
1 INTRODUCTION

1.1 Multi-Agent Systems for Creating Intelligent
Applications

In the last decade, autonomous agents were intro-
duced as a powerful metaphor for building software
applications. Usually, agents are not developed as
“stand-alone” applications; rather they are imple-
mented to act within communities, called Multi-
Agent Systems (MAS). Agent Technology is
mounted on the principles of Concurrent Engineer-
ing (Agha 1986, Agha & Hewitt 1988, Agha et
al.1993), as each one of the agents has its own thread
of control.

MAS applications have been deployed in many
application domains, such as: manufacturing, proc-
ess control, telecommunication systems, air traffic
control, traffic and transportation management, in-
formation filtering and gathering, electronic com-
merce, business process management, entertainment
and medical care (Wooldridge & Jennings 1999).

Agent paradigm in building Intelligent Applica-
tions is summarized by Jennings et al. (1998) as fol-
lows: “A MAS can be defined as a loosely coupled
network of problem solvers that work together to
solve problems that are beyond the individual capa-
bilities or knowledge of each problem solver. These
problem solvers –agents– are autonomous and may

1 Agent Academy: A Data Mining Framework for Creating

Intelligent Agents, is partially funded by the European Com-
mission, under the 5th Framework for Research and Develop-
ment (IST–2000–31050).

be heterogeneous in nature. The characteristics of
MAS are:

a. each agent has incomplete information, or ca-
pabilities for solving the problem, thus each
agent has a limited viewpoint;

b. there is no global system control;
c. data is decentralized; and
d. computation is asynchronous.”

In the aforementioned context, agent-based solu-
tions have proven to be suitable for building intelli-
gent applications following the concurrent engineer-
ing paradigm: While an agent has a view of its
environments and based on its perceptions is able to
decide on appropriate actions, when situated in a
community of concurrently working agents propaga-
tively contributes in the achievement of the MAS
common goals, which are usually broader.

1.2 Data Mining Use for Extracting Inference
Models

Chen (1999) states “The interplay between knowl-
edge reasoning and data retrieval can be achieved by
viewing retrieval as an extreme of reasoning and
vice-versa”. Based on the popular model of analogy,
data-driven reasoning models, such as Decision
Trees or Association Rules, could prove to be valu-
able in domains, where deductive logic is not appli-
cable.

Furthermore, in deduction only the logical form
of the argument needs to be considered; whereas in
induction information about the world must be
added in order to show that the conclusion follows
with some degree of probability (Yezzi 1992). In this
manner, the inductive logic seems to be more suit-

Embedding data–driven decision strategies on software agents:
The case of a Multi–Agent System for Monitoring Air–Quality Indexes

I. N. Athanasiadis & P. A. Mitkas
Informatics and Telematics Institute, Thermi, Thessaloniki, Greece
and
Aristotle University of Thessaloniki, Thessaloniki, Greece

G. B. Laleci & Y. Kabak
Middle East Technical University, Ankara, Turkey

ABSTRACT: Agent Academy1 (AA) is a software tool for deploying and training multi–agent communities,
as it supports the design, creation and deployment of multi–agent systems (MAS). Even more, agents created
with AA are equipped with a data-driven inference engine, and have the ability of training and retraining,
through the AA’s Agent Training Module. In the present paper, Agent Academy framework is presented.
Agent Academy’s advantages for creating agent-based intelligent software applications are revealed as the de-
velopment of a Multi-Agent System for monitoring Air-Quality Indexes (O3RTAA) is described.

able for agent-based solutions, as agents have a
viewpoint on its world. The data mining approach
introduces a set of tools and methodologies for dis-
covering patterns. These patterns could be decision
trees, association rules, neural networks, etc. The ex-
tracted patterns can be implemented as a knowledge
model constituting an inference engine for taking
decisions. This approach has been adopted by Agent
Academy for training intelligent agents.

1.3 Coupling MAS with DM results

This paper describes the procedure followed by the
Agent Academy (AA) project for embedding data-
driven reasoning models on software agents in order
to empower the latter with domain-specific intelli-
gence. More specifically, the case of deploying a
MAS for monitoring air-quality indexes is presented.

In Section 2 the Agent Academy framework is
presented in brief and in Section 3 the explanatory
case, named O3RTAA, is presented. The procedure
for building the O3RTAA multi-agent system, with
the use of Agent Academy follows in Section 4,
while in Section 5 the agent community training is
discussed. Finally, experiences from the Agent
Academy project are underlined and some conclu-
sions are made.

2 AGENT ACADEMY

2.1 The AA architecture

Agent Academy (AA) is a framework for training in-
telligent agents using data mining techniques (Agent
Academy Consortium 2000, Mitkas et al. 2002)
More specifically, Agent Academy is an integrated
environment for embedding and improving intelli-
gence in newly created agents through the use of
Data Mining techniques performed on data derived
from monitoring agent data and agent behavior.
Agent Academy is a training facility that supports:
a. the creation of agents with limited initial referenc-
ing capabilities, and b. the training of these agents in
order to augment their intelligence efficiently, ac-
cording to user specifications and preferences.

Agent Academy platform is comprised out of four
modules:

a. the Agent Factory, for building (untrained)
agents;

b. the Agent Use Repository, which stores agent-
data;

c. the Data Miner (DM), that extracts knowledge
from AUR’s data;

d. the Agent Training Module (ATM), which is
responsible for training agents.

The Agent Academy architecture is shown in
Figure 1. Agent Academy procedure for creating

Multi-Agent Systems starts by the definition of the
Agent Ontologies with the help of the Ontology De-
sign Tool. The information flow of each agent be-
havior is defined through the Behavior Type Design
Tool. In the platform, it is possible to design generic
agent templates that can be further used while de-
signing different multi-agent systems. Finally with
the help of the Scenario Design Tool, the interac-
tions between the agents are defined, the specific
agent instances are created and the Multi Agent Sys-
tem starts operating.

This work focuses on the AF functionalities for
creating the agent community and the DM–ATM
functionality for training intelligent agents. More
specifically, the procedure for embedding intelli-
gence extracted with Data Mining techniques on
Agents will be discussed. The Agent Training pro-
cedure is described in Sections 4 & 5.

Figure 1. The Agent Academy architecture.

2.2 Technologies incorporated

Agent Academy adopts a bouquet of state-of-the-art
technologies including:
a. JADE platform (for agent creation)
b. JESS engine (for rule execution)
c. Protégé (for ontology design and specification)
d. WEKA data mining tool (for knowledge extrac-

tion)
e. XML (for internal data exchange)
f. PMML (for knowledge model representation)
g. PostgreSQL RDBMS (for data and meta–data

storage)
h. JMI (for meta-repository implementation).

Additionally, it should be mentioned that Agent
Academy agents are compliant with FIPA specifica-
tions.

The reader can refer to these technologies in
Grosso et al. (1999), Witten & Frank (1999),
Bellifemine et al. (2000), FIPA (2000), Data Mining
Group (2001), Friedman-Hill (2003).

3 O3RTAA: AN AGENT – BASED SYSTEM
FOR MONITORING AIR-QUALITY INDEXES

3.1 Introduction

In this section the O3RTAA multi-agent system for
monitoring air-quality indexes in real-time is pre-
sented. The O3RTAA system will be deployed by
IDI-EIKON, Spain, and will be installed in the
Mediterranean Centre for Environmental Studies
Foundation (CEAM), in Valencia, Spain. The main
goal of O3RTAA is to operate in a “ live” environ-
ment and perform all appropriate tasks for detecting,
analyzing and triggering ozone alarms to all con-
cerned stakeholders, according to different profiles.

Several agents co-operate concurrently in a dis-
tributed agent society, in order to monitor both me-
teorological and air quality attributed and thus,
evaluate air quality. The O3RTAA system is struc-
tured in three agent layers, shown in Figure 2. Each
one of the layers undertakes the responsibility to
achieve one of the system’s common goals.

Figure 2. The O3RTAA System Architecture.

The first layer is the Contribution Layer. This

part of the system is responsible for the acquisition
and conditioning of data captured automatically by
field sensors. Measurement validation, early alarm
identification, sensor malfunction identification and
qualitative estimation of the missing or erroneous
values are the main goals of this layer.

The second layer is the Management Layer. In
this layer the task is to analyze the data and fire the
appropriate alarms. Additionally, the measurements
are properly stored in the database.

The third layer is the Distribution Layer, which is
responsible for sending the corresponding alarms to
the users registered in the service, according to their
profiles.

A set of agents in each layer is confronted with
the task to achieve the respective goals. Several
agent instances cooperate in each layer. This issue is
discussed in depth in the following paragraph.

3.2 Agent System Architecture

Several agent types co-operate concurrently in
O3RTAA system layers to achieve its goals. More
specifically, the agent types deployed are the follow-
ings:
a. Diagnosis Agents (DA).
b. Alarm Agents (ALA).
c. Short Prediction Agents (SPA).
d. Distribution Agents (DIA).
e. Feedback Agents (FA).
f. Database Agents (DBA).

Each one of the Diagnosis Agents is devoted in
monitoring a specific meteorological or air quality
attribute, i.e. NO2, NOx, O3, etc. Moreover, DA is
responsible for ensuring the efficient operation of re-
spective sensor. In case of a sensor breakdown, DA
is responsible for predicting the missing value(s).
Several DA instances are activated in the Contribu-
tion Layer, each one of which handles data coming
from one sensor.

Alarm Agents evaluate the inputs and decide
whether an alarm should be triggered or not. Short
Prediction Agents take under account the current and
past measurements and try to identify how air quality
will evolve, based on certain patterns.

Distribution Agents are in charge of delivering
alarms selectively, while Feedback Agents deliver
users’ response on an alarm.

Finally, the Database Agent is in charge of deliv-
ering accurate, validated data to the measurements
database.

In Section 4, the procedure for deploying the ap-
plication with the use of Agent Academy platform is
presented. Mainly, we concentrate on the deploy-
ment of the Contribution Layer.

4 DEPLOYING O3RTAA USING AGENT
ACADEMY

Agent Academy Platform provides an easy way
for deploying Multi-Agent Systems without any cod-
ing effort with the help of Agent Factory Module.
Through a set of graphical tools, it is possible to de-
fine all the necessary details to allow the program-
mer design and create a Multi Agent System, either
from scratch, or by making use of existing applica-
tions. The created agents have the ability to commu-
nicate the AA components such as Agent Training
Module, Agent Factory, and reporting to the Agent
Use Repository.

The Agent Factory provides a set of tools to en-
able these functionalities. More specifically, the On-
tology Design Tool, the Behavior Type Design Tool,
and the Scenario Design Tool are used for building
the system. At the end, the multi-agent community is
instantiated. In the following sections, the details of
these functionalities will be presented while design-
ing and deploying the O3RTAA System.

4.1 Creating Agent Ontologies

The first step in designing a Multi agent system, is
defining the common language between the agents,
i.e. the Ontologies. The Agent Factory provides an
Ontology Design Tool, which help users adopt on-
tologies defined with the Protégé Tool (Grosso et al.
1999). RDFS files created with Protégé are saved in
the Agent Use Repository for further use. As AA
uses the JADE agent development environment,
agent ontologies necessitate to be converted in to
special JADE Ontology classes. Whenever an AA
agent is created, the corresponding JADE Ontology
classes are created after retrieving the respective On-
tology files from the AUR, using a special tool,
which compiles the RDFS ontology files into JADE
Ontology classes.

For the O3RTAA system, we have defined an on-
tology specifying all of the necessary classes such as
pollutants, measurements, meteorological stations
and their attributes in terms of JADE Ontology con-
cepts, predicates and agent actions. For example in
Figure 3, the "StationInfo" is defined as a JADE
Concept, and its attributes such as calibration, sta-
tionName, and status are defined.

<rdfs:Class rdf:about="&O3RTAA;StationInfo"
 rdfs:label="StationInfo">
 <rdfs:subClassOf rdf:resource="&O3RTAA;Concept"/>
</rdfs:Class>

<rdf:Property rdf:about="&O3RTAA;calibration"
a:maxCardinality="1" rdfs:label="calibration">
 <rdfs:domain rdf:resource="&O3RTAA;StationInfo"/>
 <rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf:Property>

<rdf:Property rdf:about="&O3RTAA;stationName"
 a:maxCardinality="1"
 rdfs:label="stationName">
 <rdfs:domain rdf:resource="&O3RTAA;StationInfo"/>
 <rdfs:range rdf:resource="&rdfs;Literal"/>
 </rdf:Property>

<rdf:Property rdf:about="&O3RTAA;status"
 a:maxCardinality="1"
 rdfs:label="status">
 <rdfs:domain rdf:resource="&O3RTAA;StationInfo"/>
 <rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf:Property>

Figure 3. A part of the O3RTAA Ontology

Figure 4. Behavior Design Tool

4.2 Creating Behavior Types

Using the Behavior Type Design Tool provided,
it is possible to define generic behavior templates.
Agent behaviors are modeled as workflows of basic
building blocks, such as receiving/sending a mes-
sage, executing an in-house application, and if nec-
essary deriving decisions using inference engines.
The data and control dependencies between these
blocks are also handled. The behaviors can be mod-
eled as cyclic or one-shot behaviors of the JADE
platform. These behavior types are generic templates
that can be configured to behave differently; only the
structure of the flow is defined, the configurable pa-
rameters of the application inside the behavior, as
well as the contents of the messages will be specified
using the Scenario Design Tool while the behaviors
are specialized according to the domain.

In order to explain the functionalities of this tool,
we will go over the design process of the Diagnosis
Behavior Type.

The first action in the Diagnosis Behavior is re-
ceiving the measurement from the respective Agent,
so using the panel presented in Figure 4, a receive
block is added to the flow of the agent behavior.

After receiving the measurement, the Diagnosis
Agent validates this data by checking its conformity
to data-driven patterns, extracted from historical
data. The rules have been previously generated by
the Data Miner Module, and the corresponding De-
cision Structure has been registered to the Agent Use
Repository. In order to execute these rules and de-
rive a decision, an inference engine has to be added
to the flow of the behavior, specifying the decision

structure that will be used by this inference engine.
Hence, the initial rules are loaded to the agent, con-
taining the Validation Decision Model. However this
model (i.e. rules) may be updated in the future by the
Data Miner Module, and loaded to the agent by the
Agent Training Module; in this way the agent can
adapt to the changing aspects of its environment,
while running. (This is the case of retraining an
agent using the AA platform).

An “ if" block is added to the flow of behavior, to
specify the actions that will be performed, depending
on the validity of data. If the data is valid, the data is
checked to see if it causes an “early alarm". There-
fore an “action block" is added to the “ true branch"
of the “ if" block. The parameters of the action block,
i.e. the application that will be executed and the pa-
rameters of the application are specified. If an early
alarm is produced by the activity, this alarm should
be sent to the distribution agent (DIA). Therefore, an
“ if" block is added, the “ if statement" is specified
through the editor provided, and a “send block" is
added to the ``true branch" of the “ if" block. The
performative and the ontology of the message are
specified. However the receiver of this message is
not set yet, since the exact agent instance that will
receive the message will be assigned in the Scenario
Design Tool.

If the inference engine decides that the measure-
ment is not valid, then the agent tries to estimate the
erroneous (missing) value of the measurement, by
executing a second inference engine, containing the
Estimation Decision Model. This Decision Model
has as inputs measurement values that the agent
handles in the past, and also the measurements of
other Diagnosis Agents nearby, monitoring other re-
lated attributes. Hence, several send and receive
blocks have been added to the flow of the behavior,
for receiving those appropriate values. The Diagno-
sis Agent, after receiving the measurements, esti-
mates the missing value, running the second infer-
ence engine, which uses a Decision Structure
derived by the Data Miner Module. Hence, an infer-
ence engine is added to the flow and the necessary
parameters are set using the editor.

Then an “activity block" is added after the “ if"
block to convert the measurements into their seman-
tic representation. The application that will be exe-
cuted in this activity block and its parameters are
specified using the editor. Finally a “send block" is
added in order to send this semantic representation
to the Alarm Agent (ALA).

The other necessary behavior types are also de-
signed in a similar fashion.

4.3 Creating Agent Types

The aim of the AF is to ease the development of
multi agent systems, so after having defined certain
behavior types, this tool is provided to create new

agent types in order to be used later in the Scenario
Design Tool. An agent type is in fact an agent plus a
set of behaviors assigned to it. New agent types can
be constructed from scratch or by modifying existing
agent types. Agent types can be seen as templates
that can be instantiated as agent instances while de-
signing a scenario. For the O3RTAA system, we
have defined six agent templates, one for each agent
type. Namely: diagnosis, alarm, short prediction, dis-
tribution, feedback, and database agent templates.

While creating a Multi-Agent System, using the
AA Scenario Design Tool, several instances of these
agent types will be instantiated, having different val-
ues in their parameters. Each agent instance of the
same agent type may have to deliver data from dif-
ferent sensor, or communicate with other agents, or
run different decision models or access a different
database and so on. These kinds of parameters are
defined while deploying the MAS using the Scenario
Design Tool.

4.4 Deploying the Multi Agent System

After designing the behavior types and the agent
types, follows the deployment of the multi agent sys-
tem. With the help of the Scenario Design Tool, all
the agents running in that system are instantiated us-
ing the predefined agent templates. The receivers
and senders of the messages in the behaviors of the
agents are set, defining the interactions between the
agents. Agent behaviors are also configured by set-
ting all the necessary parameters, as inputs of the ap-
plications and content of the messages. For example,
for the O3RTAA system, one diagnosis agent is ini-
tialized for each sensor. The DAs are configured for
listening to different sensors located in different
geographic locations.

After all the parameters are defined, the agent in-
stances are initialized. Agent Factory creates Default
AA Agents, which have the ability to communicate
with AF, ATM and AUR. Then, the AF sends each
of these agents the necessary ontologies, behaviors,
and decision structures. Each agent parses the RDF
Ontologies into JADE ontology classes using the
tool provided, loads its behaviors, and starts operat-
ing.

5 TRAINING THE AGENT COMMUNITY

5.1 Extracting data-driven Decision Models

While describing the Diagnosis Behavior Type it has
been mentioned that there are two kinds of data-
driven decision blocks. The first one checks the va-
lidity of data and the second one estimates missing
or erroneous measurements. These blocks are
equipped with decision models extracted using the
AA Data Miner Module . More specifically, the C4.5

algorithm (Quinlan 1993) for extracting decision
trees was applied on historical data. The ONDA
dataset supplied by CEAM, contained data from a
meteorological station in the district of Valencia,
Spain. More specifically, several meteorological at-
tributes and air-pollutant values, along with valida-
tion tags, were recorded on a quarter-hourly basis
during years 2000 and 2001. There are about 70,000
records in the volume.
The first set of experiments aimed to extract a deci-
sion model for evaluating an incoming measurement.
The ONDA dataset was preprocessed in order to
contain attributes as the current value of a specific
pollutant and the corresponding validation tag, along
with a set of previous values and measures. These
measures are shown in Figure 3.

Quinlan’s C4.5 algorithm for decision tree extrac-
tion was applied on the data. Data recorded in year
2000 were used as the training set and data recorded
in 2001 were used as the test set. The pruning option
for support 25% was selected after exhaustive ex-
periments, producing a decision model with more
than 99% accuracy for both training and test sets.
The Confusion Matrix for the test set is shown in
Figure 5.

The second decision structure extracted with the
AA Data Miner Module is the one for estimating a
missing measurement. Attributes, as missing meas-
urement older values or values of other measure-
ments at the same time were selected as inputs for
this kind of decision models and are shown in Figure
4. From the ONDA dataset the invalid records or re-
cords with inconsistent history were excluded, re-
maining a volume of 12,000 records.

O3 The current ozone value
O3_30 The ozone value 30 min ago
O3_90 The ozone value 90 min ago
MinMax60 The difference between the maximum and the

minimum ozone value in the last 60 min
MinMax150 The difference between the maximum and the

minimum ozone value in the last 150 min
O3val The corresponding validation tag

(valid/erroneous)
Figure 3. Attributes used for the validation decision model

NO The concurrent value of NO concentration
NO2 The concurrent value of NO2 concentration
NOX The concurrent value of NOx concentration
TEM The concurrent value of Temperature
HR The concurrent value of Relative Humidity
O3_15 The ozone value 15 min ago
O3_30 The ozone value 30 min ago
O3Class The (missing) ozone value level (low/med)

Figure 4. Attributes used for the estimation decision model

Validation Decision Model
Records classified as : valid erroneous
No. records in class ‘valid’ : 34,454 21
No. records in class ‘erroneous’ : 63 420
Size of Decision Tree: 29 (15 Leaves)
Correctly classified records: 99.71%

Estimation Decision Model
Records classified as : low med
No. Records in class ‘ low’: 9905 2,351
No. Records in class ‘med’: 752 4,384
Size of Decision Tree: 29 (15 Leaves)
Correctly classified records: 93.80%

Figure 5. Decision Model statistics.

<PMML>
 <DataDictionary numberOfFields="6">
 …
 </DataDictionary>
 <TreeModel modelName="…">
 <MiningSchema>
 <MiningField name="O3" usageType="active" />
 <MiningField name="O3val" usageType="predicted" />
 ………..
 </MiningSchema>
 <Node score="a">
 <SimplePredicate field="O3"
 operator="lessOrEqual" value="0" />
 <Node score="l"> <TRUE /> </Node>
 <Node score="a">
 <SimplePredicate field="O3"
 operator="greaterThan" value="0" />
 <Node score="a">
 <SimplePredicate field="O3"
 operator="lessOrEqual" value="164" />
 <Node score="a">
 <SimplePredicate field="MinMax60"
 operator="lessOrEqual" value="65" />
 <Node score="a"> <TRUE /> </Node>
 </Node>
 <Node score="a">
 <SimplePredicate field="MinMax60"
 operator="greaterThan" value="65" />
 <Node score="a">
 <SimplePredicate field="MinMax150"
 operator="lessOrEqual" value="185.9" />
 <Node score="a">
 <SimplePredicate field="O3_30"
 operator="lessOrEqual" value="127" />
 <Node score="a"> <TRUE /> </Node>
 </Node>
 <Node score="a">
 <SimplePredicate field="O3_30"
 operator="greaterThan" value="127" />
 <Node score="o"> <TRUE /> </Node>
 </Node>
 </Node>....
 </TreeModel>
</PMML>

Figure 6. An example PMML file

(defrule rule-0 (O3 ?O3)
 (test (<= ?O3 -99.9))
 => (store O3val l))

(defrule rule-1 (O3 ?O3)
 (test (> ?O3 -99.9))
 (O3 ?O3)
 (test (<= ?O3 164))
 (MinMax60 ?MinMax60)
 (test (<= ?MinMax60 65))
 => (store O3val a))
(defrule rule-2 (MinMax150 ?MinMax150)
 (test (<= ?MinMax150 185.9))
 (O3_30 ?O3_30)
 (test (<= ?O3_30 127))
 (O3 ?O3)
 (test (> ?O3 -99.9))
 (O3 ?O3)
 (test (<= ?O3 164))
 (MinMax60 ?MinMax60)
 (test (> ?MinMax60 65))
 => (store O3val a))

(defrule rule-3 (MinMax150 ?MinMax150)
 (test (<= ?MinMax150 185.9))
 (O3_30 ?O3_30)
 (test (> ?O3_30 127))
 (O3 ?O3)
 (test (> ?O3 -99.9))
 (O3 ?O3)
 (test (<= ?O3 164))
 (MinMax60 ?MinMax60)
 (test (> ?MinMax60 65))
 => (store O3val o))

Figure 7. The JESS rules generated

Once more, Quinlan’s (1993) C4.5 algorithm for

classification was used. Cross-folds training for 10
folds were performed. The decision tree extracted
with pruning support 0,025 outperformed, providing
accuracy greater than 90%. The Confusion Matrix is
shown in Figure 5.

We have discussed elsewhere (Athanasiadis et.al
2003) a slightly different approach in estimating
missing measurements using different types of deci-
sion models as Decision Trees, Neural Networks or
Fuzzy Lattice Model.

The decision models extracted with the Data
Miner are forwarded to the ATM using PMML 2.0
format and finally embedded on running agents as
JESS Rules, as described in the following paragraph.

5.2 Embedding Decision Models on Agents

There are two circumstances in which a decision
model is loaded to an AA-produced agent. In the
first case, the case of training, a newly created agent
is configured to have a decision structure and ATM

loads the decision model into it by obtaining the de-
cision structure content from Agent Use Repository.
In the second case, the case of retraining, the AA
agent already uses the decision structure and the
Data Miner Module, comes out with an update of the
later. In such case, DMM constitutes an ACL mes-
sage containing the updated decision structure in
PMML format (Data Mining Group 2000) and sends
it to the Agent Training Module.

In both cases, after receiving the message either
from AUR or DMM, ATM converts the PMML
document into JESS rules and determines the AA
agents that use the decision structure. Finally, the
JESS rules are sent to the appropriate Agents via
ACL messages and they insert (or update) their deci-
sion structures, accordingly. An example PMML de-
cision model and its corresponding JESS rules are
depicted in the following Figures 5, 6 respectively.
More on Jess engine can be found in Friedman-Hill
(2003).

In the training and retraining process, Agent
Training Module plays an important role. ATM
holds all the information (such as, the behavior ids
of an agent, decision structures of an agent) about
the agents to be trained. The information is used to
administer the agents in the Agent Academy plat-
form.

6 DISCUSSION

In the present paper the procedure followed for
building a Multi-Agent System that monitors Air-
Quality Indexes using the AA platform was pre-
sented. Procedures that in the traditional approach
for deploying a MAS needed significant human ef-
forts in the means of code programming, are now
automated using graphical tools provided by the
Agent Academy platform. Furthermore, the proce-
dure of training and retraining agents from historical
data, based on data-mining techniques is an ad-
vanced feature, incorporated in the AA platform.

An explanatory case, for building such a MAS
that needs agents to be trained from historical data is
the O3RTAA case, which was described in the pre-
sent paper. Agents acting as mediators, deliver vali-
dated information to the appropriate stakeholders in
distributed environment. The Diagnosis Agent for
monitoring ozone measurements in the O3RTAA
system designed, deployed and trained using the
C4.5 algorithm.

Furthermore, the use of C4.5 algorithm came out
with trustworthy decision models for validating in-
coming measurements and estimating the erroneous
ones in the described application.

Future steps are concentrated in adding intelli-
gence (i.e. inference engines) in the distribution
module of the O3RTAA system, for delivering
alarms in a more efficient manner.

ACKNOWLEDGEMENTS

Authors would like to express their acknowl-
edgements to the Agent Academy Consortium for
their valuable help. More specifically to the IDI-
EIKON team for their efforts within Agent Academy
project to deploy the O3RTAA system and CEAM
for the provision of the ONDA dataset.

REFERENCES

Agha, G. (1986). ACTORS: A Model of Concurrent Computa-
tion in Distributed Systems. MA: The MITPress.

Agha, G. & Hewitt, C. (1988). Concurrent programming using
actors. In Yonezawa, Y. & Tokoro, M. (Eds.), Object-
Oriented Concurrent Programming, (pp. 37–57). MIT
Press.

Agha, G., Wegner, P., & Yonezawa, A. (editors) (1993). Re-
search Directions in Concurrent Object-Oriented Program-
ming. Cambridge, MA: The MIT Press.

Agent Academy Consortium, the (2000). The Agent Academy
Project. Available at: http://AgentAcademy.iti.gr

Athanasiadis, I. N., Kaburlasos, V. G., Mitkas, P. A., & Pet-
ridis, V. (2003). Applying machine-learning techniques on
air quality data for real-time decision support. The First
NAISO Conference on Information Technologies in Envi-
ronmental Engineering, Gdansk, Poland.

Bellifemine, F., Poggi, A., & Rimassa, G. (2000). Developing
multi-agent systems with JADE, In the Seventh Interna-
tional Workshop on Agent Theories, Architectures, and
Languages (ATAL-2000), Boston, MA. (Available at:
http://jade.cselt.it).

Chen, Z. (1999). Computational Intelligence for Decision Sup-
port. CRC international series on computational intelli-
gence. CRC Press.

Data Mining Group, the (2001). Predictive Model Markup
Language Specifications (PMML), ver. 2.0 (Available at:
http://www.dmg.org).

FIPA (2000), Foundation for Intelligent Physical Agents Speci-
fications, (Available at: http://www.fipa.org/).

Friedman-Hill, E. J. (2003). Jess, The Expert System Shell for
the Java Platform, version 6.1, CA, Sandia National Labora-
tories. (Available at: http://herzberg.ca.sandia.gov/jess/).

Grosso, W. E., et al.(1999). Knowledge Modeling at the Mil-
lennium, The Design and Evolution of Protege-2000.
(Available at: http://protege.stanford.edu)

Jennings, N. R., Sycara, K., & Wooldridge, M. J. (1998). A
roadmap of agent research and development. In Autono-
mous Agents and Multi-Agent Systems 1, (pp. 7–38)., Bos-
ton. Kluwer Academic Publishers.

Mitkas, P., et al. (2002). An agent framework for dynamic
agent retraining: Agent academy. In Stanford-Smith, B.,
Chiozza, E., & Edin, M. (Editors), Challenges and
Achievements in e-business and e-work, pages 757–764,
Prague, Czech Republic.

Quinlan, J.R. (1993) C4.5 Programs for Machine Learning,
Morgan Kaufmann series in machine learning, USA, Mor-
gan Kaufmann publishers.

Witten, I. H. & Frank, E. (1999) Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Implemen-
tations, USA, Morgan Kaufmann publishers.

Wooldridge, M. J., & Jennings, N. R. (1999). Software engi-
neering with agents: Pitfalls and pratfalls. IEEE Internet
Computing, 3(3), pages 20–27.

Woolbridge, M. (1997). Agent-based software engineering. In
IEE Proc. Software Engineering, number 144(1), pages 26–
37.

Yezzi, R. (1992). Defining deduction and induction. In Practi-
cal Logic, Enrichment Study 12, Mancato. G. Bruno & Co.

