
Mapping Archetypes to OWL ∗

Ozgur Kilic, Veli Bicer, Asuman Dogac

Software Research and Development Center
Middle East Technical University (METU)

06531 Ankara Turkiye
email: asuman@srdc.metu.edu.tr

ABSTRACT
In [6] and [8], the OWL representations of some archetypes
are given. The work described in this paper is meant to
complement those work.

1. ARCHETYPE DEFINITION LAN-
GUAGE (ADL)

Archetypes are constraint-based models of domain enti-
ties and each archetype describes configurations of data in-
stances whose classes conform to a reference information
model. Having a small but generic reference information
model helps the EHR system to handle many different med-
ical concepts. Yet the small number of generic concepts in
the reference information model is not enough to describe
the semantics of the domain specific concepts: these are de-
scribed through archetypes.

An archetype is composed of three parts: header section,
definition section and ontology section. Header section con-
tains a unique identifier for the archetype, a code identifying
the clinical concept defined by the archetype. The header
section also includes some descriptive information such as
author, version and status. Definition section contains the
restrictions in a tree like structure created from the reference
information model. This structure constrains the cardinal-
ity and content of the information model instances comply-
ing with the archetype. Codes representing the meanings of
nodes and constraints on text or terms, bindings to termi-
nologies such as SNOMED [10] or LOINC [7], are stated in
the ontology section of an archetype. A formal language for
expressing archetypes is described in [1] known as Archetype
Definition Language (ADL).

As an example to an archetype definition in ADL, a part of
“Complete Blood Count” archetype definition is presented
in Figure 1. The complete ADL definition can be found in
[3]. Here the “OBSERVATION” class from the reference
information model is restricted to create “Complete Blood

∗

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright ACM 1-58113-497-5/02/06 ...$5.00.

OBSERVATION[at1000.1] matches {-- complete blood picture
name matches {

CODED_TEXT matches {
code matches {[ac0001]} -- complete blood count}}

data matches {

LIST_S[at1001] matches {-- battery
items cardinality matches {0..*} \epsilon {

ELEMENT[at1002.1] matches {-- haemaglobin
name matches {

CODED_TEXT matches {
code matches {[ac0003]} -- haemaglobin}}

value matches {

QUANTITY matches {
value matches {0..1000}

units matches {^g/l|g/dl|.+^}}}}
ELEMENT[at1002.2] occurrences matches {0..1} matches

{-- haematocrit

name matches {
CODED_TEXT matches {

code matches {[ac0004]}-- haematocrit}}
value matches {

QUANTITY matches {
value matches {0..100}
units matches {"%"}}}}

ELEMENT[at1002.3] occurrences matches {0..1} matches
{-- platelet count

name matches {
CODED_TEXT matches {

code matches {[ac0005]} -- platelet count}}

value matches {
QUANTITY matches {

value matches {0..100000}
units matches {"/cm^3"}

}}}}}}}

Figure 1: The ADL definition of “Complete Blood

Count” Archetype

Count” archetype, by restricting its CODED TEXT value
to “ac0001” term, (ac0001 term is defined to be “complete
blood count” in the constraint definitions part of the ADL,
and declared to be equivalent to Loinc::700-0 term in the
term bindings part), and by defining its content to be a list
of “Haemoglobin”, “Haematocrit” and “Platelet Count” test
result elements.

A template on the other hand is a directly, locally us-
able data creation/validation artefact which is semantically
a constraint/choice on archetypes, and which often corre-
sponds to a whole form or a screen. Templates in general
have a 1:N relationship with underlying concepts, each of
which is described by an archetype.

2. WEB ONTOLOGY LANGUAGE (OWL)
Web Ontology Language (OWL) [11] is a semantic

markup language developed by the World Wide Web consor-
tium for publishing and sharing ontologies. OWL is based
on Resource Description Framework (RDF) [9].

OWL describes the structure of a domain in terms of
classes and properties. Classes can be names (URIs) or
expressions and the following set of constructors are pro-
vided for building class expressions: owl:intersectionOf,

owl:unionOf, owl:complementOf, owl:oneOf, owl:allValues-

From, owl:someValuesFrom, owl:hasValue.
In OWL, properties can have multiple domains and mul-

tiple ranges. Multiple domain (range) expressions restrict
the domain (range) of a property to the intersection of the
class expressions.

Another aspect of the language is the axioms sup-
ported. These axioms make it possible to assert subsump-
tion or equivalence with respect to classes or properties
[2]. The following are the set of OWL axioms: rdfs:-

subClassOf, owl:sameClassAs, rdfs:subPropertyOf, owl:-

samePropertyAs, owl:disjointWith, owl:sameIndividualAs,

owl:differentIndividualFrom, owl:inverseOf, owl:transitive-

Property, owl:functionalProperty, owl:inverseFunctional-

Property.

3. HOW TO MAP ADL TO OWL?
In this section, we will present how archetypes are repre-

sented in OWL by mapping each ADL construct to its OWL
counterpart. As mentioned in Section 1, ADL specializes
the classes of the generic information model by constraining
their attributes. The applicable constraints are as follows
[1]:

• Constraints on the range of data-valued properties

• Constraints on the range of object-valued properties

• Constraints on the “existence” of a property indicating
whether the property is optional or mandatory .

• Constraints on the “cardinaity” of a property indicat-
ing whether the property refers to a container type,
the number of member items it must have and their
optionality, and whether it has a “list” or a “set” struc-
ture.

• Constraints on a property with “occurrences” indicat-
ing how many times in runtime data an instance of a
given class conforming to a particular constraint can
occur. It only has significance for objects, which are
children of a container property.

It is also possible to reuse previously defined archetypes
and archetype fragments. There are two constructs for
this purpose: The first one is the “use node” construct,
which is used to reference an archetype fragment by a path
expression. The “use node” references an archetype frag-
ment within the archetype. The second one is the “al-
low archetype” construct, which is used to reference other
archetypes by defining a criteria for allowable archetypes.

As described in [1], the first step in representing
archetypes in OWL is to construct the reference informa-
tion model of the domain in OWL. A simple algorithm for
object model to OWL mapping is given in [6]. First, each
class in the reference information model is represented as
an OWL class. Secondly, each relationship is represented as

an ObjectProperty and each data-valued property is repre-
sented as DatatypeProperty in OWL. Finally, cardinalities
of relationships and properties are represented by cardinal-
ity restrictions in OWL.

The next step is representing archetypes in OWL, based
on the reference information model. In the following sub-
sections, we describe how each ADL construct can be rep-
resented in OWL.

3.1 Specializing the Root Class
Basically, an archetype restricts the instances of the do-

main classes. It has a hierarchical structure and restriction
starts with a root class. The root class of the archetype is
the class of the instances which are validated against the
archetype.

...
definition

PERSON[at0000] matches {

...
}

...
ontology

primary_language = <"en">
languages_available = <"en", ...>
term_definitions("en") = <

items("at0000") = <
text = <"Doctor">

description = <"Doctor of the patient">
>

...

Figure 2: Archetype Representing the Doctor Con-

cept

As an example, in Figure 2, “Person” represents such a
root class. “Person” is restricted to the doctor concept in
the domain. The “at0000” term binds the “Person” to the
“Doctor” concept. This means that this archetype describes
the “Person” instances who are doctors. In OWL, such a
specialization can be represented by defining a new class for
the root class of the archetype. Figure 3 depicts the corre-
sponding OWL class of the archetype. The contents of the
“Doctor” class is determined by applying restrictions on the
properties inherited from the “Person” class. In other words,
properties of the “Person” class of the reference information
model have local restrictions inside the “Doctor” class and
these local restrictions are derived from the archetype de-
fined in the ADL document. How these local restrictions are
handled in OWL is discussed in the following subsections.
Note that, archetypes do not introduce new properties in
addition to the properties of the reference model. They in-
troduce new classes which define local restrictions on the
properties of the imported reference model.

<owl:Class rdf:ID="Doctor">

<rdfs:subClassOf rdf:resource=
"http://www.sample.org/Domain.owl#Person"/>
<rdfs:subClassOf rdf:resource=

"http://www.sample.org/Archetype.owl#Archetype"/>
...

</owl:Class>

Figure 3: Representing the Doctor Concept in OWL

As a summary, the class “Person” is a reference informa-
tion model class and the class “Doctor” is introduced to
represent the doctor concept defined in the archetype. We

call such a class which are the root classes of archetypes as
“Archetype” class in OWL. In Figure 3, “Doctor” is defined
as a subclass of this “Archetype” class and hence it inherits
attributes from the “Archetype” class in which archetype
related properties are defined such as archetype id.

3.2 Constraints on the range of Data-valued
Properties

As already mentioned, archetypes also constrain data-
valued properties. However certain desired constraints on
primitive types can not be directly expressed in OWL. In
OWL, it is possible to compare the value of a data-valued
property by “hasValue” construct and declare the type of
such a property by “rdf:datatype”. However, complex con-
straints such as defining allowable characters and sequences
for a string-valued property or defining a maximum and a
minimum value for an integer-valued property are not pos-
sible.

Yet OWL allows XML Schema to be used as a data type.
Therefore, our solution for defining constraints on data-
valued propertiesis to use “User-derived datatypes” in XML
Schema. “User-derived datatypes” are those datatypes that
are defined by individual schema designers [13]. In Figure
4, we present an example to a user-derived dataype which
restricts adultAgeType to greater than 18.

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
targetNamespace="http://www.sample.org/sch/sample"
xmlns="http://www.sample.org/sch/sample">

<xsd:simpleType name="adultAgeType">
<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:minInclusive value="18"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:schema>

Figure 4: An Example User-derived Datatype in

XMLSchema

For each constraint on a data-valued property in an
archetype, the corresponding user-derived datatype is de-
clared in an XMLSchema. Data-valued properties of the
reference information model are constrained by setting their
types to user-derived types in the corresponding OWL class.
If the data-valued property is restricted to have a value from
a set of values, then “owl:oneOf” construct is used to de-
scribe the possible values of the property. Figure 5 shows
how the user-derived datatypes are referenced from OWL.

...
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=
"http://www.sample.org/Domain.owl#age"/>

<owl:allValuesFrom rdf:resource=
"http://www.sample.org/sch/sample#adultAgeType"/>

</owl:Restriction>
</rdfs:subClassOf>
...

Figure 5: Referencing user-derived datatypes in

OWL

3.3 Constraints on the range of Object-valued
Properties

In an archetype hierarchy, nodes which refer to the prop-
erties of a class in the reference information model, may
have object values, that is, refer to classes in the reference
information model.

As an example, in Figure 6, “name” property of the “Per-
son” is an object property. This property is restricted to
be an instance of “Person Name” class which is further re-
stricted in the archetype. In OWL, this is expressed as
follows: the range of the “name” Object property is re-
stricted to “DoctorName” class which is a subclass of “Per-
son Name” class. Furthermore, the constraints defined on
the “name” Object property in the archetype are defined
as further restrictions in this newly introduced subclass,
namely, “DoctorName”.

PERSON[at0000] matches {
name matches{

PERSON_NAME[at0001] matches?{
...

}

}
}

ontology
primary_language = <"en">
term_definitions("en") = <

items("at0000") = <
text = <"Doctor">

description = <" Doctor of the patient ">
>

items("at0001") = <
text = <"DoctorName">
description = <"Name of the doctor">

>
...

Figure 6: Object-typed node in ADL

As a result, each constraint on an object-valued property
introduces a new class in OWL. The range of such a prop-
erty is defined to be the newly introduced subclass. Figure
7 depicts the corresponding OWL classes of the archetype
defined in Figure 6.

<owl:Class rdf:ID="Doctor">
<rdfs:subClassOf rdf:resource=

"http://www.sample.org/Domain.owl#Person"/>
<rdfs:subClassOf rdf:resource=

"http://www.sample.org/Archetype.owl#Archetype"/>
<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom rdf:resource="#DoctorName"/>
<owl:onProperty rdf:resource=

"http://www.sample.org/Domain.owl#name"/>
</owl:Restriction>

</rdfs:subClassOf>

...
</owl:Class>

<owl:Class rdf:ID="DoctorName ">

<rdfs:subClassOf rdf:resource=
"http://www.sample.org/Domain.owl#PersonName"/>

...

</owl:Class>

Figure 7: Representing Object-valued Properties in

OWL

It should be noted that, in our approach, a constraint
on an object-valued property generates only a new class
in OWL unlike the approach in [6] which also introduces

a new ObjectProperty. Introducing a new ObjectProperty
may make it difficult to relate the object properties in the
archetype with the object properties in the reference model.

3.4 Representing Existence Constraints
In ADL, an existence constraint on a property shows the

optionality of the property. Optionality of a property in
OWL can be specified by using minCardinality, maxCardi-
nality and cardinality constructs. If a property has ‘minCar-
dinality = 0’ and ‘maxCardinality =1’ then the property is
optional. If a property has ‘cardinality =1’ then the prop-
erty is required. Figure 8 gives an example of existence
constraint in ADL.

PERSON[at0000] matches {

specializedOn existence matches{1..1} matches{...}
...

}

...

Figure 8: An Example Existence constraint in ADL

In Figure 9, the OWL fragment corresponding to the ex-
istence constraint defined in Figure 8 is presented.

<owl:Class rdf:ID="Doctor">

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=

"http://www.sample.org/Domain.owl#specializedOn"/>
<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
...
</owl:Class>

Figure 9: Defining Existence Constraints in OWL

3.5 Representing Cardinality Constraints
A cardinality constraint indicates that a property has a

container type in ADL. Cardinality defines the number of
valid elements by giving an upper and a lower bound to the
element count for the container class. In Figure 10, “events”
defined as having ‘minCardinality = 1’ and ‘maxCardinality’
unbounded. It is also stated that elements in events can be
an instance of one of the two subclasses of “Event” class.
...

data matches {
History[at0003] matches {

events cardinality matches {1..*} matches {

Event[at0004] matches {...}
Event[at0005] matches {...}

}
}

}

...

Figure 10: Cardinality Constraints in ADL

Assume that “at0003”, “at0004” and “at0005” concepts
mean OneMonthHistory, WeightGain, HeightGain respec-
tively. Then ADL fragment in Figure 10 can be represented
in OWL as shown in Figure 11. In class OneMonthHistory,
the minimum cardinality of “events” is restricted to one and
the values of the “events” are restricted to be either Weight-

Gain event or HeightGain event.

<owl:Class rdf:ID="OneMonthHistory">
<rdfs:subClassOf rdf:resource=

"http://www.sample.org/Domain.owl#History"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:allValuesFrom>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#WeightGain "/>
<owl:Class rdf:about="#HeightGain"/>

</owl:unionOf>
</owl:allValuesFrom>
<owl:onProperty rdf:resource=

"http://www.sample.org/Domain.owl#events"/>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=

"http://www.sample.org/Domain.owl#events"/>

<owl:minCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

...

</owl:Class>

<owl:Class rdf:ID="WeightGain">
<rdfs:subClassOf rdf:resource=

"http://www.sample.org/Domain.owl#Event"/>
...

</owl:Class>

<owl:Class rdf:ID="HeightGain">
<rdfs:subClassOf rdf:resource=

"http://www.sample.org/Domain.owl#Event"/>
...

</owl:Class>

Figure 11: Representing ADL’s cardinality con-

straint in OWL

3.6 Representing Occurrence Constraints
In ADL, occurrence constraints are defined on the ele-

ments of a container class and they constrain the number
of each type of element in the container. In Figure 12, an
ADL fragment declares that “events”’ should contain ex-
actly one instance of “at0001”, three instances of “at0003”
and at most one instance of “at0002”’ concepts.

events cardinality matches {*} matches {
EVENT[at0001] occurrences matches {1} matches {...}

EVENT[at0002] occurrences matches {0..1} matches {...}
EVENT[at0003] occurrences matches {3} matches {...} }

Figure 12: Occurrence constraint in ADL

Occurrence constraints in ADL correspond to the qual-
ified number restrictions of Description Logics (DLs).
DAML+OIL [4] from which the OWL is derived supports
the usage of qualified number restrictions with the following
language elements: “daml:cardinalityQ”, “daml:hasClassQ”
,“daml:maxCardinalityQ”, “daml:minCardinalityQ”.

OWL is developed as a vocabulary extension of RDF (the
Resource Description Framework) and is derived from the
DAML+OIL Web Ontology Language [12]. Unfortunately
OWL does not inherit qualified number restrictions from
DAML+OIL. Therefore it is not possible to represent oc-
currence constraints in OWL.

3.7 Representing Invariant Constraints
An invariant constraint is an expression which should be

satisfied by all instances of an archetype. Figure 13 gives an

invariant example in ADL, stating that the “value” property
should exist when the “code” property exists.

Observation[at0000] matches {

classCode cardinality matches {1} matches {...}
moodCode cardinality matches {1} matches {...}

id matches {...}
code matches {...}
confidentialityCode matches {...}

uncertaintyCode matches {..}
value matches {...}

invariant:

basic_validity: exists code implies exists value }

Figure 13: Invariant in ADL

Since representing invariants is not directly addressed in
OWL, we propose to represent them outside OWL. There
are several ways of representing invariants in XML doc-
uments. One of the solutions is to use XSLT/XPath
stylesheets. We propose defining invariants through
XSLT/XPath stylesheets and executing these invariant con-
straints over OWL instances using XSLT processors. Figure
14 depicts how the invariant constraint of Figure 13 can be
expressed through XSLT.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="text"/>
<xsl:template match="/">

<xsl:if test= "boolean(/Observation/code)">
<xsl:if test= "not(boolean(/Observation/value))">

<xsl:text>Error! code exists without value</xsl:text>
</xsl:if>

</xsl:if>

<xsl:if test= "boolean(/Observation/code)">
<xsl:if test= "boolean(/Observation/value)">

<xsl:text>Instance document is valid</xsl:text>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

Figure 14: Representing Invariant using XSLT

3.8 Representing Internal References
The aim of internal references in ADL is not to repeat

a previously defined constraint in an archetype. Internal
references are indicated by path expressions in ADL. Such
references can be enforced by reusing the classes or data
types in OWL.

3.9 Representing Archetype Reuse
In ADL “allow archetype” construct is used to refer-

ence other archetypes by defining a criteria for allowable
archetypes. An example of “allow archetype” is presented

SECTION[at2000] occurrences matches {0..1} matches {
items cardinality matches {0..*} matches {

allow_archetype ENTRY occurrences matches {0..1} matches {

include
id matches {/.*\.iso-ehr\.entry\..*\..*/}

}
}

}

Figure 15: Archetype reuse in ADL

in Figure 15. The elements of the “items” list described in
Figure 15 are instances of “ENTRY” class of the reference
information model and they are constrained by archetype
classes whose id matches the indicated representation.

In OWL the range of the “items” property is restricted
in such a way that values of “items” are instances of “EN-
TRY” and also instances of an “Archetype” whose id has
a pattern restriction. Such a range restriction can be de-
fined by introducing a new class, and setting the range of
the “items” to this class. This new class is subclass of “EN-
TRY” and restricts the “archetypeID” by setting its range
to a user-derived type which defines the pattern restriction.

OWL class defined in Figure 16 can be used for this pur-
pose to implement the “allow archetype” constraint in OWL
for the example in Figure 15.

<owl:Class rdf:ID="ReusedArchetype1">

<rdfs:subClassOf rdf:resource=
"http://www.sample.org/Domain.owl#Entry"/>

<rdfs:subClassOf>

<owl:Restriction>
<owl:allValuesFrom rdf:resource=

"http://www.sample.org/ArchetypeSchema#entryPattern"/>
<owl:onProperty rdf:resource=

"http://www.sample.org/Archetype.owl#archtypeID"\>

</owl:Restriction>
</rdfs:subClassOf>

...
</owl:Class>

Figure 16: Implementing archetype reuse in OWL

4. REFERENCES
[1] Archetype Definition Language (ADL) 1.2 draft,

http://www.openehr.org/drafts/ADL-1 2 draftF.pdf

[2] Baader, F. , Horrocks, I., Sattler, U., “Description
Logics”, Handbook on Ontologies, 2004.

[3] Complete Blood Count Archetype ADL Definition,
http://www.openehr.org/repositories/archetype-dev/-
adl 1.1/adl/archetypes/openehr/ehr/entry/openehr-ehr-
observation.haematology-cbc.draft.adl.html

[4] DAML+OIL Reference Description. Dan Connolly,
Frank van Harmelen, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea
Stein. http://www.w3.org/TR/daml+oil-reference.

[5] Extending XML Schemas,

[6] HL7 Template and Archetype Architecture Version 3.0,
http://www.hl7.org/library/committees/template/-
HL7 Atlanta 10 20 04.doc

[7] Logical Observation Identifiers Names and Codes
(LOINC), www.loinc.org

[8] openEHR Community, http://www.openehr.org/

[9] RDF Semantics, http://www.w3.org/TR/rdf-mt/

[10] SNOMED Clinical Terms,
http://www.snomed.org/snomedct txt.html

[11] Web Ontology Language OWL,
http://www.w3.org/TR/owl-features/

[12] Web Ontology Language OWL Reference, Mike Dean
and Guus Schreiber, Editors, W3C Recommendation, 10
February 2004,
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[13] XML Schema Part 2: Datatypes. Paul V. Biron

