
Exploiting Web Service Semantics: Taxonomies vs. Ontologies

Asuman Dogac, Gokce Laleci, Yildiray Kabak, Ibrahim Cingil

Software Research and Development Center
Middle East Technical University (METU)

06531 Ankara Turkiye
email: asuman@srdc.metu.edu.tr

Abstract

Comprehensive semantic descriptions of Web services are essential to exploit them in their full potential,
that is, discovering them dynamically, and enabling automated service negotiation, composition and
monitoring. The semantic mechanisms currently available in service registries which are based on tax-
onomies fail to provide the means to achieve this. Although the terms “taxonomy” and “ontology” are
sometimes used interchangably there is a critical difference. A taxonomy indicates only class/subclass
relationship whereas an ontology describes a domain completely. The essential mechanisms that ontol-
ogy languages provide include their formal specification (which allows them to be queried) and their
ability to define properties of classes. Through properties very accurate descriptions of services can be
defined and services can be related to other services or resources.

In this paper, we discuss the advantages of describing service semantics through ontology languages
and describe how to relate the semantics defined with the services advertised in service registries like
UDDI and ebXML.

1 Introduction

When looking towards the future of web-services, it is predicted that the breakthrough will come when the
software agents start using web-services rather than the users who need to browse to discover the services.
Currently well accepted standards like Web Services Description Language [WSDL] and Simple Object Access
Protocol [SOAP] make it possible only to “dynamically access” to Web services in an application. That is, when
the service to be used is known, its WSDL description can be accessed by a program which uses the information
in the WSDL description like the interface, binding and operations to dynamically access the service. However
to dynamically discover services, say through software agents require detailed semantic information about the
services to be available.

Currently, a number of taxonomies are being used to discover services in service registries like [UDDI] or
[ebXML]. The most widely used taxonomies are North American Industrial Classification Scheme [NAICS]
for associating services with “industry” semantics; Universal Standard Products and Services Classification
[UNSPSC] for classifying product/services and [ISO 3166] for locale.

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

(Business Transaction and
Personal Business Software)

(Communications and Computer
Equipment and Peripherals and

43.16.17.02.00

Components and Supplies)

43.00.00.00.00

(Tax Preparation Software)

43.16.17.00.00

Figure 1: A part of an UNSPSC Taxonomy

A taxonomy is a hierarchy and a unique code is usually assigned to each node of the hierarchy. This code
also encodes its path. For example, as shown in Figure 1, UNSPSC code for Communications and Computer
Equipment and Peripherals and Components and Supplies is “43.00.00.00.00”. One of the classes under this
class is Business transaction and personal business software whose code is “43.16.17.00.00”. Going one more
level deep,“43.16.17.02.00” is the code for Tax preparation software.

By relating a service with the codes in such taxonomies, it is possible to give the service a certain amount of
semantics. For example, when a service uses the code “43.16.17.02.00” to describe its semantics, we understand
that the service is about “tax preparation software”. Therefore, a user looking for a service related with a
“tax preparation software” can search the service registries with the corresponding UNSPSC code to obtain all
services that have declared themselves to be related with this UNSPSC code. Note however that these services
could be anything; they may be ”selling” such software; they may be providing it as a service. Furthermore
the service may have any number of properties like certain service qualities, say, minimum and maximum
service delivery times; may require certain payment obligations, say, advance credit card payment. Additionally
a service may be available at a discount price when it is used in aggregation with the other services that the
company provides. There can be several such properties of a service and hence the user has to go through
the services found to manually pick the service that satisfies her requirements. Notice for example that, in
UDDI registries, this information can only be made available informally (i.e., with no formal semantics) through
”OverviewDocs” or ”OverviewURLs” of the tModels associated with the services. In short, taxonomies do not
help in this respect.

It follows that to exploit the Web services to their full potential we need more powerful tools, that is, on-
tologies to describe their semantics. In fact, currently, describing the semantic of Web in general [Berners-Lee],
and semantic of Web services in particular are very active research areas. There are a number of efforts for
describing the semantics of Web services such as [McIlraith a, McIlraith b, Denker]. Among these [DAML-S]
defines an upper ontology, that is, a generic “Service” class. In order to make use of DAML-S upper ontology,
the lower levels of the ontology need to be defined. To provide interoperability, application domains must share
such specifications. In fact, an ontology describes consensual knowledge, that is, it describes meaning which has
been accepted by a group not by a single individual. Standard bodies need to define domain specific ontologies.

In this paper, we discuss the advantages of defining service semantics through ontology languages. We
further note that, once the semantic is defined, it is also necessary to relate the defined semantics with the
services advertised in the service registry. Therefore we describe how this can be achieved in UDDI and ebXML
registries.

The paper is organized as follows: Section 2 briefly introduces DAML-S upper ontology and describes the

2

advantages of ontology languages over taxonomies. Section 3 describes mechanisms provided by UDDI and
ebXML registries for associating semantics with the services advertised.

2 Service Semantics through Ontology Languages

Web services, like their real life counterparts, may have many properties. The aim of this section is to demon-
strate that all the necessary properties of services can easily be defined through an ontology language. While
developing domain specific ontologies, it is a good idea to ground them in upper ontologies since in this way
they are more consistent and it becomes easier to integrate them within distributed heterogeneous systems.

DAML-S provides such an upper ontology, that is, it defines a top level “Service” class with some generic
properties common to most of the services. The “Service” class has the following three properties:

� presents: The range of this property is ServiceProfile class. That is, the class Service presents a Servi-
ceProfile to specify what the service provides for its users as well as what the service requires from its
users.

� describedBy: The range of this property is ServiceModel class. That is, the class Service is describedBy a
ServiceModel to specify how it works.

� supports: The range of this property is ServiceGrounding. That is, the class Service supports a Service-
Grounding to specify how it is used.

DAML-S is based on [DAML+OIL] and DAML+OIL allows very sophisticated ontologies to be defined and
queried through, for example, DAML APIs. The queries on ontologies usually access the properties of classes
or traverse the ontology. Hence it is possible to standardize queries to facilitate their use in an automated way.

In the following we provide examples for some of the properties of DAML-S Service Profile:

� serviceParameters: In DAML-S, service parameters denote an expandable list of RDF properties that may
accompany a profile description. The range of each property is unconstrained, i.e. no range restrictions
are placed on the service parameters as shown in the following:

<daml:Property rdf:ID="serviceParameter">
<daml:domain rdf:resource="&service;#ServiceProfile"/>
<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Thing"/>

</daml:Property>

� degreeOfQuality: This property of Service Profiles provide qualifications about the service.

<daml:Property rdf:ID="degreeOfQuality">
<daml:domain rdf:resource="&service;#ServiceProfile"/>
<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Thing"/>

</daml:Property>

2.1 An Example Service Ontology

In this section we define an example ontology grounded in DAML-S for tax services for the sole purpose of
describing the power of ontology languages. A detailed description of several properties of services including
the methods of charging and payment, the channels by which the service is requested and provided, constraints
on temporal and spatial availaility, service quality, security, trust and rights attached to a service, is given in
[O’Sullivan]. Through the example ontology we show how some of these properties can be defined.

As shown in Figure 2, the top level class of this ontology is “TaxServices” which inherits from DAML-S
“Service” class. In this way, several properties of the “TaxServices” class are conveniently defined by inheriting
from the properties of the DAML-S “Service” class. For example, “paymentMethod” is defined as a subproperty

3

<!DOCTYPE uridef[
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
<!ENTITY xsd "http://www.w3.org/2000/10/XMLSchema">
<!ENTITY daml "http://www.daml.org/2001/03/daml+oil">
<!ENTITY profile "http://www.daml.org/services/daml-s/2001/05/Profile.daml">
<!ENTITY service "http://www.daml.org/services/daml-s/2001/05/Service.daml">
<!ENTITY tp "http://www.srdc.metu.edu.tr/2002/10/TaxPayment.daml">
<!ENTITY unspsc "http://www.eccma.org/unspsc/browse/43.html">

<rdf:RDF
xmlns:rdf = "&rdf;#"
xmlns:rdfs = "&rdfs;#"
xmlns:xsd = "&xsd;#"
xmlns:daml = "&daml;#"
xmlns:profile = "&profile;#"
xmlns:service = "&service;#"
xmlns:unspsc = "&unspsc;#"
xmlns:tp = "&tp;#"

<daml:Ontology rdf:about=" ">
<daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
<daml:imports rdf:resource="&service;"> </daml:Ontology>

<daml:Class rdf:ID="TaxServices">
<rdfs:subClassOf rdf:resource="&service;"/> </daml:Class>

<rdf:Property rdf:ID="paymentMethod">
<rdfs:subPropertyOf rdf:resource=&profile;serviceParameter/>
<rdfs:domain rdf:resource="&service;#ServiceProfile"/>
<rdfs:range rdf:resource="&daml;#Thing"/> </rdf:Property>

<rdf:Property rdf:ID="serviceGuarantee">
<rdfs:subPropertyOf rdf:resource=&profile;degreeOfQuality/>
<rdfs:domain rdf:resource="&service;#ServiceProfile"/>
<rdfs:range rdf:resource="&daml;#Thing"/> </rdf:Property>

<rdf:Property rdf:ID="requiredService">
<rdfs:domain rdf:resource="&damls;#Service/>
<rdfs:range rdf:resource="&damls;#Service/> </rdf:Property>

<rdf:Property rdf:ID="discountAmount">
<rdfs:domain rdf:resource="#PromotionRequirements"/>
<rdfs:range rdf:resource="&xsd;#nonNegativeInteger"/> </rdf:Property>

<daml:Class rdf:ID="TaxPreparationService">
<rdfs:subClassOf rdf:resource="#TaxServices"/>
<rdfs:label> Tax Preparation Service </rdfs:label>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#promotion"/>
<daml:toClass rdf:resource="#PromotionRequirements"/>

</daml:Restriction> </rdfs:subClassOf> </daml:Class>

<rdf:Property rdf:ID="promotion">
<rdfs:subPropertyOf rdf:resource=&profile;serviceParameter/>
<rdfs:domain rdf:resorce="#TaxPreparationService"/>
<rdfs:range rdf:resource="#PromotionRequirements"/> </rdf:Property>

<daml:Class rdf:ID="PromotionRequirements">
<rdfs:subClassOf rdf:resource="#TaxServices"/>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#requiredService"/>
<daml:toClass rdf:resource="&damls;#Service"/>

</daml:Restriction> </rdfs:subClassOf> </daml:Class>

<daml:Class rdf:ID="LegalConsulting">
<rdfs:subClassOf rdf:resource="#TaxServices"/>
<rdfs:label> Legal Tax Consultancy Service </rdfs:label>

</rdfs:subClassOf> </daml:Class>

<rdf:Property rdf:ID="serviceCodeUNSPSC">
<rdfs:label> Defining a property to denote UNSPSC codes of services</rdfs:label>
<rdfs:domain rdf:resource="&damls;#Service/>
<rdfs:range rdf:resource="&unspsc;#UNSPSCCodes"/> </rdf:Property>

</rdf:RDF>

Figure 2: An Example Ontology Description for Tax Payment Domain

of DAML-S “ServiceProfile serviceParameter” property and “serviceGuarantee” as a subproperty of DAML-S
“ServiceProfile degreeOfQuality” property. Notice that, in this generic ontology, ranges of these properties are
defined to be the most general class in a DAML+OIL ontology, that is, daml+oil#Thing class. This class is
specialized when defining ontology instances as shown in Figure 3. This general ontology also states that a

4

<!DOCTYPE uridef[
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY tp "http://www.srdc.metu.edu.tr/2002/10/TaxPayment.daml">

<rdf:RDF
xmlns:rdf = "&rdf;#"
xmlns:tp = "&tp;#"

<tp:TaxPreparationService rdf:ID="TaxHeavenTaxPreparationService">
<tp:serviceCodeUNSPSC>43.16.17.02.00 </tp:serviceCodeUNSPSC>
<tp:paymentMethod> CreditCard </tp:paymentMethod>
<tp:serviceQuarantee>24</tp:serviceQuarantee>
<tp:promotion rdf:resource="#MyPromotionRequirements"/>

</tp:TaxPreparationService>

<tp:PromotionRequirements rdf:ID="MyPromotionRequirements">
<tp:requiredService rdf:resource="#LegalConfort"/>
<tp:discountAmount>10 </tp:discountAmount>

</tp:PromotionRequirements>

<tp:LegalConsulting rdf:ID="LegalConfort">
</tp:LegalConsulting>
</rdf:RDF>

Figure 3: Service Ontology of the company “TaxHeaven”

“promotion” property can be associated with “TaxPrepatationService” which requires another service to be used
and specifies the discount amount when the two services are used in aggregation. Finally, the ontology states
that the UNSPSC codes may be associated with services.

Figure 3 shows a specific instance of the generic ontology given in Figure 2, for the company “TaxHeaven”.
“TaxHeaven” is providing a tax preparation service. The service has the maximum delivery time of 24 hours;
and accepts only credit card payment. “TaxHeaven” also provides a seperate legal consultancy service for tax
payment, called “LegalConfort” and provides 50% discount for this service to the users of their tax preparation
service, namely, “TaxHeavenTaxPreparationService”.

To provide ease in readability, these ontologies are also shown graphically in Figure 4. The graphical repre-
sentation followed is inspired by [Gonzalez-Castillo].

3 Associating Semantics with Service Registries

In this section we describe how to associate the semantic defined with services advertised by using the mecha-
nisms provided by UDDI and ebXML registries.

3.1 UDDI Registries

The mechanism to relate semantics with services advertised in the UDDI registries are the tModel and the
catagory bags of registry entries. tModels provide the ability to describe compliance with a specification, a
concept, a shared design or a taxonomy. Services have category bags and any number of tModel keys can be put
in these category bags.

In relating the semantics defined in DAML+OIL with the services advertised in UDDI registries, the first
question to be answered is where to store the semantic descriptions. Generic descriptions can be stored by the
standard bodies who define them and the server, where the service is defined, can host the semantic description
of the service instance. This facilitates the maintenance of the service descriptions. However there are times,
when it is necessary to query all the individual service descriptions. Therefore a combined schema per industry
domain containing all the semantic descriptions of the services pertaining to this domain may be necessary to
facilitate global querying.

The second issue is relating the ontology defined in DAML+OIL with the services advertised in the UDDI
registry. For this purpose, similar to WSDL, DAML+OIL should be classified as “DAMLSpec” with “uddi-
org:types” taxonomy. A seperate tModel of type “DAMLSpec” for the combined schema of each industry

5

daml:subClassOf

xsd:positiveInteger

rdf:Value 50

myPromotionRequirements

daml:subClassOf

rdf:property

rdf:property

requiredService

discountAmount

LegalComfort

daml:subClassOf

tp:PromotionRequirements

tp:LegalConsulting

TaxHeavenTaxPreparationService

rdf:property

rdf:property

rdf:property

rdf:property

serviceCodeUNSPSC

paymentMethod

promotion

serviceGuarantee xsd:String

rdf:Value "credit card"

unspsc:UNSPSCCodes

43.16.17.02.00

xsd:positiveInteger

24rdf:Value

tp:PromotionRequirements

DAML-S
Service
Class

TaxServices

daml:subClassOf

daml:onProperty

daml:toClass

tp:promotion

daml:Restriction

TaxPreperationService

daml:
intersectionOf

daml:subClassOf

Figure 4: A pictorial description of “TaxHeaven” ontology

domain should be created. The services in an industry domain must contain the key of this tModel in their
category bags. Hence, this tModel key can be used to find services in an industry domain through the UDDI
registry.

There may be times where it is necessary to find all the instances of a generic class. For example, to choose a
tax payment service with required functionality, it may be necessary to retrieve all semantic tax payment service
descriptions to check their properties. To be able to do this, that is, in order to find instances of a generic class,
it is necessary to associate a tModel key for each generic service class and store this tModel key with individual
service descriptions.

Finally, there should be a tModel key for each service instance. This tModel key can be used in searching
the UDDI registry to find a particular advertised service instance according to its semantic description. A more
detailed treatment of this issue is given in [Dogac].

3.2 ebXML Registries

The basic mechanism in ebXML registries for associating semantics with the objects stored in the registry is
the “classification” hierarchy, called ClassificationScheme. ClassificationScheme defines a hierarchy of Classi-
ficationNodes. The nodes in this hierarchy are related with registry objects through Classification objects. A
Classification instance classifies a RegistryObject instance by referencing a node defined within a particular
classification scheme. As an example, assume that “TaxHeavenTaxPreparationService” stored in the ebXML
registry and a ClassificationScheme exits for the “Tax Payment” industry like the one provided in Figure 2. Fig-
ure 5 demostrates how this service is associated with this classification schema by using the classification object.

6

TaxPaymentIndustry : Classification

serviceToIndustryClassification : Classification

classifiedObject

TaxHeavenTaxPreparationService : RegistryEntry

classificationNode

Figure 5: Associating a Service with a Classification Node in ebXML

Note that a registry object can be classified according to any number of classification schemes.
However classification structure provided by ebXML is not adequate to store DAML+OIL ontologies and

need to be extended to be used for this purpose. Also ebXML registry interface needs to be extended to query
DAML+OIL ontologies.

References

[Berners-Lee] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web”, Scientific American, May 2001.
[DAML+OIL] DAML+OIL, http://www.w3.org/2001/10/daml+oil
[DAML-S] DAML Services Coalition (A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith,

S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng), DAML-S: Semantic Markup for Web Services, in
Proceedings of the International Semantic Web Working Symposium (SWWS), July 2001.

[Denker] Denker, G., Hobbs, J. R., Narayan, S., Waldinger, R., “Accessing Information and Services on DAML-
Enabled Web, Semantic Web Workshop, Hong Kong, China, 2001.

[Dogac] Dogac, A., Cingil, I., Laleci, G. B., Kabak, Y., “Improving the Functionality of UDDI Registries
through Web Service Semantics”, 3rd VLDB Workshop on Technologies for E-Services (TES-02), Hong
Kong, China, August 23-24, 2002.

[ebXML] ebXML, http://www.ebxml.org/
[Gonzalez-Castillo] Gonzalez-Castillo, J., Trastour, D., Bartolini, C., “Description Logics for Matchmaking of

Services”, Technical Report, HP Labs, Bristol, UK.
[ISO 3166] ISO 3166, http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html
[McIlraith a] McIlraith, S. A., Son, T. C., Zeng, H., “Semantic Web Services”, IEEE Intelligent Systems,

March/April 2001, pp. 46-53.
[McIlraith b] McIlraith, S. A., Son, T. C., Zeng, H., “Mobilizing the Semantic Web with DAML-Enaled Web

Services”, Semantic Web Workshop 2001, Hongkong, China.
[NAICS] North American Industrial Classification Scheme (NAICS) codes http://www.naics. com.
[SOAP] Simple Object Access Protocol (SOAP) http://www.w3.org/TR/SOAP/
[O’Sullivan] O’Sullivan, J., Edmond, D., Hofstede, A., ”What’s in a Service? Towards Accurate Description of

Non-Functional Service Properties”, in the Journal of Distributed and Parallel Databases, Vol. 12, No. 2/3,
Sept./Nov. 2002.

[UDDI] Universal Description, Discovery and Integration (UDDI), http://www.uddi.org/.
[UNSPSC] Universal Standard Products and Services Classification (UNSPSC) http://eccma.org/unspsc
[WSDL] Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl

7

