
Exploiting Semantic of Web Services
through ebXML Registries

Asuman DOGAC
Software Research and Development Center, Middle East Technical University, Inonu

Bulvari, METU(ODTU) Campus, 06531, Ankara, Turkey Tel:+90 312 2105598
asuman@srdc.metu.edu.tr, 1

Abstract: The aim of this tutorial is to present how Web service
semantics can be exploited through ebXML registries. The tutorial
starts with basic concepts including XML, Web services, Web service
standards and builds on top of these concepts to address how to exploit
service semantics in ebXML registries through simple but
comprehensive examples. The aim is to make these topics easily
digestible to the audience so that the companies can judge for
themselves the possible benefits of these technologies.

1. Introduction
Since Extensible Markup Language (XML) [16] is the common base of the technologies
described in this tutorial, first a brief introduction to XML is presented. Over the recent
years XML has become the “universal” standard for representing data. Starting out as a
standard data exchange format for the Web, it has quickly become the fundamental
instrument in the development of Web-based systems and standards.

1.1 XML in Brief

EDI XML

BGM+220+1234ABCD+9'
DTM+137:20030601:102'
LIN+1'
PIA+5+9344:EN+1078341ITEM:VP
QTY+21:16:EA'
PRI+AAA:95'
LIN+2'
…

<PurchaseOrderRequest>
 <PONumber>1234ABCD </PONumber>
 <PurchaseOrderDate>20030601</PurchaseOrderDate>
 <FirstLineItem>
 <ItemEAN_Identification no=9344 />
 <QuantityOrdered> 16 </QuantityOrdered>
 <UnitPrice> 95 </UnitPrice></FirstLineItem>
 <SecondLineItem>
…

Figure 1. Example Purchase Order Documents in EDI and XML

XML makes use of tags to give meaning and structure to data. Consider the XML example
given in Figure 1. We give the structure of “PurchaseOrderRequest” document by defining
its sub elements such as “PONumber” and “PurchaseOrderDate” . With the tag
“PONumber” , we give a meaning to the string “1234ABCD”, that this is a purchase order
number. Similarly “PurchaseOrderDate” tag gives a meaning to the string “20030601” that
it is a purchase order date. In Figure 1, we also provide the corresponding EDI message [7].
From this example, it is clear that:
• An XML document is a text document in contrast to a binary file which requires

specialized software to process it.

1 This work is supported in part by the Scientific and Technical Research Council of
Turkey, Project No: EEEAG 102E035

• An XML document is human readable. That is, although it is processed through
software, when necessary, a human can read it to make sense out of it.

• There are several public domain, open source tools to process XML documents such as
editors and parsers.

• As long as the communicating parties agree on the tags, XML documents are machine
processable. That is, if two parties agree on the structure and tags in the XML
documents, they can write programs that will accept these XML documents as input and
process them automatically.

1.2 Why XML is useful?

In order to explain why XML is useful, we compare some of the basic features of XML
technology with that of EDI as shown in Figure 2.

XML EDI
XML is an open human-readable, text
format.

EDI documents are typically in a
compressed, machine-only readable form
(Please refer to Figure 1).

XML documents are typically sent via the
Internet - i.e. a relatively low-cost public
network.

EDI documents are typically sent via
private and relatively expensive value-
added networks (VANs).

XML has low ongoing flat-rate costs using
existing Internet connections and relatively
low-cost Web Servers.

EDI can involve high on-going transaction
based costs keeping up the connection to
the EDI network and keeping the servers
up and running.

XML is being developed in a world of
shared software development populated by
many low-cost tools and open source
projects.

EDI was traditionally built from the ground
up in semi-isolation without being able to
share resources with other programs.

Figure 2. A Comparison of XML technology with EDI

1.3 What is a Web service?

A Web service is a business function made available via Internet through XML artifacts by
a service provider and accessible by clients that could be human users or software
applications. Any application/component can be exposed as a Web Service. For example,
one can have a Web service to accept purchase orders automatically.

The revolutionary aspect of Web services is that they provide interoperability at the
interface level. This allows for clean integration across departments, organizations, and
companies. The client who invokes the service and platform hosting the Web service can be
different; they can be using different programming languages and operating systems. Note
that one Web Service can make use of other Web services to perform a complex function.

Interactions among Web services involve three types of participants: service provider,
service registry and service consumer as shown in Figure 3. Web services are stored in
service registries. The universal standard for the technical specification of Web services is
WSDL (Web Services Description Language) [15] and the standard for invoking Web
services is SOAP (Simple Object Access Protocol) [11] which provides an XML based
messaging and remote procedure call (RPC) mechanism.

Figure 3. Web Service Model

There are two well known service registries: Electronic Business XML (ebXML) [6]
Registries and the The Universal Description, Discovery, Integration framework (UDDI)
[12] Registries. In this tutorial, we concentrate on ebXML.

Electronic Business XML is an initiative from OASIS and United Nations Centre for
Trade Facilitation and Electronic Business [13]. ebXML aims to provide the exchange of
electronic business data in Business-to-Business and Business-to-Customer environments.
The ebXML specifications provide a framework in which EDI's substantial investments in
Business Processes can be preserved in an architecture that exploits XML's technical
capabilities. In other words, the initiative leverages from the success of EDI in large
businesses, and intends reaching small and medium enterprises. ebXML builds on the
lessons learned from EDI, particularly the need to identify trading partners and messages,
and account for all message traffic. ebXML also identifies common data objects, called
core components, that allow companies to interchange standard EDI data with XML
vocabularies compliant with the ebXML specifications. Note that a Web service in ebXML
is represented with a “Service” class in ebXML Registry.

1.4 Why do we need the semantics of Web services?

Web Service Description Language (WSDL) specifies only the technical interface of the
Web services. WSDL provides the signature of the operations of the service, that is, the
name, parameters and the types of parameters of the service. In other words, WSDL does
not have any mechanism to express the semantic of the services like what the service is
about or its parameters.

On the other hand, Web services, like their real life counterparts, may have many
properties such as:

• the methods of charging and payment,
• the channels by which the service is requested and provided,
• constraints on temporal and spatial availability,
• service quality, security, trust and rights attached to a service and many more.
As shown in Figure 4, to be able to describe these properties and later search for

services according to their properties we need to describe the semantics of the service. This
search needs to be done in a machine processable and interoperable manner. This in turn is
possible only by describing the semantics of Web services through ontology languages. In
other words, all the necessary properties of services can easily be defined through an
ontology language and domain specific ontologies can be developed by standard bodies. It

Service Registry
(ebXML or UDDI)
- Web service descriptions

Service
Consumer

Service Provider
- Web service
- Service Description
in WSDL

Publish
service

Discover
service

Invoke service
through SOAP

is a good idea to ground domain specific ontologies in upper ontologies since in this way
they are more consistent and it becomes easier to integrate them within distributed
heterogeneous systems.

Figure 4. WSDL defines the interface of the service; semantic describes service itself

Currently, describing the semantic of Web in general [1], and semantic of Web services
in particular are very active research areas. World Wide Web Consortium has started the
initiative to develop Semantic Web and a semantic markup language for publishing and
sharing ontologies, namely Web Ontology Language (OWL) [14], is being developed for
this purpose. OWL is derived from DAML+OIL [2] by incorporating learnings from the
design and application use of DAML+OIL. It builds upon the Resource Description
Framework [9,10]. It should be noted that there are only minor differences between OWL
and DAML+OIL.

There are a number of efforts for describing the semantics of Web services. Among
these DAML-S [3] defines an upper ontology, that is, a generic “Service” class. In order to
make use of DAML-S upper ontology, the lower levels of the ontology need to be defined.
To provide interoperability, application domains must share such specifications. In fact, an
ontology describes consensual knowledge, that is, it describes meaning which has been
accepted by a group not by a single individual.

2. Describing the Semantics of Web Services, DAML-S
DAML-S defines an upper ontology for defining the semantics of Web services. It is based
on DAML+OIL and aims to enable the automation of the following functionalities [3]:
• Web service discovery: Web service discovery involves the automatic location of Web

services that provide a particular service and that adhere to requested constraints.
• Web service invocation: Web service invocation involves the automatic execution of an

identified Web service by a computer program or a software agent.
• Web service composition and interoperation: This task involves the automatic selection,

composition and interoperation of Web services to perform some tasks, given a high-
level description of an objective.

• Web service execution monitoring: Individual services and, even more, compositions of
services, will often require some time to execute completely. Users may want to know
during this period what the status of their request is.

Semantic description of the
properties of a service in DAML-S

describes

Web
Service

Service
Consumer

Web Service
Description

defines

Web
Service

Service
Consumer

Web Service
Description

defines

Figure 5. Describing the upper ontology of services

The top level class in DAML-S service taxonomy is the “Service" class as shown in Figure
5. Service class has the following three properties:
1. presents: The range of this property is ServiceProfile class. That is, the class Service

presents a ServiceProfile to specify what the service provides for its users as well as
what the service requires from its users.

2. describedBy: The range of this property is ServiceModel class. That is, the class
Service is describedBy a ServiceModel to specify how it works.

3. supports: The range of this property is ServiceGrounding. That is, the class Service
supports a ServiceGrounding to specify how it is used.

2.1 How the do we define and use service semantics?

In relating the semantics with the services advertised in service registries, there are two key
issues: the first one is where to store the generic semantics of the services (which could be a
simple taxonomy or a more complex ontology). UDDI does not provide an internal
mechanism to store generic service semantics. ebXML, on the other hand, through its
classification hierarchy mechanism allows domain specific ontologies to be stored in the
registries.

An ebXML registry is a mechanism where business documents and relevant metadata can
be registered, and can be retrieved as a result of a query. A registry can be established by an
industry group or standards organization.

Note that a service in ebXML is represented with a “Service” class in ebXML Registry.
The technical specification files (i.e., WSDL descriptions of the service instance) are stored in
ebXML registry together with “Service” class as extrinsic objects. The relationship between
the description files and the “Service” class is established through the “ServiceBinding” Class
of ebXML. A “Service” class may have a collection of “ServiceBinding” classes each of
which represents technical information on how to access a specific interface offered by a
“Service” instance. Also, a “ServiceBinding” instance has several “SpecificationLink”s each
of which provides the linkage between a ServiceBinding and one of its specifications
describing how to use the Service.

Service

ServiceGrounding ServiceModel

Resource
ServiceProfile

Supports: How
to access it

presents:What it
does

describedBy:
How it works

provides

Figure 6 An example classification hierarchy for travel industry

An ebXML compliant registry allows metadata to be stored in the registry. This is
achieved through a “classification" mechanism, called ClassificationScheme which helps to
classify the objects in the registry. ClassificationScheme defines a hierarchy of
ClassificationNodes [4,5].

Figure 7 Relating service instances with the nodes in the classification hierarchy

Consider for instance the classification hierarchy example given in Figure 6 for travel
industry. When such a hierarchy is stored in an ebXML registry, the registry objects can be
related with the nodes in the hierarchy. In this way it is possible to give meaning to the
services. In other words, by relating a service advertised with a node in classification
hierarchy, we make the service an explicit member of this node and the service inherits the
well-defined meaning associated with this node as well as the generic properties defined for
this node. As an example, assume that there is a service instance in the ebXML registry,
namely, “MyService” . When we associate “MyService” with “ReserveAFlightService” node
as shown in Figure 7, its meaning becomes clear; that this service is a flight reservation
service. Assuming that the “ReserveAFlightService” service has the generic properties such as
“originatingFrom”, “destinationTo” and “paymentMethod” as shown in Figure 8,
“MyService” also inherits these properties as shown in Figure 9.

serviceToIndustryClassification

MyService:RegistryEntry TravelIndustry: ReserveAFlightService

classifiedObject classificationNode

DAML-S

Service

Travel Service

Transportation
Service

Accommodation
Service

Entertainment
Service

Air Transfer Land Transfer Sea Transfer

ReserveAFlight
t

Buy Ticket

Passport
Service

Visa
Service

Figure 8. Properties of “ ReserveAFlight” Generic Service

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY tron "http://www.srdc.metu.edu.tr/2003/TravelOntology.owl">
 <rdf:RDF
 xmlns:rdf = "&rdf;#"
 xmlns:tron = "& tron;#"
 <tron:ReserveAFlight rdf:ID="MyService">
 <tron:departureFrom> Ankara </tron:departureFrom>
 <tron:destinationTo> Bologna </tron:destinationTo>
 <tron:price> 500 </tron:price>
 <tron:paymentMethod> Credit Card </tron:paymentMethod>
 </tron:ReserveAFlight>
</rdf:RDF>

Figure 9. An Example Service Semantics

Providing precise meaning and properties of the services facilitate their discovery. For
example, if we want to find all the flight reservation services in the registry, it is possible to
query the services that are classified under the generic “ReserveAFlightService” node.

 ebXML query facility can be used for this purpose which supports two query capabilities
[5]: Filter Query and SQL Query. SQL Query support is optional whereas Filter Query is
mandatory for a registry to be ebXML compliant. A client submits a Filter Query as part of an
“AdhocQueryRequest” .

2.2 What do we gain from service semantics?

When services are described according to a service ontology, it becomes possible to
discover and compose services automatically. Consider for example the service definition
given in Figure 9, where service properties are described in OWL by conforming to travel
service ontology of Figure 6:
1. First, the service description is both human readable and machine processable. That is,

one can write a program to find and process such services dynamically.
2. Secondly there are very many public tools such as APIs and reasoners to process such

descriptions in DAML and RDF. OWL tools are expected to appear shortly. In other
words, by conforming to a standard ontology language while describing semantics
allows us to use publicly available tools.

3. Conforming to standards solves the interoperability problem; an organization
complying with these standards can easily exchange machine processable information
with other organizations.

4. The service name “MyService” does not convey information about what the service is
about. However by making it an explicit member of the “ReserveAFlight” node in the
ontology, we give it a concensually agreed meaning that it is a flight reservation service.

ReserveAFlight Generic Service

originatingFrom destinationTo paymentMethod

Hence, when a program is searching the service registry, it is able to identify this
service as a flight reservation service.

5. Furthermore, we were able to describe the properties of this service which can be used
in service discovery. For example, when an agent (human or software) searches a flight
reservation service that accepts “credit card payment” , this service can easily be located
since its “paymentMethod” contains this information.

2.3 What is the role of ebXML registry in supporting the semantics of Web services?

ebXML registry helps to support the semantic with the following mechanisms:
1. It is possible to define the properties of registry entries through “slots” which gives way

to define the properties of Web services;
2. It is possible to store classification hierarchies in the services registry. Furthermore,

ebXML allows relating the services advertised in the registry with the semantics defined
in the classification hierarchy through explicitly declared classification objects. This
makes it possible to query the registry to find out services according to their semantics.

Finally, the topics briefly mentioned over here due to space limitations will be elaborated
during the tutorial presentation.

References
[1] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web", Scientific American,
May 2001.
[2] DAML+OIL, http://www.w3.org/2001/10/daml+oil
[3] DAML Services Coalition (A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng), “DAML-S:
Semantic Markup for Web Services", in Proceedings of the International Semantic Web
Working Symposium (SWWS), July 2001.
[4] ebRIM: ebXML Registry Information Model v2.1, June 2002, http://www.ebxml.org/
specs/ebRIM.pdf.
[5] ebRSS: ebXML Registry Services Specification v2.1, June 2002, http://www.ebxml. org
/specs/ebiRS.pdf.
[6] ebXML, http://www.ebxml.org/
[7] Electronic Data Interchange, http://www.unece.org/cefact/index.htm.
[8] OASIS ebXML Registry Reference Implementation Project (ebxmlrr), http://ebxmlrr.
sourceforge.net/
[9] RDF Schema: Resource Description Framework Schema Specification, W3C Proposed
Recommendation, 1999, http://www.w3.org/TR/PR-rdf-schema.
[10] RDF Syntax: Resource Description Framework Model and Syntax Specification, W3C
Recommendation, 1999, http://www.w3.org/TR/REC-rdf-syntax.
[11] SOAP: Simple Object Access Protocol, http://www.w3.org/TR/SOAP/
[12] UDDI: Universal Description, Discovery and Integration, http://www.uddi.org
[13] UN/CEFACT: United Nations Centre for Trade Facilitation and Electronic Business,
http://www.unece.org/cefact/
[14] Web Ontology Language (OWL) Reference Version 1.0, http://www.daml.org/2002
/06/webont/owl-ref-proposed
[15] WSDL: Web Service Description Language, http://www.w3.org/TR/wsdl
[16] XML: Extensible Markup Language 1.0, W3C Recommendation, 1998, http://www.
w3.org/TR/REC-xml-19980210.

