenenbaum and B. Meltzer, "An XML Framework for Agent-based E-
commerce", Communications of the ACM, 42(3), 1999.

21. JavaScript, "JavaScript Documentation", http:// developer.netscape.com/docs/manuals,
1998.

22. Y. Labrou and T. Finin, "A proposal for a new KQML speci�cation", Technical Report
TR-CS-97-03, University of Maryland, 1997.

23. S. St. Laurent, "XML: A Primer", MIS Press, 1998.

24. A. Levy, A. Rajaraman and J. Ordille, "Querying Heteregeneous Information Sources Using
Source Descriptions", Proc. Int. Conf. on Very Large Data Bases, India, 3-6 September 1996.

25. LotusXSL, "Implementation of the XSL Transformations (XSLT) and the XML Path Lan-
guage (XPath)", http:// www.alphaworks.ibm.com/tech/LotusXSL, 1999.

26. B. Meltzer and R. Glushko, "XML and electronic commerce: Enabling the network economy",
In [16].

27. E. Miller, " An Introduction to the Resource Description framework", D-Lib Magazine, 1998.

28. J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh. WebWork: METEOR2's web-
based work
ow management system. Journal of Intelligent Information Systems, 10(2):1{30,
1998.

29. OBI, "Open Buying on the Internet", http:// www.openbuy.org/, 1998.

SUPPLY CHAIN INTEGRATION AND AUTOMATION ON THE INTERNET 49

30. Oracle, "XML Support in Oracle8i", http:// www.oracle.com/xml/documents/xml twp/,
1999.

31. OTP, "Open Trading Protocol", http:// www.otp.org/, 1997.
32. RDF Schema, "Resource Description Framework (RDF) Schema Speci�cation", W3C Pro-

posed Recommendation, http://www.w3.org/TR/PR-rdf-schema, 1999.
33. RDF Syntax, "Resource Description Framework (RDF) Model and Syntax Speci�cation",

W3C Recommendation, http://www.w3.org/TR/ REC-rdf-syntax, 1999.
34. RosettaNet, http://www.rosettanet.org/general/ �nished-project/laptop.html, 1998.
35. E. Sevinc, "Dynamic Modi�cation of XML Documents" MS Thesis, Middle East Technical

University, 2000.

36. A. Sheth and K. J. Kochut, "Work
ow Applications to Research Agenda: Scalable and
Dynamic Work Coordination and Collaboration Systems" NATO, ASI, 1997.

37. D. Suciu, "Semistructured data and XML", Proc. Int. Conf. on Foundations of Data Organi-
zation, 1998.

38. M. Woolridge and N.R. Jennings, "Intelligent agents: theory and practise", The Knowledge
Engineering Review, 10(2), 115-152, 1995.

39. Work
ow Management Coalition, Glossary: A Work
ow Management Coalition Speci�ca-
tion., WfMC Standart, WfMC-TC-1011, 1994.

40. XML, "Extensible Markup Language (XML) 1.0", W3C Recommendation, http://
www.w3.org/ TR/REC-xml-19980210, 1998.

41. XML4J, "XML Parser for Java", http:// www.alphaworks.ibm.com/tech/xml4j, 1998.
42. XSL, "Extensible Stylesheet Language (XSL) Version 1.0", W3C Working Draft, http://

www.w3.org/ TR/xsl, 2000.
43. XSLT, "XSL Transformations (XSLT) Version 1.0", W3C Recommendation, http://

www.w3.org/ TR/xslt, 1999.
44. Y. Yarimagan, "A Component Based Work
ow System for Enacting Process De�ned in

XML", MS Thesis, Middle East Technical University, Dec 1999.

