
1 INTRODUCTION 

1.1 Multi-Agent Systems for Creating Intelligent 
Applications 

In the last decade, autonomous agents were intro-
duced as a powerful metaphor for building software 
applications. Usually, agents are not developed as 
“stand-alone” applications; rather they are imple-
mented to act within communities, called Multi-
Agent Systems (MAS). Agent Technology is 
mounted on the principles of Concurrent Engineer-
ing (Agha 1986, Agha & Hewitt 1988, Agha et 
al.1993), as each one of the agents has its own thread 
of control.  

MAS applications have been deployed in many 
application domains, such as: manufacturing, proc-
ess control, telecommunication systems, air traffic 
control, traffic and transportation management, in-
formation filtering and gathering, electronic com-
merce, business process management, entertainment 
and medical care (Wooldridge & Jennings 1999). 

Agent paradigm in building Intelligent Applica-
tions is summarized by Jennings et al. (1998) as fol-
lows: “A MAS can be defined as a loosely coupled 
network of problem solvers that work together to 
solve problems that are beyond the individual capa-
bilities or knowledge of each problem solver. These 
problem solvers –agents– are autonomous and may 
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be heterogeneous in nature. The characteristics of 
MAS are: 

a. each agent has incomplete information, or ca-
pabilities for solving the problem, thus each 
agent has a limited viewpoint; 

b. there is no global system control; 
c. data is decentralized; and 
d. computation is asynchronous.”  

In the aforementioned context, agent-based solu-
tions have proven to be suitable for building intelli-
gent applications following the concurrent engineer-
ing paradigm: While an agent has a view of its 
environments and based on its perceptions is able to 
decide on appropriate actions, when situated in a 
community of concurrently working agents propaga-
tively contributes in the achievement of the MAS 
common goals, which are usually broader. 

1.2 Data Mining Use for Extracting Inference 
Models 

Chen (1999) states “The interplay between knowl-
edge reasoning and data retrieval can be achieved by 
viewing retrieval as an extreme of reasoning and 
vice-versa”. Based on the popular model of analogy, 
data-driven reasoning models, such as Decision 
Trees or Association Rules, could prove to be valu-
able in domains, where deductive logic is not appli-
cable. 

Furthermore, in deduction only the logical form 
of the argument needs to be considered; whereas in 
induction information about the world must be 
added in order to show that the conclusion follows 
with some degree of probability (Yezzi 1992). In this 
manner, the inductive logic seems to be more suit-
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able for agent-based solutions, as agents have a 
viewpoint on its world.  The data mining approach 
introduces a set of tools and methodologies for dis-
covering patterns. These patterns could be decision 
trees, association rules, neural networks, etc. The ex-
tracted patterns can be implemented as a knowledge 
model constituting an inference engine for taking 
decisions. This approach has been adopted by Agent 
Academy for training intelligent agents. 

1.3 Coupling MAS with DM results 

This paper describes the procedure followed by the 
Agent Academy (AA) project for embedding data-
driven reasoning models on software agents in order 
to empower the latter with domain-specific intelli-
gence. More specifically, the case of deploying a 
MAS for monitoring air-quality indexes is presented.  

In Section 2 the Agent Academy framework is 
presented in brief and in Section 3 the explanatory 
case, named O3RTAA, is presented. The procedure 
for building the O3RTAA multi-agent system, with 
the use of Agent Academy follows in Section 4, 
while in Section 5 the agent community training is 
discussed. Finally, experiences from the Agent 
Academy project are underlined and some conclu-
sions are made.  

2  AGENT ACADEMY 

2.1 The AA architecture 

Agent Academy (AA) is a framework for training in-
telligent agents using data mining techniques (Agent 
Academy Consortium 2000, Mitkas et al. 2002) 
More specifically, Agent Academy is an integrated 
environment for embedding and improving intelli-
gence in newly created agents through the use of 
Data Mining techniques performed on data derived 
from monitoring agent data and agent behavior. 
Agent Academy is a training facility that supports: 
a. the creation of agents with limited initial referenc-
ing capabilities, and b. the training of these agents in 
order to augment their intelligence efficiently, ac-
cording to user specifications and preferences. 

Agent Academy platform is comprised out of four 
modules:  

a. the Agent Factory, for building (untrained) 
agents; 

b. the Agent Use Repository, which stores agent-
data;  

c. the Data Miner (DM), that extracts knowledge 
from AUR’s data; 

d. the Agent Training Module (ATM), which is 
responsible for training agents.  

The Agent Academy architecture is shown in 
Figure 1. Agent Academy procedure for creating 

Multi-Agent Systems starts by the definition of the 
Agent Ontologies with the help of the Ontology De-
sign Tool. The information flow of each agent be-
havior is defined through the Behavior Type Design 
Tool. In the platform, it is possible to design generic 
agent templates that can be further used while de-
signing different multi-agent systems. Finally with 
the help of the Scenario Design Tool, the interac-
tions between the agents are defined, the specific 
agent instances are created and the Multi Agent Sys-
tem starts operating. 

This work focuses on the AF functionalities for 
creating the agent community and the DM–ATM 
functionality for training intelligent agents. More 
specifically, the procedure for embedding intelli-
gence extracted with Data Mining techniques on 
Agents will be discussed. The Agent Training pro-
cedure is described in Sections 4 & 5. 

 
 

  
Figure 1. The Agent Academy architecture. 

 

2.2 Technologies incorporated 

Agent Academy adopts a bouquet of state-of-the-art 
technologies including: 
a. JADE platform (for agent creation) 
b. JESS engine (for rule execution) 
c. Protégé (for ontology design and specification) 
d. WEKA data mining tool (for knowledge extrac-

tion) 
e. XML (for internal data exchange) 
f. PMML (for knowledge model representation) 
g. PostgreSQL RDBMS (for data and meta–data 

storage) 
h. JMI (for meta-repository implementation). 

Additionally, it should be mentioned that Agent 
Academy agents are compliant with FIPA specifica-
tions.  

The reader can refer to these technologies in 
Grosso et al. (1999), Witten & Frank (1999), 
Bellifemine et al. (2000), FIPA (2000), Data Mining 
Group (2001),  Friedman-Hill (2003). 



3 O3RTAA: AN AGENT – BASED SYSTEM 
FOR MONITORING AIR-QUALITY INDEXES  

3.1 Introduction 

In this section the O3RTAA multi-agent system for 
monitoring air-quality indexes in real-time is pre-
sented. The O3RTAA system will be deployed by 
IDI-EIKON, Spain, and will be installed in the 
Mediterranean Centre for Environmental Studies 
Foundation (CEAM), in Valencia, Spain. The main 
goal of O3RTAA is to operate in a “ live”  environ-
ment and perform all appropriate tasks for detecting, 
analyzing and triggering ozone alarms to all con-
cerned stakeholders, according to different profiles. 

Several agents co-operate concurrently in a dis-
tributed agent society, in order to monitor both me-
teorological and air quality attributed and thus, 
evaluate air quality. The O3RTAA system is struc-
tured in three agent layers, shown in Figure 2. Each 
one of the layers undertakes the responsibility to 
achieve one of the system’s common goals. 
 

 

 
Figure 2. The O3RTAA System Architecture. 

 
 
The first layer is the Contribution Layer. This 

part of the system is responsible for the acquisition 
and conditioning of data captured automatically by 
field sensors. Measurement validation, early alarm 
identification, sensor malfunction identification and 
qualitative estimation of the missing or erroneous 
values are the main goals of this layer. 

The second layer is the Management Layer. In 
this layer the task is to analyze the data and fire the 
appropriate alarms. Additionally, the measurements 
are properly stored in the database. 

The third layer is the Distribution Layer, which is 
responsible for sending the corresponding alarms to 
the users registered in the service, according to their 
profiles. 

A set of agents in each layer is confronted with 
the task to achieve the respective goals. Several 
agent instances cooperate in each layer. This issue is 
discussed in depth in the following paragraph. 

3.2  Agent System Architecture 

Several agent types co-operate concurrently in 
O3RTAA system layers to achieve its goals. More 
specifically, the agent types deployed are the follow-
ings: 
a. Diagnosis Agents (DA).  
b. Alarm Agents (ALA). 
c. Short Prediction Agents (SPA). 
d. Distribution Agents (DIA). 
e. Feedback Agents (FA). 
f. Database Agents (DBA). 

Each one of the Diagnosis Agents is devoted in 
monitoring a specific meteorological or air quality 
attribute, i.e. NO2, NOx, O3, etc. Moreover, DA is 
responsible for ensuring the efficient operation of re-
spective sensor. In case of a sensor breakdown, DA 
is responsible for predicting the missing value(s). 
Several DA instances are activated in the Contribu-
tion Layer, each one of which handles data coming 
from one sensor. 

Alarm Agents evaluate the inputs and decide 
whether an alarm should be triggered or not. Short 
Prediction Agents take under account the current and 
past measurements and try to identify how air quality 
will evolve, based on certain patterns. 

Distribution Agents are in charge of delivering 
alarms selectively, while Feedback Agents deliver 
users’  response on an alarm. 

Finally, the Database Agent is in charge of deliv-
ering accurate, validated data to the measurements 
database. 

In Section 4, the procedure for deploying the ap-
plication with the use of Agent Academy platform is 
presented. Mainly, we concentrate on the deploy-
ment of the Contribution Layer. 

4 DEPLOYING O3RTAA USING AGENT 
ACADEMY 

Agent Academy Platform provides an easy way 
for deploying Multi-Agent Systems without any cod-
ing effort with the help of Agent Factory Module. 
Through a set of graphical tools, it is possible to de-
fine all the necessary details to allow the program-
mer design and create a Multi Agent System, either 
from scratch, or by making use of existing applica-
tions. The created agents have the ability to commu-
nicate the AA components such as Agent Training 
Module, Agent Factory, and reporting to the Agent 
Use Repository. 

The Agent Factory provides a set of tools to en-
able these functionalities. More specifically, the On-
tology Design Tool, the Behavior Type Design Tool, 
and the Scenario Design Tool are used for building 
the system. At the end, the multi-agent community is 
instantiated.  In the following sections, the details of 
these functionalities will be presented while design-
ing and deploying the O3RTAA System.  



4.1 Creating Agent Ontologies 

The first step in designing a Multi agent system, is 
defining the common language between the agents, 
i.e. the Ontologies. The Agent Factory provides an 
Ontology Design Tool, which help users adopt on-
tologies defined with the Protégé Tool (Grosso et al. 
1999). RDFS files created with Protégé are saved in 
the Agent Use Repository for further use. As AA 
uses the JADE agent development environment, 
agent ontologies necessitate to be converted in to 
special JADE Ontology classes. Whenever an AA 
agent is created, the corresponding JADE Ontology 
classes are created after retrieving the respective On-
tology files from the AUR, using a special tool, 
which compiles the RDFS ontology files into JADE 
Ontology classes. 

For the O3RTAA system, we have defined an on-
tology specifying all of the necessary classes such as 
pollutants, measurements, meteorological stations 
and their attributes in terms of JADE Ontology con-
cepts, predicates and agent actions. For example in 
Figure 3, the "StationInfo" is defined as a JADE 
Concept, and its attributes such as calibration, sta-
tionName, and status are defined. 
 
 
 
 
 

<rdfs:Class rdf:about="&O3RTAA;StationInfo" 
  rdfs:label="StationInfo">   
 <rdfs:subClassOf rdf:resource="&O3RTAA;Concept"/>  
</rdfs:Class> 
 
 
<rdf:Property rdf:about="&O3RTAA;calibration" 
a:maxCardinality="1" rdfs:label="calibration">   
 <rdfs:domain rdf:resource="&O3RTAA;StationInfo"/>  
 <rdfs:range rdf:resource="&rdfs;Literal"/>  
</rdf:Property> 
 
 
<rdf:Property rdf:about="&O3RTAA;stationName" 
  a:maxCardinality="1" 
  rdfs:label="stationName">   
 <rdfs:domain rdf:resource="&O3RTAA;StationInfo"/>  
 <rdfs:range rdf:resource="&rdfs;Literal"/> 
 </rdf:Property> 
 
 
<rdf:Property rdf:about="&O3RTAA;status" 
  a:maxCardinality="1" 
  rdfs:label="status">   
 <rdfs:domain rdf:resource="&O3RTAA;StationInfo"/>   
 <rdfs:range rdf:resource="&rdfs;Literal"/> 
</rdf:Property> 

Figure 3. A part of the O3RTAA Ontology 

 
Figure 4. Behavior Design Tool 

4.2 Creating Behavior Types 

Using the Behavior Type Design Tool provided, 
it is possible to define generic behavior templates. 
Agent behaviors are modeled as workflows of basic 
building blocks, such as receiving/sending a mes-
sage, executing an in-house application, and if nec-
essary deriving decisions using inference engines. 
The data and control dependencies between these 
blocks are also handled. The behaviors can be mod-
eled as cyclic or one-shot behaviors of the JADE 
platform. These behavior types are generic templates 
that can be configured to behave differently; only the 
structure of the flow is defined, the configurable pa-
rameters of the application inside the behavior, as 
well as the contents of the messages will be specified 
using the Scenario Design Tool while the behaviors 
are specialized according to the domain. 

In order to explain the functionalities of this tool, 
we will go over the design process of the Diagnosis 
Behavior Type.  

The first action in the Diagnosis Behavior is re-
ceiving the measurement from the respective Agent, 
so using the panel presented in Figure 4, a receive 
block is added to the flow of the agent behavior.  

After receiving the measurement, the Diagnosis 
Agent validates this data by checking its conformity 
to data-driven patterns, extracted from historical 
data. The rules have been previously generated by 
the Data Miner Module, and the corresponding De-
cision Structure has been registered to the Agent Use 
Repository. In order to execute these rules and de-
rive a decision, an inference engine has to be added 
to the flow of the behavior, specifying the decision 



structure that will be used by this inference engine. 
Hence, the initial rules are loaded to the agent, con-
taining the Validation Decision Model. However this 
model (i.e. rules) may be updated in the future by the 
Data Miner Module, and loaded to the agent by the 
Agent Training Module; in this way the agent can 
adapt to the changing aspects of its environment, 
while running. (This is the case of retraining an 
agent using the AA platform).  

An “ if" block is added to the flow of behavior, to 
specify the actions that will be performed, depending 
on the validity of data. If the data is valid, the data is 
checked to see if it causes an “early alarm". There-
fore an “action block" is added to the “ true branch" 
of the “ if" block. The parameters of the action block, 
i.e. the application that will be executed and the pa-
rameters of the application are specified. If an early 
alarm is produced by the activity, this alarm should 
be sent to the distribution agent (DIA). Therefore, an 
“ if" block is added, the “ if statement" is specified 
through the editor provided, and a “send block" is 
added to the ``true branch" of the “ if" block. The 
performative and the ontology of the message are 
specified. However the receiver of this message is 
not set yet, since the exact agent instance that will 
receive the message will be assigned in the Scenario 
Design Tool. 

If the inference engine decides that the measure-
ment is not valid, then the agent tries to estimate the 
erroneous (missing) value of the measurement, by 
executing a second inference engine, containing the 
Estimation Decision Model. This Decision Model 
has as inputs measurement values that the agent 
handles in the past, and also the measurements of 
other Diagnosis Agents nearby, monitoring other re-
lated attributes. Hence, several send and receive 
blocks have been added to the flow of the behavior, 
for receiving those appropriate values. The Diagno-
sis Agent, after receiving the measurements, esti-
mates the missing value, running the second infer-
ence engine, which uses a Decision Structure 
derived by the Data Miner Module. Hence, an infer-
ence engine is added to the flow and the necessary 
parameters are set using the editor.  

Then an “activity block" is added after the “ if" 
block to convert the measurements into their seman-
tic representation. The application that will be exe-
cuted in this activity block and its parameters are 
specified using the editor. Finally a “send block" is 
added in order to send this semantic representation 
to the Alarm Agent (ALA). 

The other necessary behavior types are also de-
signed in a similar fashion.  

4.3 Creating Agent Types 

The aim of the AF is to ease the development of 
multi agent systems, so after having defined certain 
behavior types, this tool is provided to create new 

agent types in order to be used later in the Scenario 
Design Tool. An agent type is in fact an agent plus a 
set of behaviors assigned to it. New agent types can 
be constructed from scratch or by modifying existing 
agent types. Agent types can be seen as templates 
that can be instantiated as agent instances while de-
signing a scenario. For the O3RTAA system, we 
have defined six agent templates, one for each agent 
type. Namely: diagnosis, alarm, short prediction, dis-
tribution, feedback, and database agent templates. 

While creating a Multi-Agent System, using the 
AA Scenario Design Tool, several instances of these 
agent types will be instantiated, having different val-
ues in their parameters. Each agent instance of the 
same agent type may have to deliver data from dif-
ferent sensor, or communicate with other agents, or 
run different decision models or access a different 
database and so on. These kinds of parameters are 
defined while deploying the MAS using the Scenario 
Design Tool. 

4.4 Deploying the Multi Agent System 

After designing the behavior types and the agent 
types, follows the deployment of the multi agent sys-
tem. With the help of the Scenario Design Tool, all 
the agents running in that system are instantiated us-
ing the predefined agent templates. The receivers 
and senders of the messages in the behaviors of the 
agents are set, defining the interactions between the 
agents. Agent behaviors are also configured by set-
ting all the necessary parameters, as inputs of the ap-
plications and content of the messages. For example, 
for the O3RTAA system, one diagnosis agent is ini-
tialized for each sensor. The DAs are configured for 
listening to different sensors located in different 
geographic locations. 

After all the parameters are defined, the agent in-
stances are initialized. Agent Factory creates Default 
AA Agents, which have the ability to communicate 
with AF, ATM and AUR. Then, the AF sends each 
of these agents the necessary ontologies, behaviors, 
and decision structures. Each agent parses the RDF 
Ontologies into JADE ontology classes using the 
tool provided, loads its behaviors, and starts operat-
ing.  

5 TRAINING THE AGENT COMMUNITY 

5.1 Extracting data-driven Decision Models  

While describing the Diagnosis Behavior Type it has 
been mentioned that there are two kinds of data-
driven decision blocks. The first one checks the va-
lidity of data and the second one estimates missing 
or erroneous measurements. These blocks are 
equipped with decision models extracted using the 
AA Data Miner Module . More specifically, the C4.5 



algorithm (Quinlan 1993) for extracting decision 
trees was applied on historical data. The ONDA 
dataset supplied by CEAM, contained data from a 
meteorological station in the district of Valencia, 
Spain. More specifically, several meteorological at-
tributes and air-pollutant values, along with valida-
tion tags, were recorded on a quarter-hourly basis 
during years 2000 and 2001. There are about 70,000 
records in the volume. 
The first set of experiments aimed to extract a deci-
sion model for evaluating an incoming measurement. 
The ONDA dataset was preprocessed in order to 
contain attributes as the current value of a specific 
pollutant and the corresponding validation tag, along 
with a set of previous values and measures. These 
measures are shown in Figure 3. 

Quinlan’s C4.5 algorithm for decision tree extrac-
tion was applied on the data. Data recorded in year 
2000 were used as the training set and data recorded 
in 2001 were used as the test set. The pruning option 
for support 25% was selected after exhaustive ex-
periments, producing a decision model with more 
than 99% accuracy for both training and test sets. 
The Confusion Matrix for the test set is shown in 
Figure 5. 

The second decision structure extracted with the 
AA Data Miner Module is the one for estimating a 
missing measurement. Attributes, as missing meas-
urement older values or values of other measure-
ments at the same time were selected as inputs for 
this kind of decision models and are shown in Figure 
4. From the ONDA dataset the invalid records or re-
cords with inconsistent history were excluded, re-
maining a volume of 12,000 records.  

 
 
 
 

O3 The current ozone value 
O3_30 The ozone value 30 min ago 
O3_90 The ozone value 90 min ago 
MinMax60 The difference between the maximum and the 

minimum ozone value in the last 60 min 
MinMax150 The difference between the maximum and the 

minimum ozone value in the last 150 min 
O3val The corresponding validation tag 

(valid/erroneous) 
Figure 3. Attributes used for the validation decision model 

 
 

NO The concurrent value of NO concentration 
NO2 The concurrent value of NO2 concentration 
NOX The concurrent value of NOx concentration 
TEM The concurrent value of Temperature 
HR The concurrent value of Relative Humidity 
O3_15 The ozone value 15 min ago 
O3_30 The ozone value 30 min ago 
O3Class The (missing) ozone value level (low/med) 
 

Figure 4. Attributes used for the estimation decision model 
 

Validation Decision Model 
Records classified as :  valid  erroneous 
No. records in class ‘valid’ :  34,454  21 
No. records in class ‘erroneous’ :    63 420 
Size of Decision Tree:   29 (15 Leaves) 
Correctly classified records:  99.71% 
 
Estimation Decision Model 
Records classified as :  low  med 
No. Records in class ‘ low’:  9905  2,351 
No. Records in class ‘med’:  752  4,384 
Size of Decision Tree:  29 (15 Leaves) 
Correctly classified records:  93.80% 
 

Figure 5. Decision Model statistics. 
 
 
 

 

<PMML> 
  <DataDictionary numberOfFields="6"> 
  … 
  </DataDictionary> 
  <TreeModel modelName="…"> 
    <MiningSchema> 
      <MiningField name="O3" usageType="active" /> 
      <MiningField name="O3val" usageType="predicted" /> 
       ……….. 
    </MiningSchema> 
    <Node score="a"> 
      <SimplePredicate field="O3"  
        operator="lessOrEqual" value="0" /> 
      <Node score="l"> <TRUE /> </Node>  
        <Node score="a"> 
        <SimplePredicate field="O3"  
           operator="greaterThan" value="0" /> 
        <Node score="a"> 
          <SimplePredicate field="O3"  
            operator="lessOrEqual" value="164" /> 
          <Node score="a"> 
            <SimplePredicate field="MinMax60"  
               operator="lessOrEqual" value="65" /> 
            <Node score="a"> <TRUE /> </Node> 
          </Node> 
          <Node score="a"> 
            <SimplePredicate field="MinMax60"     
               operator="greaterThan" value="65" /> 
            <Node score="a"> 
              <SimplePredicate field="MinMax150"   
                 operator="lessOrEqual" value="185.9" /> 
              <Node score="a"> 
                <SimplePredicate field="O3_30"  
                   operator="lessOrEqual" value="127" /> 
                <Node score="a"> <TRUE /> </Node>  
              </Node> 
              <Node score="a"> 
                <SimplePredicate field="O3_30"  
                   operator="greaterThan" value="127" /> 
                <Node score="o"> <TRUE /> </Node>   
              </Node> 
            </Node>.... 
  </TreeModel> 
</PMML> 
 

Figure 6. An example PMML file 
 



(defrule rule-0  ( O3 ?O3)  
 (test ( <= ?O3 -99.9 ))  
 => (store O3val l )) 
  
(defrule rule-1  ( O3 ?O3)  
 (test ( > ?O3 -99.9 ))  
 ( O3 ?O3)  
 (test ( <= ?O3 164 ))  
 ( MinMax60 ?MinMax60)  
 (test ( <= ?MinMax60 65 ))  
 => (store O3val a )) 
(defrule rule-2  ( MinMax150 ?MinMax150)  
 (test ( <= ?MinMax150 185.9 ))  
 ( O3_30 ?O3_30)  
 (test ( <= ?O3_30 127 ))  
 ( O3 ?O3)  
 (test ( > ?O3 -99.9 ))  
 ( O3 ?O3)  
 (test ( <= ?O3 164 ))  
 ( MinMax60 ?MinMax60)  
 (test ( > ?MinMax60 65 ))  
 => (store O3val a )) 
 
(defrule rule-3  ( MinMax150 ?MinMax150)  
 (test ( <= ?MinMax150 185.9 ))  
 ( O3_30 ?O3_30)  
 (test ( > ?O3_30 127 ))  
 ( O3 ?O3)  
 (test ( > ?O3 -99.9 ))  
 ( O3 ?O3)  
 (test ( <= ?O3 164 ))  
 ( MinMax60 ?MinMax60)  
 (test ( > ?MinMax60 65 ))  
 => (store O3val o )) 

Figure 7. The JESS rules generated 
 
 
Once more, Quinlan’s (1993) C4.5 algorithm for 

classification was used. Cross-folds training for 10 
folds were performed. The decision tree extracted 
with pruning support 0,025 outperformed, providing 
accuracy greater than 90%. The Confusion Matrix is 
shown in Figure 5. 

We have discussed elsewhere (Athanasiadis et.al 
2003) a slightly different approach in estimating 
missing measurements using different types of deci-
sion models as Decision Trees, Neural Networks or 
Fuzzy Lattice Model. 

The decision models extracted with the Data 
Miner are forwarded to the ATM using PMML 2.0 
format and finally embedded on running agents as 
JESS Rules, as described in the following paragraph. 

5.2 Embedding Decision Models on Agents 

There are two circumstances in which a decision 
model is loaded to an AA-produced agent. In the 
first case, the case of training, a newly created agent 
is configured to have a decision structure and ATM 

loads the decision model into it by obtaining the de-
cision structure content from Agent Use Repository. 
In the second case, the case of retraining, the AA 
agent already uses the decision structure and the 
Data Miner Module, comes out with an update of the 
later. In such case, DMM constitutes an ACL mes-
sage containing the updated decision structure in 
PMML format (Data Mining Group 2000) and sends 
it to the Agent Training Module.  

In both cases, after receiving the message either 
from AUR or DMM, ATM converts the PMML 
document into JESS rules and determines the AA 
agents that use the decision structure. Finally, the 
JESS rules are sent to the appropriate Agents via 
ACL messages and they insert (or update) their deci-
sion structures, accordingly. An example PMML de-
cision model and its corresponding JESS rules  are 
depicted in the following Figures 5, 6 respectively. 
More on Jess engine can be found in Friedman-Hill 
(2003). 

In the training and retraining process, Agent 
Training Module plays an important role. ATM 
holds all the information (such as, the behavior ids 
of an agent, decision structures of an agent) about 
the agents to be trained. The information is used to 
administer the agents in the Agent Academy plat-
form.  

6 DISCUSSION 

In the present paper the procedure followed for 
building a Multi-Agent System that monitors Air-
Quality Indexes using the AA platform was pre-
sented. Procedures that in the traditional approach 
for deploying a MAS needed significant human ef-
forts in the means of code programming, are now 
automated using graphical tools provided by the 
Agent Academy platform. Furthermore, the proce-
dure of training and retraining agents from historical 
data, based on data-mining techniques is an ad-
vanced feature, incorporated in the AA platform. 

An explanatory case, for building such a MAS 
that needs agents to be trained from historical data is 
the O3RTAA case, which was described in the pre-
sent paper. Agents acting as mediators, deliver vali-
dated information to the appropriate stakeholders in 
distributed environment. The Diagnosis Agent for 
monitoring ozone measurements in the O3RTAA 
system designed, deployed and trained using the 
C4.5 algorithm. 

Furthermore, the use of C4.5 algorithm came out 
with trustworthy decision models for validating in-
coming measurements and estimating the erroneous 
ones in the described application. 

Future steps are concentrated in adding intelli-
gence (i.e. inference engines) in the distribution 
module of the O3RTAA system, for delivering 
alarms in a more efficient manner. 
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