
1

A Semantic Web Service Based Middleware for the
Tourism Industry

Yildiray Kabak, Mehmet Olduz, Gokce B. Laleci, Tuncay Namli, Veli Bicer, Nikola Radic and Asuman Dogac

Abstract— Currently in the travel domain most of the travel
products are sold through Global Distribution Systems (GDSs).
Since only major airline companies or hotel chains can afford
to join GDSs, it is difficult for small and medium enterprises
to market their travel products. In this paper, we describe a
middleware, called SATINE, to address this problem.

In the SATINE middleware, existing travel applications are
wrapped as Web services. Web services, as such, is of limited
use because the service consumer must know all the details of
the Web service like the functionality of the Web service (what
it does) and the content and the structure of input and output
messages. Therefore we annotate both the service functionality
and the service messages with Web Ontology Language (OWL)
ontologies. Service functionality ontology is obtained from the
“Open Travel Alliance (OTA)” specifications. Service message
ontologies are automatically generated from the XML Schema
definitions of the messages. These local message ontologies are
mapped into one or more global message ontologies through an
ontology mapping tool developed, called OWLmt. The mapping
definitions thus obtained are used to automatically map hetero-
geneous message instances used by the Web service provider and
the consumer using a global ontology as a common denominator.
This architecture is complemented by a peer-to-peer network
which uses the introduced semantics for the discovery of Web
services.

Through the SATINE middleware, the travel parties can
expose their existing applications as semantic Web services either
to their Web site or to Web service registries they maintain.
SATINE middleware facilitates the discovery and execution of
these services seamlessly to the user.

I. INTRODUCTION

THE tourism industry today is the second largest economic
sector, after manufacturing in the world. Tourism industry

embarked on e-Business earlier than in other sectors as evident
in several online travel e-Commerce sites.

Currently, travel information services are dominantly pro-
vided by Global Distribution Systems (GDSs) such as Galileo
[12], Sabre [31] and Amadeus [1]. Major airline companies,
many hotel chains and car rental companies list their inven-
tories with major GDSs. A GDS gives its subscribers pricing
and availability information for multiple travel products such
as flights, hotel rooms and car rentals. Travel agents, cor-
porate travel departments, and even Internet travel services,
subscribe to one or more GDSs. However, small and medium-
sized enterprises cannot participate to GDS-based e-Business
activities since selling their products through GDSs is too
expensive for them. Furthermore, GDSs are legacy systems

This work is supported by the European Commission, DG Information
Society and Media, eBusiness Unit through IST-1-002104-STP SATINE
project and in part by the Scientific and Technical Research Council of Turkey,
Project No: EEEAG 102E035

that mostly rely on private networks. They are mainly for
human use and have difficult to use cryptic interfaces, have
limited search capabilities, and are difficult to inter-operate
with other systems and data sources.

In order to facilitate eBusiness, the travel industry has
formed a consortium called the Open Travel Alliance (OTA)
[23], and OTA has produced XML schemas of message
specifications to be exchanged between the trading partners,
including availability checking, booking, rental, reservation,
query services, and insurance. However, not all travel applica-
tions can be expected to produce and consume OTA compliant
messages.

In this paper, we describe a middleware to facilitate eBusi-
ness for all the involved parties in the travel domain which
has been implemented within the scope of the SATINE Project
[32]. The main idea is to expose existing travel applications
as Web services and facilitate the discovery of and execution
of Web services through semantic mediation and peer-to-peer
(P2P) networks. The use of P2P technology facilitates the
discovery of the services of small and medium size enterprises
(SMEs) to enable them to easily sell their services over the
Internet. Web service technology together with travel domain
specific ontologies allow the parties consume heterogeneous
messages.

The technology of the middleware is as follows:
• The existing travel domain applications are wrapped as

Web services. Web services, as such, is of limited use
because the service consumer must know all the details
of the Web service like the functionality of the Web
service (what it does) and the content and the structure of
input and output messages. Although there are efforts to
standardize the messages exchanged in the travel domain
such as Open Travel Alliance, not every travel application
can be OTA compliant. Furthermore, the GDSs must be
a part of the system since today an important part of
the travel information comes through them. Therefore,
we handle the interoperability of Web service messages
through semantic mediation.

• The main mechanism to discover Web services is the
Web service registries. We show how to use the semantic
annotation of Web services in the UDDI and ebXML
registries to facilitate Web service discovery.

• There could be Web services not registered to any service
registry but simply made available through a Web site.
This may be preferable especially by SMEs which may
not wish to have extra overhead of maintaining Web
service registries. To facilitate the discovery of Web
services, SATINE middleware uses peer-to-peer network

2

which exploits the defined semantics. We show how to
handle semantic routing for Web service discovery and
how to invoke Web services over the P2P networks.

• In the SATINE middleware, the technical details are
hidden behind user friendly graphical interfaces. This is
essential to facilitate the usage of the system and to help
with its take-up.

The paper is organized as follows: Section II gives an over
all view of the system architecture. In Section III, the semantic
infrastructure of SATINE is elaborated including the func-
tionality ontologies and the message ontologies together with
their utilization for semantic annotation of the Web services.
The semantic mediation in SATINE is described in Section
IV by providing the details of the ontology mapping and
the normalization components. Section V covers the SATINE
semantic P2P Network infrastructure. The role of service
registries and how they are semantically enriched are given
in Section VI and secure service invocation is summarized in
Section VII. In Section VIII, the performance results of the
system prototype are described. The related work is presented
in Section IX. Finally, Section X concludes the paper.

II. SYSTEM ARCHITECTURE OVERVIEW

The overall architecture of the SATINE middleware is
presented in Figure 1. The Web service providers and ser-
vice requesters are represented as “edge peers” in the “Peer
Network”. The parties can advertise their existing tourism
Web services to the “SATINE P2P network” as well as the
new Web services which are created by wrapping existing
tourism applications including the services of the GDSs. These
services can either be hosted by the edge peers themselves, or
in a service registry connected to the rest of the P2P network
through the edge peers. In this way, the outmost layer of “P2P
Network” contain the set of wrapped sources which are either
the service registries or Web Services themselves.

SATINE uses super peer - peer architecture. It has been
observed that P2P networks can lead to an efficient network
architecture when a small subset of peers, called super-peers,
takes over specific responsibilities for peer aggregation, query
routing, and mediation. Super-peer based P2P infrastructures
are usually based on a two-phase routing architecture, which
routes queries first in the super-peer backbone, and then
distributes them to the peers connected to the super-peers [18].

In the SATINE middleware, the super peers store the global
semantic knowledge, that is, one or more global message on-
tologies and their mappings to local ontologies which are then
used for semantic mediation of the messages exchanged. Peers
interact with their super peers to advertise their services and
also for Web service discovery and invocation. Furthermore,
the super peers facilitate the semantic routing of messages
between the edge peers by the use of indices.

In order to facilitate the discovery of the advertised Web
services in the P2P network, we annotate the functionality
of Web services through SATINE Tourism functionality on-
tologies. The SATINE Semantic Infrastructure is elaborated
in detail in Section III.

WS

Service Registry

UDDI

ebXML

UDDI

WS

WS
WS

WS

WS

WS

Tourism services

Peer

Peer Peer

Peer

Peer

SuperPeer

SuperPeerSuperPeer

WS

PN

P3

P2

P4

Ontology Design
Normalization
G2L Mapping
Service Wrapper
Enhanced Registries
Service Execution
Service Composition

ServiceLookup
Service Advertisement
Service Invocation

Semantic Routing
Secure Invocation
G2G Mapping

P1

SP2SP1

SPN

PeerN
Trusted

WS−Security

Trusted
Peer1

SATINE P2P NETWORK

SUPER PEER NETWORK

PEER NETWORK

Fig. 1. The Architecture of the Satine Middleware

Another characteristic of SATINE P2P architecture is the
semantic mediation of exchanged messages between the par-
ties involved. There are many different message formats and
contents in the travel domain and if the sender and the
consumer use different messages, they need to be semantically
mediated to be of any use at the receiving end. For example,
one may wish to invoke a Web service to reserve a flight by
using Amadeus GDS [1] but the consumer of this Web service
may not be aware of the content of Amadeus messages.

SATINE allows automatic creation of local message ontolo-
gies in Web Ontology Language (OWL) [25] from the XML
message schemas that the parties are already using. These
local message ontologies are manually mapped to the global
ontology with the help of SATINE ontology mapping tool,
namely, OWLmt [28]. Once this mapping is defined, message
instances are automatically converted one into other by using
the mapping definition produced. SATINE Semantic mediation
component is detailed in Section IV.

Annotating the services through ontologies enables us to
query the P2P network semantically to locate the services
requested. The SATINE peer-to-peer network is enhanced
with indices for semantically publishing and discovering Web
services. In order to increase scalability, the queries are routed
only to the peers that are hosting the requested services based
on the semantics presented in the query message. The SATINE
P2P architecture is elaborated in detail in Section V.

In SATINE, the tourism service provider peers may in-
troduce service registries to the SATINE P2P network to
publish their Web services. To enable semantic service dis-
covery in SATINE P2P network, semantically enriched UDDI
and ebXML service registries are integrated to the SATINE
architecture as detailed in Section VI.

In the SATINE middleware the invocation of travel Web

3

services is performed based on WS-Security specification [44].
For this purpose “trusted peers” are introduced to the SATINE
architecture to distribute the public keys of the peers and create
session keys for each invocation transaction. SATINE secure
Web service invocation is summarized in Section VII.

III. SEMANTIC INFRASTRUCTURE

In the SATINE middleware, the domain specific semantics
is necessary for the Web services in the following respects:

• For describing service functionality semantics: In order
to facilitate the discovery of the Web services, there is
a need for semantics to describe what the service does.
In other words, the service requestor should be able to
locate a Web service which meets his needs in terms
of its functionality. Note that, the naming of services
performing the same kind of operation varies for different
providers and languages.
In SATINE, we have utilized OTA [23] specifications
to construct a Service Functionality Ontology. OTA
specifications expose significant domain knowledge in
developing a global Web service functionality ontology
since the OTA request/response pairs can be arranged
into a class hierarchy to define operation semantics of
travel Web services. An example OTA compliant travel
functionality ontology is presented in Figure 2. Using
this ontology, not only the functionality of a service (i.e.
“AirAvailabilityServices”) but also some of the service
properties bounded to that functionality (i.e. “Quality of
Service”) can be specified.

MileageType
AirAvailabilityServices

AirFlightInfoServices

AirServiceParameter

GenericParameter
QOS

TravelServices

AirBookingServices

HotelServices AirServices VehicleServices VehicleServices

Fig. 2. An example OTA complaint Functionality Ontology

• Service functionality semantics enables us to discover the
Web services based on their semantics. However in order
to execute the discovered Web services, message level
interoperability is necessary. Service functionality seman-
tics may suffice to achieve interoperability only when
all the Web services use the same message standards.
However, it is not realistic to expect all the travel service
providers to comply with the same message structure and
content. Hence, there is a need to transform one message
content and structure into another. In order to facilitate
message transformation, SATINE utilizes semantic medi-
ation.
Currently the tourism application messages are usually
in XML. In the SATINE middleware, the travel service
providers and requesters express the semantics of the
Web service messages through local ontologies in OWL.

However it may not be straight forward for travel ser-
vice providers to create Web services exchanging OWL
instances. Hence there is a need for automatic bidirec-
tional transformation of XML message instances to OWL
message instances. To be able to realize this, automatic
generation of OWL Schemas from XML Schema Def-
initions (XSDs) is needed. Such transformations, called
Normalization, have been realized within the scope of
the Harmonise project [13]. This normalization tool is
enhanced to cover OWL concepts instead of RDFS in
SATINE infrastructure.
The local message ontologies generated from XSD
schemas are mapped into the Global message ontology.
Currently, SATINE uses more than one global message
ontology one of which is based on the OTA specifica-
tions. It should be noted that our aim is not to propose
ontologies for travel domain but to show how such
ontologies, once developed, can be used for the semantic
interoperability.

POS

TravelerInformation

SpecificRequestInformation

TravelPreferences

DesiredOptionQuantity

DirectFlightsOnly

OriginDestinationInfo
FlightNumber

Airline

BookingClassPref

OriginLocation

DestinationLocation

TravelDateTime

Connection

TravelDate

LocationCode

ConnectionLocation

PreferLevel

VendorPref

AirSrvcClassPref

AirCabinPref

PassengerTypeQuantity

PassengerTypeQuantity

Quantity

BookingClassCode

CompanyCode

OTA_AirAvailRQ

Fig. 3. An example OTA complaint Message Ontology part for AirAvail-
ability Request

A. Annotating Web Service Functionality and Messages
through Ontologies

Each Web service provider is expected to map their local
semantics to a global ontology once at the conceptual level
with the help of the semantic mapping tool SATINE provides.
The automatic translation of the messages at the instance
level is performed through the ontology mapping component
presented in Section IV. A part of an example OTA message
ontology for the input messages of Air Availability services is
given in Figure 3.

In the SATINE middleware, for semantic description of Web
services the “Web Ontology Language for Services (OWL-
S)” [26] is used. OWL-S provides an upper ontology which
defines a top level “Service” class with some generic properties
common to most of the services. The “Service” class has the
following three properties:

• presents: The range of this property is ServiceProfile
class. That is, the class Service presents a ServiceProfile

4

subclassOf

hasInput

hasOutput

FunctionalityOntologyNode

parameterType
NodeURI

MessageOntology

Input

OWL−S Profile

parameterType MessageOntology
NodeURI

Output

Fig. 4. Relating Service Functionality and Service Message Ontologies with
OWL-S

to specify what the service provides for its users as well
as what the service requires from its users.

• describedBy: The range of this property is ServiceModel
class. That is, the class Service is describedBy a Service-
Model to specify how it works.

• supports: The range of this property is ServiceGrounding.
That is, the class Service supports a ServiceGrounding to
specify how it is used.

Based on the service functionality and service message
ontologies, Web services are annotated in SATINE architecture
through OWL-S as depicted in Figure 4:

• Each node in the functionality ontology is created as a
subclass of OWL-S Profile class. For each Web service,
an OWL-S definition is created as an instance of the
related functionality ontology node. In this way, the
functionality of the Web services is annotated through
the service functionality ontology.

• In the OWL-S, Profile class has properties called “has-
Input” and “hasOutput” whose ranges are “Input” and
“Output” classes. These classes, in return have a property,
namely, “parameterType”. The value of this property is
set to a node in the SATINE local message ontology. In
this way the service’s input and output parameters are
annotated with the service message ontologies.

XML

XML

Web Service

Input

Output

XSD

Normalize
(Automatic)

OWL Mapping OWL

P2P
Network

SATINE

definedby

Local Ontology Global Ontology

Fig. 5. Normalization Process in SATINE Architecture

SATINE provides graphical user interfaces (GUI) to guide
a user to create semantic annotation of the Web services. The
GUI tool produces semantic definitions in terms of OWL-S
files automatically where the message semantics are annotated
with the “local message ontologies”.

IV. SEMANTIC MEDIATION

SATINE architecture enables the semantic mediation
through an OWL ontology mapping component, namely,
OWLmt. OWLmt allows the design of mappings between two

ontologies and the automatic translation of the OWL instances
based on the mapping definitions. However, since most of
the Web services exchange XML messages defined by an
XML Schema Definition (XSD) [46], a normalization tool
is integrated to the SATINE system. The normalization tool
enables the conversion of OWL instances to XML messages
and vice versa as well as the automatic creation of local
message ontologies from XSD schemas.

In the following sections, the normalization and the ontol-
ogy mapping processes are detailed emphasizing how they are
utilized in the SATINE architecture.

A. Normalization

Normalization tool enables the creation of OWL ontologies
from a set of XML Schema Definitions (XSDs) of the services.
This is very suitable for the creation of the local ontologies
of travel service providers. Once a travel service provider has
the XSDs of its services, the only process needed in order
to communicate through SATINE network is the creation of
local OWL ontologies from these schemas automatically, and
the definition of the mappings between this local ontology and
one of the global ontologies available in the system. The inte-
gration of the normalization process in SATINE infrastructure
is presented in Figure 5.

In this way, it becomes possible for tourism Web services to
consume XML messages in SATINE architecture. Whenever
a local ontology is automatically created from an XSD file, a
normalization map is created automatically and stored in the
peer. This normalization map is used by the Normalization tool
to convert the OWL instance in local ontology provided as an
input to the Web service to an XML message. The output of
the Web service provided as an XML message is denormalized
to OWL and continues its journey in the SATINE P2P network
as presented in Section IV-B.

B. Ontology Mapping

Ontology Mapping is the process where two ontologies with
an overlapping content are related at the conceptual level, and
the source ontology instances are transformed into the target
ontology instances according to those relations. In the SA-
TINE architecture, an OWL mapping tool is developed, called
OWLmt [28] which is used to handle ontology mediation.
OWLmt provides two key components which are the mapping
GUI and the mapping engine as shown in Figure 6.

The mapping GUI provides a user-friendly environment,
which enables the designer to define the relations among
the similar entities based on the overlapping content in the
source and target ontologies. As a result of this “matching”
process, the “mapping definition” is constructed which stores
the relations between the two ontologies. The representation of
the matching between the entities of the two ontologies and all
the information related to it are defined as mapping patterns in
the mapping definition. Mapping definition is also represented
in OWL. Mapping patterns mainly involve the following:

• Matching the source ontology classes to target ontology
classes: Four mapping patterns namely, “EquivalentTo”,
“SimilarTo”, “IntersectionOf” and “UnionOf” are used to

5

Main Panel

Value
Transformation
Wizard

Object Property
Definition Panel

Property
Transformations
Panel

Javascript
Engine

Query
Engine

Mapping
Engine

OWL−QL
Engine

Javascript
Interpreter

Mapping Engine

Target
Instance

Source
Instance

Mapping
Definition

Mapping
Schema

Source
Ontology

Target
Ontology

Mapping GUI

Handler
HandlerOntology
Ontology

Fig. 6. Architecture of OWLmt

represent the matching between the classes of source and
target ontologies.

• Matching the source ontology Object Properties to target
ontology Object Properties: “ObjectPropertyTransform”
pattern is used to represent the path of classes connected
with object properties in order to map one or more object
properties in the source ontology with one or more object
properties in the target ontology.

• Matching the source ontology Data Properties to target
ontology Data Properties: Datatype properties of an
instance in the source ontology are transformed to the
target ontology instance datatype properties by specifying
a “DatatypePropertyTransform”.

OWLmt provides a powerful translation mechanism for
the datatype properties, because the datatype properties may
be structurally different in source and target ontologies. As
a result, more complex transformation operations may be
necessary than copying the data in the source instance to
the target instance. XPath specification [45] defines a set of
basic operators and functions which are used by the OWLmt
such as “copy”, “concat”, “split”, “substring”, “abs”, and
“floor”. However, in some cases, there is a further need
for a programmatic approach to specify complex functions.
For example, the use of conditional branches (e.g. if-then-
else, switch-case) or iterations (e.g. while, for-next) may
be necessary in specifying the transformation functions. To
handle this kind of data transformation, OWLmt is supported
by JavaScript statements. By specifying the JavaScript to be
used in the ”DatatypePropertyTransform” pattern, the complex
functions can also be applied to the data as well as the basic
functions and the operators. Similarly, the data transformation
can also be performed by invoking a Web service by providing
its WSDL. The Web service support is important for the use
of data dictionaries to lookup the corresponding data values.

In Figure 8, an example mapping definition between OTA
global ontology (Figure 3) and a local ontology for AirA-
vailability request message is presented. In this example, the
Javascript shown in Figure 7 is used to transform “AirCab-
inPref” Datatype property values of “First”, “Business” or
“Economy” to “ServiceClass” Datatype property values of “1”,
“2” and “3”.

As an example to using Web services for DatatypeProperty
transformation, a Web service may provide the code of the
airport once the IATACode for a city is provided (Figure 8).

if(x==null){
return "";}

var str=new java.lang.String(x);
if(str.equals("First")){

return "1";
}else if(str.equals("Business")){

return "2";
}else if(str.equals("Economy")){

return "3";
}else{ return "";}}

Fig. 7. An Example Javascript for DatatypeProperty Transformation

Similarity

OTA_AirAvailRQ

QuantityPassengerTypeQuantity

TravelDateTime

NumberOfPassengers

JavaScriptAirCabinPref

copy

Split

ObjectPropertyTransform
CRequestSection

ServiceClass

DepartureDate

DepartureCityAirport

ArrivalCityAirport

AirMultiAvailability

LocationCode WS

LocationCode WS

OriginDestinationInfo

TravelPreference

TravellerInformation

OriginLocation

DestinationLocation

Fig. 8. Example Mapping for AirAvailability Request message

When a tourism organization wishes to register itself to the
SATINE P2P Network, two mapping definitions need to be
defined for its local message ontology: local-to-global and
global-to-local. This is necessary because the communication
language in the Super Peer Network (Figure 1) is the global
ontologies. Whenever a peer sends a message to its super-peer
it has to be translated to the global ontology from the local
ontology, and whenever a super-peer sends a message to its
peer, it is translated to the local ontology of the peer. Each
edge peer provides the OWLmt mapping GUI to the user to
define these mapping definitions and these are stored in the
peer and its super peer.

The mapping engine is responsible for creating the target
ontology instances using the mapping patterns stored in the
mapping definitions and the instances of the source ontology.
It uses OWL Query Language (OWL-QL) [24] to retrieve
required data from the source ontology instances. The mapping
engine first executes the class mapping patterns. Then, the
property mapping patterns are executed. Similar to the class
mapping patterns, OWL-QL queries are used to locate the data.

6

Fig. 9. SATINE Service Lookup Interface

The use of the OWL-QL enables OWLmt to have reasoning
capabilities. In order to perform value transformations, the
mapping engine uses the JavaScripts or Web services in the
“DatatypePropertyTransform” pattern.

Once the mapping definitions are prepared and stored in
peers and its super-peer; the mapping engine works seamlessly
to the user at the service invocation phase. In order to enable
semantic interoperability, the travel services are not invoked
directly by the peer; the service requester sends a service
invocation request to its super peer. The service requestor does
not have to know the local semantics of the services provided
by different parties. Hence, the input message is translated
to the global semantics automatically by the peer using the
mapping engine and sent to the super-peer of the service
requester. Once the service provider gets the input message
from its super-peer, it is translated to the local semantics of
the service provider automatically and given as an input to the
service to be invoked. The invocation result is also mediated
to the service requestor in the same manner.

V. SATINE P2P NETWORK

One of the major aims of developing a semantically enriched
P2P network infrastructure for SATINE is to provide a scalable
distributed architecture for the currently centralized service
discovery and invocation mechanisms in the tourism domain.

SATINE P2P architecture is implemented based on the
JXTA platform [21]. JXTA is an Open Source project sup-
ported and managed by Sun Microsystems. JXTA provides
discovery mechanisms for the resources owned by the peers.

SATINE Peer-to-Peer architecture has enhanced JXTA capa-
bilities for publishing, discovering and invoking semantically
enriched Web services. It facilitates the discovery of Web
services both from the individual peers in the SATINE network
and also from the public service registries that are a part of the
P2P Network. In SATINE, the edge peers can wrap UDDI and
ebXML service registries and provide functionalities for pub-
lishing semantically enriched web services to service registries
and semantic querying of the service registries as presented
in Section VI. This facilitates the semantic discovery of web
services from several service registries in a P2P environment.

A. Semantic Service Advertisement in SATINE P2P Network

SATINE provides user interfaces which guide the user to
create semantic annotation of the Web services. As presented
in Section III, in SATINE, Web service’s semantic definition
is represented as an OWL-S file where the functionality on-
tology nodes are referred for annotating service functionality,
and message ontology nodes are referred for annotating the
semantics of service parameters.

Each SATINE edge peer provides a graphical interface
to the user for advertising its services to the SATINE P2P
network. In order to advertise a Web service to the system, the
technical description (WSDL), semantic description (OWL-S)
and the security policy of a service is provided to the system
through the “Service Advertisement” component. While ad-
vertising the Web service, the user also indicates whether he
wishes the Web service to be published to a service registry. In
this case, the access information for the Web service registries
is also provided. The edge peer processes this information, and

7

AirAvailabilityServices

WSP1

WSP3

WSP2

SP3

SP1

SP2

* SP3
* SP2

AirAvailabilityServices

*WSP3
* SP2

AirAvailabilityServices

WS

WS

Lookup
AirAvailabilityServices

*WSP2
* SP3

Fig. 10. Super Peer Semantic Routing indexes

if a registry is selected, the service is semantically published to
the selected registry seamlessly to the user using the methods
described in Section VI.

To enable semantic message routing and semantic query
mechanisms based on service advertisements, the service se-
mantics are processed by the P2P network accordingly. Hence
a service advertisement triggers the interaction of the edge
peer with the SATINE super peer network: the peer sends the
OWL-S file of the service to its super peer. SATINE super
peer network handles the semantic routing of the queries to
the appropriate peers by establishing routing indices based on
the semantics of the services advertised. First, for a given peer
its super peer processes the semantic definition of the service,
and updates its indices to indicate that the peer has a service
with the specified semantics. Then the super peer informs other
super peers about the semantics of the web service advertised,
so that the queries can be correctly routed.

B. Semantic Service Discovery in SATINE P2P Network

In order to handle the semantic querying, SATINE provides
each peer a query formulation and a query interpretation
component, namely “Service Lookup” component as presented
in Figure 9. The query formulation tool parses the travel
functionality ontology and presents it through a graphical
interface to the user for specifying the query parameters so
that a user can easily search for the services he is looking
for. As presented in Figure 9, on the left hand side panel,
the functionality ontology nodes are presented. Whenever the
user selects one of the nodes in this panel, the properties
of this functionality ontology node and its possible values
are presented on the right hand side panel. Based on the
user input, the OWL-QL query is constructed at the backend.
For example, if the user selects “AirAvailabilityServices” as a
functionality ontology node, and “QualityRatingExcellent” as
the value of “QOS” property, the OWL-QL query presented in
Figure 11 is generated automatically by the SATINE Lookup
interface.

Afterwards, the query is sent to the SATINE P2P network.
The super-peers semantically route the query only to the
related peers by checking their indices. While the query is
being routed in the SATINE P2P network, the query is mapped
from one global ontology to another whenever necessary

(and (|http://www.w3.org/1999/02/22-rdf-syntax-ns#|:type ?x
|http://144.122.230.177:8080/satine/TravelFunctionality
Ontology.owl#|:|AirAvailabilityServices|)
(|http://www.w3.org/1999/02/22-rdf-syntax-ns#|:type ?p
|http://144.122.230.177:8080/satine/TravelFunctionality
Ontology.owl#|:|QOS|)
(|http://144.122.230.177:8080/satine/Profile.owl#
|:|sParameter| ?p
|http://144.122.230.177:8080/satine/TravelFunctionality
Ontology.owl#|:|QualityRatingExcellent|))

Fig. 11. An example OWL-QL query generated by SATINE Lookup interface

based on the mapping definitions available at the super peers.
For example, in Figure 10, Web service Peer 1 (WSP1)
issues a query to find a service with the functionality of
“AirAvailabilityServices”. The service lookup query is sent
to the super peer of WSP1, which is Super Peer 1 (SP1).
SP1 resolves the query and checks its indices. As a result, it
discovers that there exists a path to a service provider with
“AirAvalabilityServices” from SP2 and SP3 routes. Then, the
query is forwarded to the corresponding super peers. Note
that by such semantic routing, the flooding of the messages
is highly reduced. Additionally, in the topology presented in
Figure 10, the lookup messages may go in a loop between SP2
and SP3 since their indices points at each other. This looping
is prevented in the SATINE architecture by attaching the route
that the query passed to the message.

When the lookup message arrives at the service provider,
the OWL-QL query is executed on the semantic definitions of
its services. If it is an edge peer wrapping a service registry,
the mechanisms for semantically querying the UDDI and
ebXML registries, which are elaborated in Section VI, are
exploited automatically. All the available “AirAvailabilitySer-
vices” found in the SATINE network are accumulated in the
service requestor and displayed to the user according to the
service name, service provider and service description so that
the user can continue with invoking the preferred ones.

VI. ENHANCED SERVICE REGISTRIES

The SATINE System supports both ebXML [7] and the
UDDI [38] registries, to store and discover semantically en-
riched travel Web services. In order to exploit the service
registries in SATINE middleware, a number of mechanisms
are developed to relate the semantics of the Web services with
the registries.

The Web services are discovered in the SATINE network
based on their functional properties which are specified ac-
cording to a functionality ontology. Hence, the functionality
ontologies have to be stored in the service registries to
query the services published to the registry. After storing the
functionality ontologies to service registries, it is necessary to
relate the services advertised in the registry with the semantics
defined through the ontology.

UDDI registries do not provide a mechanism to store an
ontology internal to the registry. The mechanism to relate
semantics with services advertised in the UDDI registries are
the tModel keys and the category bags of registry entries.
tModel keys provide the ability to describe compliance with
taxonomies, ontologies or controlled vocabularies. Therefore

8

if tModel keys are assigned to the nodes of the ontology and
if the corresponding tModel keys are put in the category bags
of the services, it is possible to locate services conforming
to the semantic given in a particular node of the ontology.
This issue is elaborated in [2] and [3], where the mechanisms
are introduced to store and relate DAML-S (earlier version
of OWL-S) ontologies with services advertised in the UDDI
registries.

An ebXML registry, on the other hand, allows to define
semantics basically through two mechanisms: first, it allows
properties of registry objects to be defined through “slots”
and, secondly, metadata can be stored in the registry through a
“ClassificationScheme”. Furthermore, “Classification” objects
explicitly link the services advertised with the nodes of a
“ClassificationScheme”. This information can then be used to
discover the services by exploiting the ebXML query mecha-
nisms. How to store OWL ontologies into ebXML registries
and how to associate these ontologies with Web services are
described in [5] and [4], respectively.

Within the SATINE P2P Network, ebXML and UDDI reg-
istries are connected to the “Registry Peer”. “Registry Peers”
can be thought of as wrappers for registries: they facilitate
the communication between the service registries and the rest
of the P2P network. The requests for storing ontologies, and
storing or searching for Web services are realized by the
registry peer in terms of JXTA messages. The registry peer
processes these JXTA messages and creates the necessary
communication with the registries based on the types of the
registries. In SATINE, the registry peer communicates with
the UDDI registry through the UDDI4J API [39]. For ebXML
registries, we adapted the freebXML which is the OASIS
ebXML Registry Reference Implementation Project (ebxmlrr
2.1) [11]. With this adapted ebXML registry, SATINE System
has the capability of storing and discovering the technical
(WSDL), semantic (OWL-S) and security (Security policy)
information of the semantically enriched travel Web Services.
The registry peer converts the JXTA messages to the related
ebXML SOAP Messages, which are then translated to the
SQL statements before being sent to the ebXML Registry as
presented in Figure 12.

(Apache Tomcat 5.0)
Container

Servlet

ebXML Registry

(PostgreSQL

RelationalDB)

P2P
Network

Satine

Registry Peer

JXTA
Messages SOAP

Messages

SQL
Statements

Fig. 12. SATINE ebXML Integration

The ebXML registry implementation consists basically of
three parts; the client, the servlet container and the relational
database. The relational database constitutes the main ebXML
registry; in other words, it holds tables to store all the registry
data. The freebXML implementation allows various relational
database products such as Oracle, PostgreSQL, and MSSQL

to be used as the database. In the SATINE middleware, the
PostgreSQL Relational Database [27], which is an open source
database, is used as the registry part of the SATINE ebXML
Wrapper.

The general overview of the SATINE ebXML Registry
structure is presented in Figure 12. As a middle layer, a
servlet container is used to interconnect the client and the
registry. The servlet container is required for the SATINE
ebXML Wrapper because all the messages sent to and received
from the client are the SOAP Messages. The servlet container
makes the necessary conversions from SOAP messages to
SQL statements which are consumable by the registry in
the relational database. freebXML implementation essentially
supports the Apache Tomcat 4.0.4 or above. For the SATINE
middleware, we set up the version of 5.0 for the Apache Tom-
cat servlet container. The client side, which is the registry peer
in the SATINE middleware, constitutes the other end point.
The registry peer submits its request to the ebXML Registry
with SOAP Messages through the servlet container. These
requests can be: deploying an ontology schema, publishing
a Web Service with its semantics or querying the registry.
For all these requests, client prepares a SOAP message with
the core request in it. The classes and packages of freebXML
implementation are used and modified to prepare and submit
the SOAP messages.

VII. SECURE SERVICE EXECUTION

As the complexity and sophistication of application and
business logic within Web services increases, the need to
provide security becomes more important. To address this
need, security standards for Web Services have emerged based
on the WS-Security roadmap [42]. Two of the standards
introduced to ensure the security of Web services are WS-
Policy [41] and WS-Security [44]. These standards allow
encrypting the selected parts of a Web service message and to
automatically share security token information regardless of
platform or protocol, as opposed to the more commonly used
SSL, which is simply a way to encrypt the entire channel of
communication. By allowing encryption of the selected parts
of the messages, these standards facilitate data sharing.

In SATINE network, the security implementation becomes
more complex since the Web service messages travel a
number of hops in the P2P network before reaching the
service provider while the necessary semantic mediations are
performed. There are two main factors which increase the
complexity of the security implementation: One stems from
the SATINE P2P network architecture in which more than two
actors are involved in the invocation process while routing of
the message. The other factor is the use of different ontologies
by the Web service provider and the requestor. The WS policy
files are defined on the elements of the message schemas of
WS parameters. Since the message schemas may be different,
the selected message parts specified to be encrypted in the
policy file of the Web service may need to be translated to the
requestor’s message ontology through semantic mediation.

In the SATINE middleware, every service provider must
produce a policy file for each Web service it provides. This

9

policy file complies with the WS-SecurityPolicy specification
[43] and specifies the message parts to be processed by the
encryption and signature algorithms. Figure 13 illustrates an
example policy file for a Web service that uses a local message
ontology. The conformed ontology is specified as “namespace”
in the policy file as shown in the figure. This policy file is
composed of two assertions: “Integrity” and “Confidentiality”.
Integrity mechanism is used to verify that specific parts of
the message have not been altered. For each part of the
message specified in the “Integrity” section, a security token
is associated with it. The “wsp:Usage” attribute specifies that
the integrity assertion must be performed. The policy file
includes an “algorithm” tag that is defined in the security
extension specifying the type of the algorithm to be used
for signing the message parts. The XPath expression in the
“MessageParts” tag gives the part of the message that will
be digitally signed. “Confidentiality” mechanism in the WS-
SecurityPolicy specification is used to ensure that specific
portions of a message are encrypted using a specific algorithm.
As in the “Integrity” part, it specifies the message parts by
XPath expressions for encryption and the algorithm to be used
to encrypt those message parts. There can be more than one
message part as it is shown in the “Confidentiality” tag in
Figure 13.

<wsp:Policy xmlns:wsp="..." xmlns:wsse="..."
xmlns:ontology="http://bostanci.srdc.metu.edu.tr:8080/
ontology/owl/LocalAirMessageOntology.owl">

<wsse:Integrity wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgSignature"/>
<MessageParts>/InvokeMessage</MessageParts>

</wsse:Integrity>
<wsse:Confidentiality wsp:Usage="wsp:Required">

<wsse:Algorithm Type="wsse:AlgEncryption"/>
<MessageParts>/InvokeMessage/Instance/rdf:RDF/
j.0:PoweredAir_MultiAvailability_class
</MessageParts>
<MessageParts>/InvokeMessage/Instance/rdf:RDF/
j.0:PoweredPNR_AddMultiElements_class
</MessageParts>
<MessageParts>/InvokeMessage/Instance/rdf:RDF/
j.0:PoweredAir_FlightInfo_class
</MessageParts>

</wsse:Confidentiality>
</wsp:Policy>

Fig. 13. Example Security Policy File

SATINE provides a user interface to enable service
providers to construct policy files automatically for their
Web services. In this interface, service providers specify the
message parts to be digitally signed (Integrity) and encrypted
(Confidentiality). After creating the Web service policy file,
this file is used with the technical and semantic descriptions
to publish the service in the SATINE middleware so that the
requestors of the Web service can use the file to comply with
the policy file of the provider. The important problem here is
that the policy file is not directly usable because the ontologies
of requester and provider may differ. SATINE solves this
problem by transforming the terminologies in the policy file
into the global semantics where it is further transformed to the
requestor’s message ontology, as it is done for the semantic
properties of the service while responding to a service query.
This mediation is established based on the mapping definitions
which are created and deployed to the SATINE system for

once before joining the SATINE network.
In SATINE, if the requestor and the provider peers do not

conform to the same local ontology, the super peers will need
to decrypt the invocation messages sent between the peers in
order to handle semantic mediation as described in Section
IV. In this sense, the super peers in the network are “trusted
entities”. In addition to this, there is a “trusted peer” in the
system whose main functionality is key management including
storing the public keys of the peers and the session keys as
well as distributing them to the peers securely. The session
keys are dynamically generated for every invocation of a Web
service, however public keys of all peers currently in the
system are stored permanently. In the SATINE middleware,
both symmetric and asymmetric encryptions are used. While
encrypting messages, the session key generated by symmet-
ric key generation algorithm is used. In order to distribute
this session key to the partners, asymmetric encryption keys
(public key, private key) are used. For symmetric encryption,
“3DES” algorithm [37] is utilized. The “RSA” algorithm [30]
is used for asymmetric encryption and generation of public-
private key pairs.

As a result of this architecture, the peers in the invocation
process need public keys of other partners and the trusted
peer shares these keys with others. The peers and super peers
send their public keys to the trusted peer when they join the
SATINE system. Also when a new “trusted peer” is added
to the system, it requests and receives the public keys of the
existing peers. Through these key exchanges, the trusted peer
obtains the public keys of all super and edge peers so that it
can respond to any public key request.

The secure Web service invocation process in the SATINE
middleware is depicted in Figure 14. The requestor peer
constructs the invocation message which includes the instance
of the service message from its own message ontology. After
constructing the message, the requestor peer requests the
session key for this transaction from the trusted peer. The
trusted peer creates a symmetric key, encrypts the key with
the public key of requestor and sends it to the requestor. The
trusted peer saves the session key into a hash table to serve it
to the other peers involved in invocation. The requestor peer
decrypts the key with its own private key and obtains original
session key. By using this session key and its own private key,
the message parts obtained from the policy file are encrypted
and digitally signed and the invocation message is sent to the
super peer of the requester peer.

The route of invocation message includes the service re-
questor, provider and their super peers. The super peers’ role
in the invocation is the semantic mediation in the existence of
more than one global message ontology as described in Section
IV. Therefore, the super peers need the original message to
perform the necessary mappings. In order to obtain the original
message and verify that the message is coming from the true
source, the super peers request the public key of the peer that
message comes from and the session key for that transaction
from the trusted peer. The super peer sends the peer IDs of
both edge peers to specify the session while requesting the
session key. Every time the trusted peer gets a request for
the session key, it checks the ID of the peer that sends the

10

Public Keys

P2ID

P1ID

SP1ID

SP2ID

Super PeersSession Keys
Public Key

of P1
Public Key

of P2
Public Key

of SP1
Public Key

of SP2

P1ID P2ID Session Key P1ID SP1ID

P2ID SP2ID

TP
Trusted Peer

P1 P2

12
.R

eq
ue

st
 S

es
si

on
 K

ey

(P
1I

D
, P

2I
D

)

(Enc.Message+SP2ID+P2ID+P1ID)

(P
1I

D
)

(Enc.Message+SP1ID+P2ID+P1ID)

SP1 SP2

(P
1I

D
,P

2I
D

,S
P2

ID
)

9.Send Mapped Message

7.
R

eq
ue

st
 S

es
si

on
 K

ey

8.
E

nc
ry

pt
ed

 S
es

si
on

 K
ey

5.
R

eq
ue

st
 P

1’
s

Pu
bl

ic
 K

ey

6.
P1

’s
 P

ub
lic

 K
ey

2.
E

nc
ry

pt
ed

 S
es

si
on

 K
ey

3.Send Invocation Message

10
.R

eq
ue

st
 S

P2
’s

 P
ub

lic
 K

ey
(S

P2
ID

)
11

.S
P2

’s
 P

ub
lic

 K
ey

13
.E

nc
ry

pt
ed

 S
es

si
on

 K
ey

(P
1I

D
,P

2I
D

)

4.Send Invocation Message

(Enc. Messagge+P1ID+SP1ID)

1.
R

eq
ue

st
 S

es
si

on
 K

ey

Fig. 14. Secure Service Invocation Process

request to be sure that the peer is authorized to get the key.
Checking the edge peers are easy, since the session keys are
saved in terms of their peer IDs. For super peers, the edge
peers send their super peer IDs with their public keys to the
trusted peer as already described. Thus, when a super peer
requests a session key by sending the edge peer IDs, the trusted
peer checks if the super peer is really the super peer of one of
these edge peers. After these security checks, the trusted peer
sends the session key by encrypting it with the public key of
the super peer. Then the super peer decrypts the session key by
its public key in order to use the session key for decrypting the
invocation message. After performing the possible global-to-
global mappings, the super peer gets the message parts from
the policy file and encrypts and signs the specified message
parts.

When the message comes to the service provider, the
provider peer invokes the service with the input message
issued by the service requester that is mapped to the provider’s
message ontology. The process of returning the result message
securely to the service requester is the same as the invocation
process.

VIII. EXPERIMENTAL RESULTS

There are two metrics that will effect SATINE system
deployment: Ease of set up and use and the performance of
the system.

To facilitate system set up for the end users, we have de-
veloped an automatic installer as presented in Figure 16. Also
we have developed viewlets explaining the set up, discovery,
and invocation steps in SATINE environment. These viewlets
are available at [33].

In order to evaluate SATINE system’s performance in
real life settings, we identified sample usage scenarios and
the factors that may affect the system performance in these
scenarios.

We believe that SATINE system functionality can better be
exploited as a middleware running behind a tourism portal.

Fig. 15. A tourism Portal using SATINE middleware

Fig. 16. SATINE Installer

Fig. 17. Results for one service requestor, multiple provider peers

Currently most of the tourism portals communicate with GDSs
in the backend to accomplish the requests of the end users.
We have integrated SATINE functionalities to the prototype
version of a tourism portal that is currently being used in
Turkey as presented in Figure 15.

A typical transaction in this portal can be summarized as
follows: the end user issues a search request to the portal for
example to find the flights available from Istanbul to Rome.
Under normal circumstances, the portal communicates with
the GDSs it has alliance with and as a response receives the

11

Fig. 18. Discovery and Invocation times for one requestor, multiple provider
peers

Fig. 19. Results for one service provider, multiple requestor peers

available flight information along with the prices. In SATINE
architecture this transaction is performed in two steps: first
the available “FlightAvailability” services in the P2P network
are discovered through a semantic query, then the discovered
services are invoked, and the results of the web service
invocations are presented to the user when the invocation of
all services are finalized. Based on this scenario, we have
identified a typical transaction as (a query service plus the
invoke service) operation pair. We set the primary performance
metric as the total time elapsed from issuing the query until
the results are returned.

In SATINE system, the queries are semantically routed only
to the relevant peers in the network, hence the number of
peers providing the requested service affect the total elapsed
time, rather than the total number of peers in the SATINE P2P
network.

SATINE system is implemented in Java and includes around
127,000 lines of code. The testbed contained eight Pentium 4
PCs running at 1.8 GHz with 2GB of memory. The experi-
mental set up can be summarized as follows:

• One super peer, one trusted peer and one ontology
manager peer running in one of the PCs,

• In each five PCs, a different service provider peer was
running separately, all of them serving “FlightAvailabil-
ity” services,

• Finally on the remaining two PCs, four service requesters

were running, two peers in each machine.

In the first experiment, one service requestor peer is made
avaible, and the number of provider peers are increased
from one to five. As presented in Figure 17, each provider
peer increases the total elapsed time around 2 to 5 seconds.
However, the increase has a decreasing slope. In Figure 18, the
discovery time and the service invocation times are depicted
separately. As it can be seen from the figure the main reason
for the increase in the total elapsed time is the increase in
the invocation time. However, on the average a service lookup
plus invocation transaction takes not more that one and a half
minute which is an acceptable response time given that this
includes all heterogeneous message translations plus semantic
Web service discovery.

Finally in Figure 19, we have presented the results where
we have a single service provider, and the number of requestor
peers querying this service are incremented. From the results
it can be seen that increasing the number of concurrent lookup
and invocations do not dramatically increase the total elapsed
time.

It should be noted that these experiments are performed in a
laboratory environment with limited amount of hardware and
the industrial performance of the system is yet to be tested.

IX. RELATED WORK

Providing the interoperability of heterogeneous information
systems through ontology mediation has been an active re-
search area recently.

The Harmonise project [13] developed a harmonization
network for the tourism industry to allow participating tourism
organisations to keep their proprietary data format and use on-
tology mediation while exchanging information in a seamless
manner. For this purpose they have defined a Interoperability
Minimum Harmonization Ontology (IMHO) and an inter-
change format for the tourism industry. The MAFRA tool is
used for ontology mediation [16]. MAFRA uses a component
that defines the relations and transformations between RDF
ontologies. For representing the similarities in a formal way,
MAFRA provides a meta-ontology called Semantic Bridge
Ontology (SBO).

SATINE middleware has both benefited and extended the
Harmonise framework as follows:

• Existing applications are wrapped as semantically en-
riched Web services to facilitate service discovery and
to provide semantic interoperability.

• Ontology mediation is based on OWL ontologies and an
OWL mapping tool is developed for this purpose.

• To facilitate the discovery of Web services and to provide
scalability a peer-to-peer architecture is developed.

[34] also focuses on integration of heterogeneous data
sources in the Semantic Web context using a semantic me-
diation approach based on ontologies. They use OWL to
formalize ontologies of different resources and to describe
their relations and correspondences to allow the semantic
interoperability between them. The relationships between local
ontologies is defined in OWL, i.e., OWL is used as a mapping
definition language exploiting native OWL constructs such as

12

equivalantClass and equivalentProperty. The mediator queries
the local ontologies wrapping the backend information systems
by using the mapping definition defined in OWL to mediate
between heterogeneous local data representations.

This approach is limited to the mapping definition ca-
pabilities of native OWL constructs. SATINE middleware
extends this mapping especially with various different tools for
Datatype property transformation mechanisms which proves to
be essential for the tourism application domain since the par-
ties in years have developed different formats for expressing
similar information such as hotel rates and flight classes.

Edutella project [17], [19] provides an RDF-based metadata
infrastructure for P2P applications, building on the JXTA
Framework for sharing educational resources. In [18], a super
peer based routing strategy is described for RDF based peer-
to-peer networks.

SATINE middleware semantic routing framework benefited
from this work and has extended it for semantic Web services.

In [20] a vision on Semantic Retrieval in a P2P network
is presented. The authors identified the requirements of the
system based on a scenario in tourism domain. Avoiding query
flooding in P2P network based on semantics, addressing se-
mantic mismatches between the nodes in the P2P network, and
using local repositories enriched with semantics for publishing
information are among the identified requirements. Being a
vision paper, [20] presents the needs, however the solutions
addressing these requirements have not been elaborated.

SATINE middleware complements this work by provid-
ing concrete solutions to the requirements identified such
as demonstrating how semantic routing of query messages
is achieved in JXTA P2P network, showing how semantic
mismatches are resolved through an ontology mapping tool,
and how Web service registries enriched with semantics can
be exploited within a P2P network.

[22] provides a vision on building “fully-enabled service
driven systems” by the use of the following enabling tech-
nologies: Semantic Web, Web services and P2P architectures.
The authors highlight the importance of semantic mediation,
ontology based service discovery, and semantically enriched
P2P networks for achieving this vision. Scenarios involving
knowledge exchange between tourism enterprises and on the
fly discovery and invocation of tourism services are presented
as motivating scenarios. As in [20], this paper is also a
visionary paper: it identifies the requirements and enabling
technologies.

SATINE middleware complements these visions by pro-
viding a prototype implementation demonstrating how these
technologies can be exploited together to achieve a semantic
interoperability platform in the tourism domain.

Finally, in [6], the initial ideas on the use of semantically
enriched Web services in the travel domain are presented.

X. CONCLUSIONS

Web services have become a prominent technology for
providing syntactic interoperability. However, in order to fully
exploit their potential, it is necessary to introduce semantics.
Semantics is domain specific knowledge. Within the scope of

the SATINE Project, we have demonstrated how semantically
enriched Web services can be used to enhance eBusiness in
the travel domain.

In the SATINE middleware, the tourism organizations do not
have to advertise their services through Global Distribution
Systems. SATINE allows tourism organizations to advertise
their services by themselves to the rest of the P2P network.
Therefore especially for SMEs, it is advantageous to be a
part of the SATINE network which enables their services to
be discovered by a wider community without the cost and
overhead of connecting to Global Distribution Systems.

Furthermore, in the SATINE middleware, to provide se-
mantic mediation of the exchanged messages, ontologies are
derived from the existing local message schemas. These local
ontologies are mapped into one another through global ontolo-
gies and mapping definitions thus created are used in mapping
message instances automatically. Through this mechanism
tourism parties exchange messages conforming to their own
message schema with the rest of the peers.

SATINE platform provides the necessary mechanisms sup-
porting secure service invocation over P2P network to properly
handle commercial transactions.

The performance evaluation of the prototype system in
laboratory environment with limited amount of hardware is
promising: the results indicate that the response time is within
acceptable levels although the Web services invoked are first
discovered by using semantic information and their messages
are translated back and forth.

REFERENCES

[1] Amadeus, http://www.amadeus.com/index.jsp
[2] A. Dogac, G. B. Laleci, Y. Kabak, I. Cingil, “Exploiting Web Service

Semantics: Taxonomies vs. Ontologies”, IEEE Data Engineering Bulletin,
Vol. 25, No. 4, December 2002.

[3] A. Dogac, I. Cingil, G. B. Laleci, Y. Kabak, “Improving the Functionality
of UDDI Registries through Web Service Semantics”, 3rd VLDB Work-
shop on Technologies for E-Services (TES-02), Hong Kong, China, August
23-24, 2002.

[4] A. Dogac, Y. Kabak, G. B. Laleci, C. Mattocks, F. Najmi, J. Pollock,
“Enhancing ebXML Registries to Make them OWL Aware”, Distributed
and Parallel Databases Journal, Springer, Vol. 18, No. 1, July 2005, pp.
9-36.

[5] A. Dogac, Y. Kabak, G. Laleci, “Enriching ebXML Registries with OWL
Ontologies for Efficient Service Discovery”, in Proc. of RIDE’04, Boston,
March 2004.

[6] A. Dogac, Y. Kabak, G. Laleci, S. Sinir, A. Yildiz, S. Kirbas, Y. Gurcan,
”Semantically Enriched Web Services for Travel Industry”, ACM Sigmod
Record, Vol. 33, No. 3, September 2004.

[7] ebXML, http://www.ebxml.org/
[8] ebXML Registry Information Model v2.5, http://www.oasis-open.org/-

committees/regrep/documents/2.5/specs/ebRIM.pdf
[9] ebXML Registry Services Specification v2.5, http://www.oasis-open.org/-

committees/regrep/documents/2.5/specs/ebRIM.pdf
[10] Thomas Erl, ” An Overview of the WS-Security Framework”,

http://www.ws-standards.com/WS-Security.asp
[11] freebXML Registry Open Source Project http://ebxmlrr.sourceforge.net
[12] Galileo, http://www.cendanttds.com/galileo/
[13] Harmonise, IST200029329, Tourism Harmonisation Network, Deliver-

able 3.2 Semantic mapping and Reconciliation Engine subsystems.
[14] IBM UDDI registry, http://www-3.ibm.com/services/uddi/find
[15] Jena2 Semantic Web Toolkit, http://www.hpl.hp.com/semweb/jena2.htm
[16] A. Maedche, D. Motik, N. Silva, R. Volz, “MAFRA-A MApping

FRAmework for Distributed Ontologies”, In Proc. of the 13th European
Conf. on Knowledge Engineering and Knowledge Management EKAW-
2002, Madrid, Spain, 2002.

13

[17] W. Nejdl, B.Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmr, and T. Risch. EDUTELLA: a P2P Networking Infrastructure
based on RDF. In Proc. of the 11th Intl. World Wide Web Conf., 2002.

[18] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunk-
horst, and A. Loser. Super-peer-based routing and clustering strategies for
RDF-based peer-to-peer networks. In Proc. of the Intl. World Wide Web
Conf., 2003.

[19] W. Nejdl, B. Wolf, S. Staab, and J. Tane. Edutella: Searching and
annotating resources within an RDF-based P2P network. In Proc. of the
Semantic Web Workshop, 11th Intl. World Wide Web Conf., 2002.

[20] Hao Ding, Ingeborg Solvberg, Yun Lin, “A Vision on Semantic Retrieval
in P2P Network”, In the International Conference on Advanced Informa-
tion Networking and Applications (AINA 2004), March 2004, Fukuoka,
Japan.

[21] Project JXTA, http://www.jxta.org/
[22] A.Maedche and S.Staab, “Services on the Move - Towards P2P-Enabled

Semantic Web Services”, Proceedings of the Tenth International Confer-
ence on Information Technology and Travel and Tourism, ENTER 2003,
Helsinki 2003/01/31

[23] Open Travel Alliance, http://www.opentravel.org/
[24] OWL Query Language, http://ksl.stanford.edu/projects/owl-ql/
[25] OWL Web Ontology Language 1.0 Reference http://www.w3.org/TR/-

2002/WD-owl-ref-20020729/ref-daml
[26] OWL-S, http://www.daml.org/services/daml-s/0.9/
[27] PostgreSQL: An Open-Source Object Relational Database

Management System (ORDBMS), http://www.paragoncorporation.com-
/ArticleDetail.aspx?ArticleID=11

[28] OWL Mapping Tool. http://www.srdc.metu.edu.tr/artemis/owlmt/
[29] RDF Schema: Resource Description Framework Schema Specification,

W3C Proposed Recommendation, 1999, http://www.w3.org/TR/PR-rdf-
schema.

[30] RSA algorithm, http://en.wikipedia.org/wiki/RSA
[31] Sabre, http://www.sabre.com/
[32] SATINE Project, http://www.srdc.metu.edu.tr/webpage/projects/satine
[33] SATINE viewlets, http://www.srdc.metu.edu.tr/webpage/projects/satine/-

viewlet/
[34] S. Suwanmannee, D. Benslimane and Ph. Thiran, “OWL-based Ap-

proach for Semantic Interoperability”, in the Proceedings of AINA, IEEE
Computer Science Press, March 2005.

[35] Simple Object Access Protocol (SOAP), http://www.w3.org/TR/SOAP/
[36] Tomcat, http://jakarta.apache.org/.
[37] Triple DES Algorithm, http://csrc.nist.gov/publications/fips/fips46-

3/fips46-3.pdf
[38] Universal Description, Discovery and Integration (UDDI), www.uddi.org
[39] UDDI Java API, http://uddi4j.sourceforge.net/
[40] Web Service Description Language (WSDL), http://www.w3.org/TR-

/wsdl
[41] Web Services Policy Framework (WS-Policy), http://www-

128.ibm.com/developerworks/library/specification/ws-polfram/
[42] Web Service Security Roadmap, http//www-

106.ibm.com/developerworks/library/ws-secroad/
[43] Web Services Security Policy (WS-SecurityPolicy) Web Services Spec-

ification: http://www-128.ibm.com/developerworks/library/ws-secpol/
[44] Security (WS-Security) Specifications v1.0, http://www-106.ibm.com-

/developerworks/webservices/library/ws-secure/
[45] XML Path Language, http://www.w3.org/TR/xpath
[46] XML Schema Part 2: Datatypes, Paul V. Biron

